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0. Introduction. If {X(f):t = 0} is a separable stochastic process, the problem
of computing the distribution of Z(¢) = sup [X(s):0 = s =< f] is of great interest
particularly in level crossing (detection) problems and in queuing theory.

Spitzer [8] used combinatorial methods to find the distribution of Z(¢) in the
case of a discrete time random walk. In [1] Baxter used operator theoretic tech-
niques to give a characterization of the distribution of Z(¢) and many other
functionals on a discrete time Markov process. In the case of continuous time
processes with stationary independent increments Baxter and Donsker [2] ob-
tained the double Laplace transform of the distribution of Z(¢). Using a general-
ization of the classical ballot theorem, Takacs [9], has computed the distribution
of Z(t) for many interesting cases involving processes with interchangeable
increments.

However, there are many cases in which one must deal with continuous time
Markov processes and semi-Markov processes. The purpose of this paper is to
extend the results of Baxter [1] by characterizing the distribution of Z(t) for a
wide class of semi-Markov processes.

Define mij(s) to be the Laplace transform of the function M.(f) =
P{Z(t) = j| Xo = i] and let m(s) = (m4;(s)). The main result of this paper is in
the form of a recurrence relation for m(s)

m(s) = g(s) + (a(s)m(s))”

where ¢(s) and g(s) are matrices whose elements are Laplace transforms of dis-
tributions which occur in the definition of the semi-Markov process and ¢ is an
operator on matrices. Moreover, m(s) is the unique solution of the above equa-
tion under a condition on the matrices ¢{s) which guarantees that the process
makes a finite number of transitions in any finite interval of time.

1. Preliminaries. First it is necessary to discuss linear operations defined on a
space, £, of bounded sequences, {s:}7 ¢ I, where I may be an arbitrary subset of
the integers. The exact nature of £ will depend on the state space of the semi-
Markov process in question. For us, the important properties of £ are that it is
a Banach space under the supremum norm and that any bounded linear oper-
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ator, A, on £ into £ is of the form

(L.1) Afsd = {205 a8},

where D _; |as;| is uniformly bounded in 4. Clearly we may identify 4 with the
matrix (a;), and the norm of 4 = ||A|| = sup; (2_; |ay]).

DeFintrion 1.1. For any operator A of the form (1.1) we define an operator
A’ by

A" = (ai;) where ai; = ay it >4
= Qgigix it j =4,
=0 if j<i.

We also define A™ = 4 — A°.
Let I be the identity operator, then the following properties hold.

1) I' =1 (il) I" = 0.

(iil) (A%)" = A" (iv) (A" = A4".
(1.2 (v) (A°B°)" = A°PB’. (vi) (A'B"Y = A'B".

(vil) A7) s 4. (vil) (47 = 2)4].

(ix) (ad 4+ BB)" = a4’ + BB".
(x) If Ap+ Ay + --- is a series of bounded operators of the form (1.1)

whose partial sums form a Cauchy sequence in the operator norm, then
T = Ay + Ay + --- is a bounded linear operator of the form (1.1). Moreover,
Ay + A + -+ and A + AL + --- converge in the operator norm, also
T‘T = AUU+A1‘T+ andTT= A0T+A17+ 000 ,

(xi) If A = A, + A, where 4; = A," and 4, = Ay, then 4, = A° and
A, = A",

We prove only (x). Since the space of bounded linear operators on £ into £
is a Banach space, T'is a bounded linear operator on £ and, therefore, must be
of the form (1.1). Let T, = Ay + A; + --- 4+ 4., . Since

172" = T £ [T — T|| and ||T7 — T < 2||T — Tull,

the second statement in (x) follows.

Note that properties (i)—(xi) say that any bounded linear operator 4 on £
into £ can be split uniquely into the sum of two operators A° and A" each of
which is an element in a proper subspace of the Banach algebra of bounded linear
operators on £ into £.

2. Definition of a semi-Markov process. In [7], Pyke and Schaufele presented
a non-constructive definition of a semi-Markov process. It is this non-construc-
tive definition that is used here, although we follow the form of the definition
given in [10].

