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Abstract – The multitarget intensity filter is derived from 
a Bayesian first principles approach. The multitarget 
and measurement models are assumed to be Poisson 
point processes. The Bayes multitarget posterior 
probability density function is first defined on the 
Poisson event space, and then reformulated in terms of 
the intensity functions that characterize all Poisson 
point processes. It is shown that the predicted 
multitarget and predicted measurement processes are 
Poisson. However, the multitarget Bayes posterior 
probability density is not that of a Poisson point process. 
It is shown that all the single-target marginal 
probability density functions of the multitarget posterior 
probability density are identical.  Consequently, the 
multitarget Bayes posterior probability density is 
approximated as the product of its marginal probability 
densities.  Maximum likelihood determines the scale 
factor that converts marginal probability density to 
posterior multitarget intensity.  This posterior 
multitarget intensity defines the information updated 
multitarget Poisson point process.   
 
Keywords: Multitarget tracking, intensity filter, Poisson 
point process, data association, PHD filter.1 
 

1 Introduction 
A self-contained derivation of a multitarget intensity filter 
from Bayes principles is presented. The multitarget 
intensity is the intensity of a Poisson point process.  The 
Bayes information updated multitarget probability density 
is derived and shown not to correspond to that of a 
Poisson point process.  However, its single-target 
marginal probability density functions (pdfs) are all 
identical.  This leads to a Poisson point process 
approximation, and this approximation completes the 
Bayes recursion. 
 One on the main purposes of this paper to show that 
multitarget intensity filters can be understood in 
essentially elementary terms.  The derivation assumes 
familiarity with single target Bayesian filtering and with 
Poisson point processes at an elementary level.  
 The intensity filter obtained here is very similar to 
the PHD (Probability Hypothesis Density) filter [1].  
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However, the target birth and measurement clutter 
processes that are assumed a priori in [1] are estimated 
here.  The PHD filter is obtained by replacing these 
estimates with known birth and clutter process intensities.  
 The first papers to provide an alternative derivation 
of intensity filters to that provided in [1] are the series of 
papers by Erdinc, Willett, and Bar-Shalom [2,3,4].  Their 
physical-space approach is intuitively appealing in that it 
models the flow between bins in a discretized model of 
target state space and then recovers the PHD filter in the 
limit as bin size goes to zero.  Their approach is 
significantly different from that taken by the present 
paper, which does not use discretization and is based 
directly on the mechanics of a Bayes formulation. The 
papers [2,3,4] also include the CPHD (Cardinalized PHD) 
filter, which is not discussed in the present paper, and 
they compare and contrast the PHD filter with other 
approaches to multitarget tracking.  
 

2 Bayes method for Poisson models 
The multitarget state comprises the number and states of 
the targets in target state space, S .  The multitarget state 
process is characterized as a Poisson process on S .  The 
state space S  is taken to be a specified bounded subset of 

,  1n n ≥\ ; however, the methods presented here can be 
generalized to any space on which a Poisson process can 
be defined. The multitarget Poisson process is assumed to 
be the linear superposition of two Poisson processes – a 
target motion process and a target birth process.  Target 
death is incorporated into the target motion process, but 
target death is not itself a Poisson process.  Let kΞ  and 

kΒ  denote the random variables of the multitarget state 
and birth processes at time kt .  The intensity of kΒ , 
denoted by ( )k kb x , is assumed known a priori.   
 Multitarget measurements are given as an ordered 
list of data points in the measurement space, Z .  The 
order of the points in the list is uninformative, so the list is 
a set.  The data set is characterized as a realization of a 
Poisson point process on Z .  The multitarget data 
process is assumed to be the linear superposition of two 
Poisson processes – a target measurement process and a 
clutter measurement process.  Let kϒ  and kΛ  denote the 
variables of the target data and clutter processes at time 



kt . The intensity of kΛ , denoted by ( )clutter
k kzλ , is 

assumed known a priori.   
 The conditioning assumptions for the Poisson 
variables are implicit in the Bayes net depicted in Figure 1 
of Appendix 1.   The conditioning differs from the usual 
single target conditioning because the target birth and 
measurement clutter terms act as a priori variables.  
 A rather cumbersome conditioning notation is used 
throughout this paper to ensure there is no confusion 
whatever about the meaning and dependencies of the 
random variables.  While tiresome in places, the added 
clarity is well worthwhile.  

