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ABSTRACT 

This paper provides a brief history of some operational particle filters that were used by the U. S. Coast Guard 

and U. S. Navy.  Starting in 1974 the Coast Guard system provided Search and Rescue Planning advice for objects lost 

at sea.  The Navy systems were used to plan searches for Soviet submarines in the Atlantic, Pacific, and Mediterranean 

starting in 1972. 

The systems operated in a sequential, Bayesian manner.  A prior distribution for the target’s location and 

movement was produced using both objective and subjective information.  Based on this distribution, the search assets 

available, and their detection characteristics, a near-optimal search was planned.  Typically, this involved visual searches 

by Coast Guard aircraft and sonobuoy searches by Navy antisubmarine warfare patrol aircraft.  The searches were 

executed, and the feedback, both detections and lack of detections, was fed into a particle filter to produce the posterior 

distribution of the target’s location.  This distribution was used as the prior for the next iteration of planning and search. 
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1.  INTRODUCTION 

This paper is largely an historical account of the development of filtering and prediction software for maritime 

search applications beginning in 1970. The methods employed are now known as "particle filtering," although this term 

was not in use at the time the work was carried out.  Stone1 and Stone, Corwin, and Barlow2 discuss optimal search and 

tracking in more detail. 

Section 2 describes the Bayesian mathematical formulation of the filtering and prediction problem, and Section 

3 presents the particle filter solution methodology.  The early maritime applications of this approach are discussed in 

Section 4.  Acknowledgements are given in Section 5. 

1.1. The search problem 

The particle filters to be described were developed to enhance the effectiveness of search for an object (the 

target) that was lost or was attempting to conceal itself from detection.  From the beginning, the objective was to develop 

algorithms and software that could be used in actual operations by Navy and Coast Guard personnel who were not 

computer experts.  The computers available during the 1970's were primitive by today's standards and the design of 

filtering software was driven to a large extent by memory and processing speed limitations.  

It is worth noting that the approaches taken were focused on the end results to be achieved, not filtering and 

prediction as an end in itself.  For example, in many cases it was not necessary to use large numbers of particles to 

compute highly precise posterior probability distributions for target location, when the available amount of search effort 

was small.  An interesting analysis of this and related issues is provided by J. R. Weisinger3.

In the typical search problem, one has some initial information concerning the location and detection 

characteristics of the target of interest.  For example, in a search for a lost fisherman one usually has some idea about the 

intended fishing area as well as a description of the fishing boat.  The location of the fishing area provides the basis for 
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postulating an initial probability distribution for target location, and the description of the fishing boat provides an input 

for calculating the probability of detection by visual, radar, or other sensors. 

When the target is moving, the initial target-location distribution is modified by the dynamics of the particular 

problem.  In the case of a drifting fisherman, the winds, currents, and tides displace and distort the target-location 

distribution.  In the case of a target submarine, the target’s tactics and significant underwater features such as seamounts 

have an important influence on the target's motion. 

Once search takes place, certain areas will become more or less likely to contain the target depending upon the 

results achieved.  Both negative and positive search results modify the shape of the posterior target-location probability 

distribution. 

Realistic treatment of some search problems requires a state space of high dimensions.  At the minimum, target 

position and velocity are required in most cases.  In addition, target detection characteristics, start times associated with 

motion, survival times, and other random variables add to the dimensionality of the state space.  This "curse of 

dimensionality" makes purely analytic approaches to filtering and prediction difficult, but does not significantly add to 

the difficulty of particle-filtering approaches. 

1.2. Non-Gaussian structure of the search problem 

From the above, one can see that the search problem will often have non-Gaussian characteristics even 

beginning with the initial target-location distribution. The search  for the U. S. nuclear submarine Scorpion lost in 1968  

involved consideration of non-Gaussian target-location probability distributions as described by Richardson and Stone4.

Even in cases where the initial target-location probability distribution is Gaussian, target motion will generally change it 

into a form which may defy explicit mathematical description. 

Until the target is found, search provides what is often called "negative information."  This is information 

conveyed by the fact that the target has not yet been detected.  It decreases the target-location probability in the areas 

searched and raises it in areas that have not been searched. 

If contact is made with the target, it may be associated with a sensor that gives non-Gaussian position 

information, such as a line of bearing with a wedge shaped region of uncertainty. 

Figures 1 and 2 illustrate the type of non-Gaussian target-location probability distributions that can be produced 

by updating for negative and, respectively, positive information.  In Figure 1, there is a passive acoustic sensor located at 

(0,0) .  The acoustic conditions produce convergence zones (regions of high detection probability) at roughly 30 and 60 

nautical miles from the sensor.  In this case the sensor has failed to detect the target, so the target is unlikely to be 

located in regions of high detection probability and more likely to be in regions of low detection probability.  The 

resulting target location distribution is circularly symmetric about the location of the sensor at (0,0) .  Figure 1 shows 

the distribution in only one quadrant.  Figure 2, shows the posterior target location distribution resulting from a line of 

bearing detection on a passive acoustic sensor located at (70,0) .  In this case the target is likely to be located in the 

regions of good detection probability (i.e., in the convergence zones).  Within those regions the target is likely be near 

the bearing of the detection.  These two effects produce the multiple modes in Figure 2.  As one can see the distributions 

in Figures 1 and 2 are highly non-Gaussian and even would be difficult to represent by a combination of Gaussian 

distributions. 
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Figure 1: Negative information – posterior distribution resulting from failure to detect. 
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Figure 2: Positive information – line of bearing detection for a passive sensor at (70,0) 

2. BAYESIAN MATHEMATICAL FORMULATION 

The particle filters implemented in the operational systems described in Section 4 followed the basic Bayesian 

mathematical formulation given below. 