We take {X; :t = 0} to be a separable process with a countable state space I.
Let

Y=t if X,=2X, forall 0 =5t
=t¢t—supls:0 = s <t X, # X, otherwise.
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If the two-dimensional process { (X, Y,):¢ = 0} is a strong Markov process with
stationary Borel measurable transition probabilities, then we say that { X, : ¢ = 0}
is a semi-Markov process (SMP).

DzriniTION 2.1. Let

wy = inf [s:8 = §; X, &£ X,|, if X, =X, for 0 <wu =i
=infs:s = {; X, # Xy] —sup[s:s = ¢; X, # X,] otherwise;

For convenience we shall denote wy by w and P[S|(X,, ¥,) = (4, 0)] by
P o[S] where S is a Borel subset of the state space of {(X;, Y,):¢ = 0}.

For this paper we shall require that F;(t) — 0 as ¢ — 0+ for all ¢ ¢ I. Inthis
case, once the process enters a state it stays there for a positive length of time
with probability one. That is, the process is a step process. We shall also assume
that the process has right-continuous sample paths in order to guarantee that w
is a stationary Markov time of the process.

DrerFinNition 2.2. If { X, : ¢ = 0} is a right-continuous SMP for which F;(¢) — 0
ast — 04 for all ¢ in I, then we call {X,:7 = 0} a semi-Markov step process
(SMSP).

DrrintTion 2.3, Let

Qij(t) = Piolw < ¢ and X, =j] if ¢y
Qi) = 0,

Z(t) = sup[X,:0 < s =1,
Mi(t) = PiolZ(t) = jl.

In this paper we take the point of view that the @;;(¢) are known and that the
distributions of certain functionals on {X,:¢ = 0} are to be solved in terms of
them. This is an acceptable point of view even for a continuous parameter
Markov chain since the @;;(t) may be easily calculated from the transition prob-
abilities p;;(t). In fact, in [3], p. 246 it is shown that

Qii(t) = py(1 — € ") for ¢ #j,
where ¢; = limg .oy (1 — ps(8))/t and copy; = limyoy ps;(8) /1.
3. Semi-Markov processes. If for each ¢, A(f) and B(t) are matrices, then let
A(t) *B(t) = (22 [10.0 Bus(t — s) dAu(s))

when this makes sense. In the context of this paper 4 .;(t) will be a non-decreasing
function, and B,;(¢) will be a Borel function. The above integrals are to be
understood as Lebesgue-Stieltjes integrals with respect to the measures induced
by the A i(s)’s.

The next theorem is one of the main results of this paper. There is given an
equation involving the known functions @.;(¢) which is satisfied by the distribu-
tion M ;;(t) of Z(t). This is the generalization to semi-Markov processes of
Baxter’s results in [1] for disecrete Markov processes.
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THEOREM 3.1. For a SMSP, let M (t) = (My4(t)) and Q(t) = (Q4(¢)). Then
forallt >0

(3.1) M) = (34(1 — Fi(®))) + (Q(t) » M(1))"
and M»;j(t) — 05 as t— 04,

Proor. We consider three cases:

Case 1,5 < 4. Clearly M ;(t) = 0.

Case 2,7 > 4. If the process starts at ¢ and has maximum j > ¢ over the interval
[0, #], then there must have been a transition in [0, ¢]. Since we are dealing with a
step process we can suppose that the first jump is to ¥ = X, , where obviously
k=g

Partitioning on the first jump, we have

Mi(t) = PiglZ; = 5] = 2b<i PoalZ: = j; Xu = k).
Let E, denote expectations taken over [X,, = k]. Then
PiolZ: = j; X = k] = Ex(PiolZ: = j|(Xw, Yu) = (k, 0)]).

By the strong Markov property and the stationarity of (X, Y.), the process
regenerates itself at jump times. Thus for k < 7,

PidZ,=j1(Xu,Yw) = (k,0)] = ProlZi—w = j] = Mui(t — w),
and
PiglZy = j; X = k] = Bu(Mii(t — w)) = [1o.0 Mii(t — s) dQu(s)

by a transformation theorem p. 342, [6].
Finally,

M) = 2esi [ Mui(t — $)dQu(s) = rer S0 Mis(t — ) dQa(s).