3    Predicted target intensity  
The total target Poisson point process at time 1kt −  is 
  1 1 1 1 1 1 1| ,..., , ,..., , ,...,k k k k− − − −Ξ Β Β ϒ ϒ Λ Λ .  (1) 
This variate includes both detected and undetected targets 
at time 1kt − . Its intensity is denoted by ( )1| 1 1k k kf x− − −  and 
is, by induction, assumed given. By definition of the 
intensity function, ( )1| 1 1k k kS

f x ds− − −∫  equals the expected 

number of targets in S  for S ∈ S . The pdf of (1) 
evaluated at the realization  
  ( ) ( )1 1 1

11 1, ,...,k k k
kk m

m x x ξ
ξ ξ ξξ − − −

−− = ∈ SX      (2) 

of the multitarget state at time 1kt −  is given by 
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The predicted total target process is the sum of two 
processes, a current-target process and a new-target 
process.  The current-target process is computed first. 

3.1 Predicted current-target intensity  

The predicted current-target variate at time kt , denoted 
  1 1 1 1 1 1| ,..., , ,..., , ,...,k k k k− − −Ξ Β Β ϒ ϒ Λ Λ ,   (4) 
is defined by subjecting every realization of the total 
target process (1) to two successive transformations.  The 
first is survival filtering, and the second is target motion.   
 Let  ( )1kd x−  be the probability that a target at x at 
time 1kt −  does not transition to time kt , i.e., dies.  The 

Bernoulli variables ( ){ }1 :kd x x− ∈S  are assumed 
independent.  Every realization of the Poisson variate (4) 
with intensity ( )1| 1 1k k kf x− − −  is subjected to survival 
filtering via the independent Bernoulli variables 

( ){ }11 :kd x x−− ∈S .  For example, the point 1k
jxξ −  in the 

realization (2) is retained with probability ( )1
11 k

k jd xξ −
−−  

and deleted with probability ( )1
1

k
k jd xξ −
− . The points 

remaining after survival filtering form a Poisson process 
with intensity (see Appendix 2) 
 ( ) ( )( ) ( )1| 1 1 1 1 1| 1 11Surviving

k k k k k k k kf x d x f x− − − − − − − −= − .   (5) 

Let ( )
1| |

k kX X x y
−

Ψ  denote the probability that a target at y 

at time 1kt −  transitions to x at time kt . The multitarget 
transition probability function is defined by 
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where ( ) ( )1, ,...,k k k
kk m

m x x ξ
ξ ξ ξξ = ∈ SX .  Every realization 

of the surviving target process with intensity 
( )1| 1 1

Surviving
k k kf x− − −  is independently subjected to the transition 

function (6).  The points transitioned in this way form the 
predicted current-target process.  From Appendix 3, this 
process is Poisson and its intensity function is given by 
 ( ) ( ) ( )

1| 1 | 1 1| 1 1 1| .
k k

Current Surviving
k k k X X k k k k k kf x x x f x dx

−− − − − − −= Ψ∫
S

  (7) 

Substituting (5) into (7) gives the predicted current-target 
intensity at time kt  as 

( )
( ) ( )( ) ( )
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| 1 1 1 1| 1 1 1 | 1 .
k k

Current
k k k

X X k k k k k k k k

f x

x x d x f x dx
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=

Ψ −∫
S

 (8) 

3.2 Predicted total target intensity 
The predicted total target variate that includes birth 
contributions at time kt  is  
  1 1 1 1 1| ,..., , ,..., , ,...,k k k k− −Ξ Β Β ϒ ϒ Λ Λ .   (9) 
The variate (9) is defined to be the superposition of the 
birth process kΒ  and the current-target process (4). The 
predicted total target variate (9) is Poisson because the 
superposition of Poisson variates is Poisson, and its 
intensity is the sum of the intensities of the superposed 
variates. Thus, 
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is the predicted total target intensity at time kt . 
 