Bayesian filtering is based on the mathematical theory of probabilistic filtering described by Jazwinski5.

Bayesian filtering is the application of Bayesian inference to the problem of tracking a single target.  For the applications 

in this paper, the target moves in continuous time, but the observations are received at discrete (possibly random) times.  

This is called continuous-discrete filtering by Jazwinski. 
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2.1. Target state space 

Let S be the state space of the target.  Typically, the target state will be a vector of components with some of 

these components being position and velocity. There can be additional components such as one that specifies target type, 

which may determine motion and detection characteristics. 

2.2. Prior target state-space stochastic process 

Let ( )X t  be the (unknown) target state at time t.  We start the problem at time 0 and are interested in 

estimating ( )X t  for 0t .  The prior information about the target is represented by a stochastic process { ( ); 0}.X t t

Sample paths of this process correspond to possible target paths through the state space, S.

2.3. Sensor information and likelihood functions 

There is a set of sensors that report observations at an ordered, discrete sequence of (possibly random) times.  

These sensors may be of different types and report different information.  The set can include radar, sonar, visual, or 

other types of sensors.  The sensors may report both detection and non-detection information.  We assume that we know 

the probability distribution of each sensor’s response conditioned on the value of the target state s.  This relationship is 

captured in the likelihood function for that sensor.  The relationship between the sensor response and the target state s

may be linear or nonlinear, and the probability distribution representing measurement error may be Gaussian or non-

Gaussian. 

Suppose that by time t we have obtained observations at the set of times 10 .Kt t t   To allow for the 

possibility that we may receive more than one sensor observation at a given time, we let kY  be the set of sensor 

observations received at time .kt   Let ky  denote a value of the random variable .kY   We assume that we can compute 

the likelihood function 

( | ) { | ( ) } for k k k k kL y s Y y X t s s S= = =Pr . (1) 

The computation in equation (1) can account for correlation among sensor responses if that is required. 

2.4. Bayesian filtering and prediction 

Let 1 2( ) ( , , , )Kt Y Y Y=Y  and 1( , , )Ky y=y .  Define 

{ }1 1 1( , , ) ( ) , , ( )K K Kq s s X t s X t s= = =Pr  (2) 

to be the prior probability (density) that { ( ); 0}X t t  passes through the states 1, , Ks s  at times 1, , Kt t .  Let 

{ }( , ) ( ) | ( )K K K K Kp t s X t s t= = =Pr Y y . (3) 

The function ( , )Kp t  is the posterior distribution on ( )KX t  given ( ) .Kt =Y y  The goal of Bayesian filtering is to 

compute this posterior distribution.  From the point of view of Bayesian filtering, the posterior distribution on target state 

represents our knowledge of the target state.  All estimates of target state derive from this posterior. 

If we wish to predict the target’s location distribution at some time Kt t> , then we must compute 

{ }( , ) ( ) | ( )Kp t s X t s t= = =Pr Y y

which is the posterior distribution on ( )X t  given ( ) .Kt =Y y  for Kt t> .

2.5. Recursive method of computing the posterior 

Two additional assumptions permit recursive computation of ( , ).K Kp t s  First, the stochastic process 

{ ( ); 0}X t t  must be Markovian on the state space S.  Second, for i j  the distribution of ( )iY t  must be independent 

of ( )jY t  given 1 1( ( ) , , ( ) )K KX t s X t s= =  so that 
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The assumption in equation (4) means that the sensor responses (or observations) at time kt  depend only on the target 

state at the time .kt   This is not automatically true.  For example, if the target state space is position only and the 

observation is a velocity measurement, this observation will depend on the target state over some time interval near .kt

The remedy in this case is to add velocity to the target state space.  There are other observations, such as failure of a 

sonar sensor to detect an underwater target over a period of time for which the remedy is not so easy or obvious.  This 

observation may depend on the whole past history of target positions and perhaps velocities too.   

Define the transition function 

1 1 1( | ) { ( ) ( ) }  for 1k k k k k k kq s s X t s X t s k= = =Pr , (5) 

and let 0q  be the probability (density) function for (0)X .  By the Markov assumption 

1 1 0 0 0

1

( , , ) ( | ) ( )
K

K k k k

kS

q s s q s s q s ds
=

= . (6) 

We can now write the recursion for Bayesian filtering. 