Case 8,1 = j. If Z, = 7 and X, = 4, there are two possibilities
(1) w >t Then Piolw > tand Z, = 7] = Pyolw > 1] = 1 — Fy(2),
(ii) w £ t.8ince Z;, =1, X, < 4, and Z,_, < 4.

So by an argument similar to that given before

Pigw <t and Z, = 1] = D ici Du<s [10.0 Mai(t — s) dQu(s).
Since Q:i(¢) = 0, and My;(¢) = 0 for k > 4, we may write
Pigw =t and Z, = 1] = D izs Doer J10.0 Mui(t — ) dQu(s).
It follows that
Ma(t) = 1 — Fi(t) + 22igs 2okt J1o.0 Mii(t — 8)Qa(s).
By checking the definition of the ¢ operator we see that
(M) = (85(1 — Fi(2))) + (Q(t) » M(2))".
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To show that M ;;{t) — 8;; as t — 0+ we observe that
OéMi,-(t)§Pi,o[w5t]=Fi(t)—>0 as t— 04 (7 % %)

and
12 Mi(t) 2 Poglw >t =1 —F(t) > 1 as t— 0+.

This completes the proof.

The convolutions appearing in Theorem 1 suggest that it might be convenient
to work with Laplace transforms.

Define

mi(8) = f[o,w) e "M i;(t) di
(3.2) 9:(8) = [m € (1 —Fy(t)) di
9:1(8) = [10.0r € ** dQu;(t)

where the integrals above are to be understood as Lebesgue-Stieltjes integrals.
Let q(s) = (qii(s)), 9(s) = (8iigi(s)), and m(s) = (my;(s)). We may now write
Theorem 3.1 in the following convenient form

CoroLrARY 3.1. For a SMSP

(3.3) m(s) = g(s) + (q(s)m(s))".

Notice that we are now using a simple matrix product when we write g(s)m(s).

We thank the referee for observing that M;;(t) is a right continuous function
of bounded variation and that it is, therefore, uniquely determined by its Laplace
transform. One may verify this in the following manner. For any integer #, let
A, = {n,n+1,---,}nl and let T, be the hitting time of A,. Then
P oZ(t) £3j] = Pso[Ti1 > t] is a right continuous non-increasing function of ¢.
Sinee M i;(t) = Pio[Tjnn > t] — P, o[T; > ¢], the verification is complete.

Although we have shown that m(s) satisfies equation (3.3) in Corollary 3.1,
we have no guarantee that m(s) is the only family of matrices satisfying equation
(3.3). The aim of the next theorem is to give conditions under which equation
(3.3) uniquely determines m(s). Note that m(s) is a bounded operator on £ into
£ for every s > 0.

TueoreM 3.2. If for some sy > 0, |lg(so) || < 1, then m(s) = g(s) + (q(s)m(s))°
has a unique bounded solution for s = s .

Proor. Let m(s) be a bounded solution of (3.3). Iterating equation (3.3)n
times one obtains

m(s) = mo(8) + ma(s) + -+ + ma(s) + La(s),

where
mo(s) = g(s),  Maa(s) = (g(8)ma(s))’,
and La(s) = (g(s)(--- (g(8)m(s))” --+)".

n+1 times
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So, by properties (1.2)

Ima (1 = llg()I™ lg(s) | and  [La()II = flg(s)[I™™ lme(s)]I.

Smce lg(s)l < o and |lg(s)|| = |lg(so)|| < 1 for s = s, the series
=0 Ma(s) converges in the strong operator sense, and || L,(s)|| — 0 as n — .
Thus, m(s) = X _m_oma(s) is the unique bounded solution of equation (3.3).
The condition ||q(s0)]| < 1 for some s, implies that there are only a finite
number of transitions in any interval [0, {]. To see this, let p;(s) =
J 10,01 PiolX: = jle ™ dt and p(s) = (ps(s)), then the backward equation for a
SMSP becomes

(3.4) p(s) = g(s) + q(s)m(s).