 

4 Predicted measurement intensity 
The predicted measurement process is the sum of two 
processes, namely, a target-originated measurement 
process and a clutter-originated measurement process.  
The target-originated process is computed first.  



4.1 Target-originated data intensity  
The predicted target-originated measurement variate at 
time kt  is  
  1 1 1 1 1| ,..., , ,..., , ,...,k k k k− −ϒ Β Β ϒ ϒ Λ Λ .   (11) 
The variate (11) characterizes data generated by targets, 
but not clutter.  Let ( )D

kP x  be the probability that a 

target at x at time kt  is detected.  Then the predicted 

detected-target process at time kt  is Poisson and its 
intensity is  
   ( ) ( ) ( )| 1 | 1

Detected D
k k k k k k k kf x P x f x− −= .     (12) 

Let ( )| |
k kZ Xp z x  be the probability of a measurement 

z∈Z  conditioned on a detected target at x at time kt .  
Let  
   ( ) ( )1, ,...,k mm z zυ = ∈ ZX        (13) 
be a measurement generated by the detected-target 
process at time kt . The conditional probability of the 
measurement (13) is defined by  

( ) ( )|
1|

| , if  
|

0, if  .
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By Bayes Theorem the pdf of the variate (11) is 
(suppressing cumbersome conditioning variables in the 
argument)  
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Substituting (14) and the pdf of the detected-target 
process with intensity ( )| 1

Detected
k k kf x−  gives 
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Define 
  ( ) ( ) ( ) ( )| 1 | | 1| ,

k k

Target D
k k k Z X k k k k k k k kz p z x P x f x dxλ − −= ∫

S

 (15) 

for kz ∈Z .  Since 
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the predicted target-originated measurement variate (11) 
is Poisson and ( )| 1

Target
k k kzλ −  is its intensity. 

4.2 Predicted total measurement intensity 
The predicted total measurement variate including clutter 
contributions at time kt  is 
  1 1 1 1| ,..., , ,..., , ,...,k k k k−ϒ Β Β ϒ ϒ Λ Λ .    (17) 
The predicted measurement variate (17) is defined to be 
the superposition of the clutter-originated measurement 
process kΛ  and the target-originated measurement 
process (11).  The predicted total measurement variate 
(17) is Poisson, and  

( ) ( ) ( )
( ) ( ) ( ) ( )

| 1 | 1

| | 1 |
k k

Clutter Target
k k k k k k k k
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k k Z X k k k k k k k k
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λ
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−

= +

= + ∫
S

 (18)  

is its intensity. 
 

5 Updated total target intensity 
The updated total target intensity is the superposition of 
two processes. One is an information updated detected-
target variate that is extended to a Poisson process on 

( )SX .  The other is the undetected-target Poisson 
process. The detected-target process is discussed first. 

5.1 Information updated detected-target 
process 

Let ( )Sym m  denote the set of all permutations on the 

integers { }1,...,m , and let  

  ( ) ( )1, ,...,k k k
kk m

m z z υ
υ υ υυ = ∈ ZX       (19) 

denote the given measurement at time kt . When no clutter 
is present, there is a one-to-one correspondence between 
measurement data points and detected targets. 
 Appendix 2 shows that given there are m  targets 
detected, the posterior process of the undetected targets is 
a Poisson point process with intensity function 
( ) / 11 ( ) ( )D

k k kP s f s−−  independent of the number and 
states of the detected targets.  Thus the posterior state 
process of detected targets is independent of the process 
of undetected targets.  This allows us to compute the 
posterior of these two processes independently. 
 