If |jg(s0)|| < 1, equation (3.4) has a unique bounded solution for s = s,. Thus,
we know from [5] that the minimal solution is the unique substochastic solution
of the backward equation, and with probability 1, there are only a finite number
of transitions in any interval [0, ¢].

If fis a function of ¢, let f* denote the derivative of f.

CororLaRY 3.2. If for a SMSP, > Qix(t) < B for all i, then for s > B,
m(s) in (3.2) s the unique bounded solution of equation (3.3).

Proor. If D, Qi(l) £ B, then |lg(s)|| < B/s. So for s > B, lg(s)]| < 1
and Theorem 3.2 applies.

In the next theorem we prove an analog of Spitzer’s identity for semi-Markov
processes under assumptions which are very strong and are satisfied only in
special cases. Yet, the method of proof suggests an approach to solving the
general case in (3.3). This will be discussed after the next theorem is stated and
proved.

TarOREM 3.3. For a SMSP suppose that Fi,(t) = F(i) for all ¢ and that
[ () q(s) = q()[* (&) for all & = 0. If |lg(s0)|| < 1 for some so, then for
s = 8o let

L(s) = log (I — q(s)) = — 2.7 ¢ ()™
and n(s) = f°° N1 — F(1)) dt.
Then for s = s,
m(s) = n(s) exp (227 (¢°(s))k™).

Proor. The condition [¢*(s)]%q(s) = q(s)¢"(s)]° guarantees that exp (L(s)) =
exp (L(s)") exp (L(s)”). By Theorem 3.2 we know that for s = sy, m(s) is the
unique bounded solution of m(s) = g(s) 4+ (¢(s)m(s))” which in this case has
the form

n(s)I = [(I — q(s))m(s)]" = [exp (L(s))m(s)T".

By verifying that [exp (L(s)")]” = I, it is easily seen that for s = s,
7(s) exp (—L(s)") is a bounded, and hence the unique bounded solution of
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the above equation. Thus,

m(s) = n(s) exp (224 (¢ ()% ).

CoroLraRyY 3.3. Let the SMSP have the integers for its state space and be spacially
homogeneous (1.e. Qu(t) = Q(k — 4, t)). If the Qu(t)’s are continuous and if
llg(so)|| < 1 for some sy, then for s = s

m(s) = n(s) exp (227 (¢"(s)/)").

PrROOF. Fi(t) = D 1 Q(k — 4, t) which is independent of 7.
We need only show that ¢(s)(¢"(s))° = (¢(s))%q(s), and we may apply
Theorem 3.3 to get the result. We shall show this by proving that

(Qu(8))"*Q(8) = Q1) * (Qu(t))"

where, Qu(t) = (Q(¢)), and @.a(t) = Q(t) * Qu(2).
Denote the elements of (Qx(¢))” by @"(; — 4, t). Then

QM) * (@) = Dzi [0 @G — k t — 8)dQk — 3, 5)).
By making the change of variable z = j7 + 7 — k, we obtain

(ezi 100 Q@ (2 — 4, t — 8) dQ(G — 2, 5)).

Integration by parts gives

(Zezif0n @G — 2t — ) dQ'(z — 4, 5)) = (Qu())" * QD).

The construetion in Theorem 3.3 is based on a Wiener-Hopf factorization.
That is, we write (uniquely)

(3.5) I — g(s) = exp (L(s)") exp (L(s)")

where (exp (L(s)"))” = I and (exp (L(s)"))" = exp (L(s)°). That this fac-
torization is the unique one of the type I — ¢(s) = exp (A(s)) exp (B(s))
where A(s)" = A(s) and B(s)" = B(s) may be seen by taking logarithms in
(3.5) and using property (xi) of (1.2).

The solution of Equation (3.3) given in Theorem 3.3 is then a multiple of the
inverse of the right factor matrix on the right-hand side of (3.5). If g(s) is not a
multiple of the identity the situation becomes more complicated. In fact, we
then want to find matrices A(s) and B(s) satisfying the conditions:

(1) I —q(s) = (I + B(s))(I + A(s)).

(2) (I + A(s)) has a bounded right inverse, (I + A(s))™".

(3) (A(s)" = 4(s). |

(4) B(s) is subdiagonal, and Y i—_» Bu(s)ge(s) = 0.

Then the (unique) bounded solution of (3.3) is m(s) = (I + A(s))'g(s).
Of course if g(s) is a constant multiple of I, condition (4) becomes (B(s))” =
B(s), and (1) is the familiar Wiener-Hopf factorization.

A simple example will serve to illustrate the above method and its difficulties.
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Suppose that we have a two state semi-Markov process in which Q;({) =

J5Qis(s) ds.
0 in(s))
( ) = )
& (910(8) 0

Then
= ((1 — qu(s))/s 0 )
0 (1 — qu(s))/s)

Of course, one ean easily write down m(s) from probabilistic considerations.
Namely,

and

((1 — qu(s))/s Qm(s)/s)
m(s) = ]
1/s

However, it is instruetive to carry out the factorization deseribed in (1)-(4).
We have

I —q(s) =T+ B(s))(I + A(s))

where
- ° )
B(s) =
—qo(s) qro(s)(1 — go1())/(1 — quo(s))
and
0 —Qul(ﬂ)
- )
(e 0 —qul(s)
Also,

1 gu(s)/(1 = qu(s))
0 1/(1 — qu(s)) )
One can easily check that properties (1)—(4) hold and that
(1 = qu(s))/s qu(s)/s
0 1/s )

(I + A(s))™ = (

m(s) = (I + A(s))'g(s) = (

4. Continuous parameter Markov chains. We now consider a continuous
parameter Markov chain (MC) with stationary transition probabilities, p:;(1),
as a special case of a SMP.

In this case,

Fi(t) =1 — ¢ and Qy(t) = pi(1 — ),
where

c; =0, i 2 0, pi =0 and D ipy = 1.
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The assumption that we are dealing with a step process means that there are
no instantaneous states (i.e. ¢; < for all 7). Let us denote by A = (a;;)
the infinitesimal generator of the chain. Then,

Q35 = PijCi if’L ?5]
= —c4 otherwise.
The analogs for MC’s of the theorems of Section 3 are presented below. In
spite of its simplicity, the following theorem appears not to be in the literature.

TaroreM 4.1. For a stationary MC with a standard transition matriz and no
instantaneous states,

(4.1) M'(t) = (AM(2)) where M'(t) = (Mii(t)).
Proor. By Theorem 3.1,
(M5(t)) = (36 "") + (2p 0.0 Mui(t — s)pace " ds)”.

Making the change of variable y = ¢ — s, and taking derivatives termwise,
we obtain, (M) = (AM())".

In terms of Laplace transforms, Theorem 4.1 becomes

CorOLLARY 4.1. For a stationary MC with a standard iransition malriv and
no instantaneous states,

(4.2) sm(s) = I + (Am(s))".
TuroreM 4.2. For a stationary MC with a standard transition matriz and no
instaneous states, |A|| = b < « implies that for s > b Equation (4.2) has a unique

bounded solution m(s).

Proor. For s > b, ||[A]l/s < 1 and we may apply the proof of Theorem 3.2
to show that Equation 4.2 has a unique bounded solution.

Observe that the condition ||A|l < b < « means that ¢; < b for all 2. Now one
may easily check that by Theorem 1 (11.19) of [3], almost all sample paths have
only a finite number of transitions in any interval [0, ¢].

TuroreM 4.3. Consider a stationary MC with a standard transition matric
and no instantaneous states. If (A¥)°A = A(A") for all k = 1, and of || 4| =
b < o, then fors > b

m(s) = (1/s) exp (227 (4")7/ks").
Proor. Rewriting equation 4.2 asI/s = ((I — A/s)m(s))’, it is easily seen by

a method similar to that used in Theorem 3.4 that (1/s) exp (D1 (A*)"/ks")
is the unique bounded solution of (4.2).
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