 Since there are kmυ  data points in kυ , there must be 
kmυ  targets detected, and the multitarget measurement 

likelihood function is defined by 
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The summand in (20) is the measurement likelihood 
function conditioned on the hypothesis that the permuted 
states ( ) ( )( )1 ,..., mx xσ σ  are the correct assignments for the 

ordered data ( )1 ,...,k k
mz zυ υ . Since the order of the given 

data set is uninformative, all permutations are a priori 
equally likely to be the correct assignment, so that 

[ ]Pr 1 !mσ =   The likelihood function (20) is clearly 
incorrect if the data contains clutter or false alarms.  The 
problem of incorporating clutter into the model is 
discussed below in Section 4.4.   
 The information update for the detected-target 
process is  
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Since there are no clutter-originated data in this case, 
( ) ( )| 1 | 1

Target
k k k kz zλ λ− −= . For k km m mυ ξ= ≡ , using (20), the 

pdfs of the Poisson variates (9) and (17), and the identity 
(16) gives  

   

( )

( )( )
( )

( ) ( )
( ) ( )

1 1 1

| 1
1

1

| 1

| 1

| ,..., , ,..., , ,...,

|
1

| 1

-

!

!

1 |
!

                     

1
!

k

k

k k k k

k k

k k

m
Detected

k k j
j

m

j
j

Detected
k k

Target
k k

k

m

Z X j j
Sym m j

Target
k k

f x

z dz

dx
e

m

e
m

f x

p

p z x
m

z

p

m

ξ

υ

υ ξ
σ

σ

λ
λ

ξ

−
=

=

−

−

Ξ Β Β ϒ ϒ Λ Λ

∈ =

−

−∫

∫

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
⎧ ⎫
⎪ ⎪⎪ ⎪× ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=

∏

∏

∑ ∏

( )( ) ( ) ( )
( )( )( )

1

1

| | 1

1 | 1

|
.

k k k k

k k

k

D
m Z X j k j k k jj

TargetSym m j k k j

z x P x f x

z

υ ξ ξ ξ
σ

υσ
σ

λ

−

−

−

∈ =
−

∑ ∏

 

                         (22) 
 
The intensity (12) is substituted in the last step.  For 

k km mυ ξ≠ , the information update is zero.  The marginal 
on k

sxξ  , 1,...,s m= , is  
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Substituting (22) into (23) gives, using (15),   
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                      (24) 
 
The marginal pdfs are identical for all s.  Let 

( )
1 1 1| ,..., , ,..., , ,...,k k k kX kp xΒ Β ϒ ϒ Λ Λ  denote the marginal pdf.   

5.2 Poisson approximation to information 
updated detected-target process 

The variate 1 1 1| ,..., , ,..., , ,...,k k k kΞ Β Β ϒ ϒ Λ Λ  is nonzero 
only for k km m mυ ξ= ≡ .  Its pdf (22) is symmetric, but it 
does not necessarily factor in the manner necessary for it 
to be the pdf of a Poisson variate.  The Poisson 
approximation is defined by the factorization  
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where the right hand side is interpreted as the pdf of the 
multitarget state ( )1 ,...,k k

mx xξ ξ   conditioned on the number 
of measurements m .  For any constant 0c > , the 
intensity  
 ( ) ( )

1 1 1| | ,..., , ,..., , ,..., 
k k k k

Detected
k k k X kf x c p xΒ Β ϒ ϒ Λ Λ≡    (26) 

defines a Poisson process that satisfies the approximation 
(25). The maximum likelihood (ML) estimate of c  is 
found from the likelihood of ( )1, ,...,k k

k mm x xξ ξξ = . Using 
an obvious shorthand notation for the pdf in (26) gives the 
likelihood in the form 
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It follows from (27) that ˆMLc m=  for all ( )1 ,...,k k
mx xξ ξ .  

Substituting ˆMLc  and (24) into (26) gives  

( ) ( )
( ) ( ) ( )

( )

1 1 1| | ,..., , ,..., , ,...,

| | 1

1 | 1

 

|
                  .

k k k k

k

k k

k

Detected
k k k X k

Dm
Z X j k k k k k k

Target
j k k j

f x m p x

p z x P x f x

z

υ

υλ

Β Β ϒ ϒ Λ Λ

−

= −

=

= ∑
  (28) 



The information updated detected-target Poisson process 
at time kt  is defined on the full event space ( )SX  via 
the intensity (28).   

5.3 Updated total target intensity without 
clutter-originated data  

The updated target process is the superposition of the 
detected-target and undetected-target processes.  The 
undetected-target process is a Poisson process with 
intensity  
 ( ) ( )( ) ( )| | 11Undetected D

k k k k k k k kf x P x f x−= − ,     (29) 

so that the updated total target intensity at time kt  is, 
using (28) and (29),   
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                      (30) 
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is the pdf of the total target Poisson variate 
1 1 1| ,..., , ,..., , ,...,k k k kΞ Β Β ϒ ϒ Λ Λ  when there is no clutter-

originated data. 

5.4 Clutter state model for clutter-
originated data 

The absence of clutter-originated data does not seem to be 
easily overcome while retaining an exact Bayesian 
information update of the multitarget pdf.  The problems 
begin with (22) because the exponential terms do not 
cancel, and continue with (24) because the integrals do 
not integrate to one.  Corrective multiplicative factors are 
easily found, and these factors are small when 

( ) ( )Clutter Target
k k k kz zλ λ� ; however, these problems arise 

because the likelihood function (20) assumes that all data 
points in the measurement set (19) are target-originated, 
not the superposition of target- and clutter-originated data.  
When clutter-originated data are included, the likelihood 
function (20) is no longer correct. 
 The approach taken is to augment the target space 
S  with a clutter space φS .  Defining the concept of target 
intensity on the augmented space φ∪S S   requires the 
defining concept of target intensity on φS .  The 
interpretation is that a target anywhere in φS  is a “clutter-
target.” The one measurement per target rule is enforced 
on the augmented space φ∪S S , so that a clutter-target 
accounts for exactly one data point.  Multiple clutter-

targets are allowed. The likelihood function (20) extends 
to φ∪S S  by interpreting the likelihood function 

( )| |
k kZ Xp z x φ∈S  to be the likelihood of the data under the 

“clutter origin” hypothesis.  The sum over permutations in 
(20) is now an enumeration is over all possible 
assignments of data to either target or clutter-target.  
Consequently, evaluating the likelihood function (20) 
does not require knowing which data are clutter-target 
originated and which target-originated.  In summary, on 
the augmented state space φ∪S S , the likelihood function 
(20) is valid and the information update (30) holds 
exactly.  
 The augmented state space φ∪S S  model leads to 
the idea of estimating the clutter intensity from the data, 
not specifying it a priori.  The estimated clutter intensity 
(see (44) below) differs from the clutter-originated 
intensity ( )Clutter

k kzλ  used in (18) because it is generated 
from the data via the target model, and is not an 
independent superposed measurement process. Replacing 
the estimated clutter intensity with the a priori known 
clutter intensity ( )Clutter

k kzλ  seems reasonable in practice. 
This gives the PHD filter.   
 The clutter state can be taken to be an abstract point 
with nonzero intensity; however, this requires reworking 
earlier mathematical derivations.  To avoid this, the clutter 
space is assumed to be a bounded subset of n\  with 
volume by 0ε >  and such that φ∩ =∅S S .  The 
augmented target state space φ∪S S  is a disconnected 

subset of n\ .  The target intensity and filter are defined 
on φ∪S S . This requires extending all relevant variables 
to φ∪S S ;  for example, the transition probability 

function ( )
1| |

k kX X x y
−

Ψ  is extended to a function 

( )
1| |

k k

Ext
X X x y

−
Ψ  defined for all x and y in φ∪S S .  These 
extensions are chosen so that the updated extended total 
target intensity, denoted ( )|

Ext
k k kf x , is constant on φS  if 

( )1| 1
Ext

k k kf x− −  is constant on φS .  The numerical value of the 
target intensity on φS  depends on its volume, ε .   
 The predicted total target intensity (10) and the 
predicted measurement intensity (15) are essentially 
unchanged, although the integrals are now over φ∪S S .  
Let the inductively known target intensity on the 
augmented state space, ( )1| 1

Ext
k k kf x− −  be such that 

( )1| 1 0
Ext

k k kf x c− − ≡  for all kx φ∈S , where 0 0c ≥  is a 
constant. Define  
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and  
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where the constants kb  and kd  satisfy 0kb ≥  and 
0 1kd≤ ≤ .  Define  
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where 0,  1,...,4ic i≥ = ,  are constants such that 

( )
1| 1 1| 1,     for all 

k k
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X X k k k kx x dx x

φ
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∪
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S S

S S . (36) 

Finally, define  
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where ( )| |
k kZ X kp z φ  is the likelihood function of the data 

under the “clutter origin” hypothesis.   
 The clutter state affects the multitarget likelihood 
function (20).  For example, suppose there are 2m =  
measurements, 1

kzυ  and 2
kzυ . From the lower branch of 

(20) it follows that the only multitarget realizations with 
nonzero likelihood function values have two targets, 1

kxξ  
and 2

kxξ , both of which are in the augmented state space 

φ∪S S .  Let ( )1 22, ,k k
k z zυ υυ =  and ( )1 22, ,k k

k x xξ ξξ = . The 
measurement likelihood (20) on the augmented state 
space is then 

     

( )

( )( ) ( )( )
( )

( ) ( )
( ) ( )

|

| 1 | 2
2

| 1 1 | 2 2

| 1 2 | 2 1

|

1   | |
2

| |1   .
2        | |

k k

k k k k

k k k k

k k k k

k k k k

k k k k

k k k k

Ext
k k

Ext Ext
Z X Z Xj j

Sym

Ext Ext
Z X Z X

Ext Ext
Z X Z X

p

p z x p z x

p z x p z x

p z x p z x

υ ξ υ ξ
σ σ

σ

υ ξ υ ξ

υ ξ υ ξ

υ ξϒ Ξ

∈

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥+⎣ ⎦

∑   (38) 

There are four possibilities: 
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Using (37), the measurement likelihood functions (38) for 
these four cases are 
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All the various ways in which the data can arise from 
either targets or clutter are accommodated by the 
augmented state.  
 The predicted total target intensity (10) is, for 

kx φ∈ ∪S S , 
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where  
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                      (41) 
is the estimated birth rate.  From (32)-(36) and the 
inductive hypothesis that ( )1| 1 1 0

Ext
k k kf x c− − − =  for all 

kx φ∈S , it follows that all three terms in (40) are 

constants for kx φ∈S .  Hence, ( )| 1
Ext

k k kf x−  is constant for 

kx φ∈S .  
 Define the extended probability of target detection 
as   
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where the probability 0D
kP ≥  is a constant. The 

probability of detection parameter for the clutter is 
incorporated into the predicted intensity by setting 

1D
kP = .  The predicted total measurement intensity (15) 

becomes, for kz ∈Z ,  

   
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

/
| 1 | | 1

| 1 | | 1

|

ˆ | ,

k k

k k

Ext Ext D Ext Ext
k k k Z X k k k k k k k k

Clutter D Ext
k k k Z X k k k k k k k k

z p z x P x f x dx

z p z x P x f x dx
φ

λ

λ

− −
∪

− −

=

= +

∫

∫
S S

S

 

                      (43) 
where the estimated clutter intensity is 
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where ( )| 1
Ext
k kN φ−   is the predicted number of targets in the 

clutter space.  The estimated clutter target intensity 
fluctuates because it accounts for data originated by 
targets in the clutter space.   
 The total target intensity update (30) holds on the 
augmented state space φ∪S S .  For kx ∈S  the updated 
intensity is 
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and for kx φ∈S  it is 
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                      (46) 
 
From (46) it follows that ( )|

Ext
k k kf x  is constant for all 

kx φ∈S . Multiplying both sides of (46) by ε  gives  
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                      (47) 
 
where ( )|

Ext
k kN φ  is the information updated expected 

number of targets in φS . 
 The PHD filter [1] is recovered by setting 

( )ˆ 0k kb x ≡  in (40), ( ) ( )| 1
ˆClutter Clutter
k k k k kz zλ λ− ≡  in (45), and 

restricting the filter to the space S .  This is a reasonable 
procedure when the specified target birth process and 
clutter process intensities are accurately known.  
 Target birth and death models may make target 
transitions into and out φS  redundant.  These transitions 
can be eliminated by setting 1 4 0c c= =  in (34) and (35).  
For this specialized transition function, the predicted 
target intensity (40) simplifies.  The target birth correction 
term (41) vanishes for kx ∈S , so that  
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                      (48) 
For kx φ∈S , the integral in (40) vanishes but the 
correction term (41) does not. Multiplying by ε  gives  
  ( ) ( ) ( )| 1 1 1| 11Ext Ext

k k k k k kN b d Nφ φ− − − −= + − .   (49) 
The updated total target intensity is unchanged from (45) 
and (47).  
 

6 Concluding remarks 
The inclusion of the clutter-originated measurement 
process kΛ  leads to a complicated form of the 
information updated detected-target marginal pdf.  The 
addition of a clutter state φ∪S S  to the original target 
state space S  remedies this technical difficulty and yields 
a tractable information updated detected-target marginal 
pdf on the augmented state space φ∪S S .  In effect, 
targets in φS  correspond to clutter-originated data.  On the 
augmented state space, the Bayes net for the detected-
target pdf does not have the clutter node kΛ .   
 The information updated detected-target pdf is 
approximated by the product of its single-target marginal 
densities.  The information updated target process is 
defined to be the sum of the undetected target Poisson 
process and the Poisson process obtained from the 
approximate detected-target pdf factorization.  
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Appendix 1.  Bayes net 

The conditioning of the Poisson variates is expressed as a 
Bayesian inference net in Figure 1.  The Bayes net for the 
augmented state space φ∪S S  does not include the clutter 
node. Target birth and clutter birth variables are 
analogous to control terms in Bayesian single target 
formulations.  

 
Figure 1.  Bayes net for multitarget intensity filters 

Appendix 2.  Bernoulli filtered Poisson 
point processes 
Assume that each target present at time kt  has an 
independent opportunity of dying with probability ( )kd s  
which depends target state.  If the target state process at 
time kt  is a Poisson point process, then the process of 
targets that remain alive is also a Poisson point process.   
 To see this, suppose kξ  is a Poisson point process 

with target intensity kf .  Let ( )k kS
f s dsμ ≡ ∫ , 

( ) ( ) ( )k kS
d d s f s dsμ ≡ ∫ , and ( ) /k k kdδ μ μ= . Let kM  be 

the number of targets in kξ  and kN  be the number of 
targets alive after the death process takes place.  
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which is a Poisson distribution with mean 
( ) ( )1 1 ( ) ( )k k k kS

d s f s dsδ μ− = −∫ . 

 A simple Bayesian posterior computation shows that 
the targets that survive have state distributions that are 
independent draws from the density 
( ) ( )1 ( ) ( ) / 1k k k kd s f s δ μ− − .  Thus the point process of 
the surviving targets is a Poisson point process with 
intensity function ( )1 ( ) ( )k kd s f s−  for s ∈S .  
 A similar argument shows that the multitarget state 
processes of the detected and undetected targets are 
Poisson point processes with intensity functions 

/ 1( ) ( )D
k k kP s f s−  and ( ) / 11 ( ) ( )D

k k kP s f s−− , respectively. 

Appendix 3. Markov transformed Poisson 
point processes 
Assume that each target moves according to the 
Markovian motion model : 1for , ,   1,...k kx x S k− ∈ =    
 ( ) { }1 1 1| Pr |k k k k k k kx x X x X x− − −Ψ = = = .    (50) 
Under this model a Poisson point process at 1kt −  with 
target intensity ( )1kf − ⋅  is transformed into a Poisson point 
process at time kt  with target intensity function 

   ( ) 1( ) | ( )k k kS
f x x s f s ds−= Ψ∫ .     (51) 

 To see this, let kξ  be the target state process at time 

kt  for 0,1,k = … , and 1 1( )k kS
f s dsμ − −≡ ∫ . Assume that 

1kξ −  is a Poisson point process with target intensity 
function ( )1kf − ⋅ .  Then 
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Since, 
 ( ) ( ) ( )1 1 1|k j j k j j j k j j k

S S S

x s f s ds dx f s ds μ− − −Ψ = =∫ ∫ ∫ , 

it follows that kξ  is a Poisson point process with target 
density function kf  as given by (51). 
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