Recursion for Bayesian Filtering 

Initial Distribution: 0 0 0 0 0( , ) ( )  for p t s q s s S=  (7) 

For k  1 and ks S , perform 

Motion Update: 1 1 1 1( , ) ( | ) ( , )k k k k k k k kp t s q s s p t s ds=  (8) 

Compute Likelihood Function kL  from the observation k kY y=  (9) 

Information Update:
1

( , ) ( | ) ( , )k k k k k k kp t s L y s p t s
C

= . (10) 

Prediction: ( , ) ( | ) ( , )t k k k kp t s q s s p t s ds=  for kt t>  (11) 

The motion update in equation (8) accounts for the transition of the target state from time 1kt  to kt .

Transitions can represent not only the physical motion of the target but also changes in other state variables.  The 

information update in equation (10) is accomplished by pointwise multiplication of ( , )k kp t s  by the likelihood function 

( | )k k kL y s  and division by C  to normalize the product to a probability distribution.  The prediction step in (11) uses the 

target motion model represented by the transition function ( | ) { ( ) | ( ) }t k k kq s s X t s X t s= = =Pr  to project the 

probability distribution ahead to time t beyond the time kt  of the last observation.  This prediction step is useful for 

planning a search allocation for a time kt t> .

Likelihood functions replace and generalize the notion of contacts in Bayesian tracking.  Likelihood functions 

can represent sensor information such as detections, no detections, Gaussian contacts, bearing observations, measured 

signal-to-noise ratios, and observed frequencies of a signal.   

In the special case where the target motion model is Gaussian and the measurements are linear functions of 

target state with Gaussian measurement errors, the above recursion can be computed using the standard formulas for 

Kalman Filtering.  These assumptions do not hold for the maritime applications described below.  For this reason we 

used a particle filter approach to perform the numerical calculations in equations (7) - (11). 
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3. PARTICLE FILTER SOLUTION METHODOLOGY 

The first subsection provides a general overview of the particle filter solution methodology and the second 

subsection explains the method of resampling. Since the methodology was highly dependent on the computers available 

in the early 1970's, two of these host computers are discussed in the final subsection. 

3.1. Particle Filter Solution 

Doucet et al6 provide an in depth discussion of particle filters.  A particle filter is a sequential, Monte Carlo 

method of performing the computations in the recursion in (7) - (11).  In outline particle filtering is simple.  One 

approximates the continuous time and space stochastic process that models the target’s motion through its state space 

with a finite number N of sample paths drawn from this process.  Each path is called a particle.  Initially each particle is 

given equal weight (probability).  The paths are computed recursively, so that they are generated up to the time kt  at 

which the last sensor observation was obtained.  The distribution of states of the particles at time 0 0t =  produces a 

discrete approximation to the initial distribution 0q  in (7).   

When the first observation is obtained at time 1t , each particle is advanced to its state at time 1t .  This is done 

recursively using the (stochastic) motion model for the target.  This accomplishes the motion update step in (8).  The 

likelihood function for the observation(s) at time 1t  is calculated.  This implements (9) in the recursion.  Next the weight 

(probability) of each particle is multiplied by the likelihood function evaluated at the state of the particle.  The resulting 

weights are renormalized to add to 1.  This process implements (10) in the recursion.   

3.2. Resampling 

In particle filtering, another step is required called regeneration or resampling.  As time progresses and we 

receive sensor measurements, the distribution on target state will tend to concentrate on a relatively small number of 

particles.  Those few particles will have high probabilities and the other particles will have very small probabilities.  In 

order to preserve the resolution of the filter, resampling splits the large probability particles into many separate particles 

and deletes the low probability particles.  The result is a more balanced distribution of probability over the particles.  

This process is accomplished in a manner that maintains, at least roughly, the number of particles at N .  There are many 

resampling methods.  Doucet et al6 provide a description of several of these.  The technique7 used in the systems 

reviewed in Section 4 was motivated by the "Russian roulette and splitting" method described by Herman Kahn8. Kahn 

attributes both the idea and the name of the method to Stanislaw Ulam and John von Neumann. 

For 1,...,n N= , let ( )nX t denote the nth Monte Carlo sample for the target state space stochastic process 

advanced to the time t at which resampling is to occur.  Also let nw  denote the likelihood weight associated with the nth

sample ( )nX t .  In this formulation, it is not necessary that the sum of the weights be unity. 

The next step is to compute the average number of offspring nu that will be cloned from the nth sample ( )nX t .

This number is given by 

1
/

N

n n jj
u w N w

=
= .

Since nu is generally not an integer, let nK be the integer part of nu and let nR be the fractional part of nu .  One now plays 

Russian roulette by drawing a random number z  uniformly distributed between 0 and 1. If nz R> , then one kills off the 

fractional part of nu  and makes nK  copies of state ( )nX t .  If nz R , then one makes 1nK +  copies of state ( )nX t .

The sum of the number of copies of all particles will be a random variable with expected value N. Some additional steps 

are taken to prevent the number of particles from drifting away from N over time. After the particles are resampled, all 

likelihood weights are set to one in preparation for future updating. 

3.3. Computer implementation 

The basic concepts for the algorithms and for their software implementation were formulated around 1970. By 

today's standards, computers were primitive in terms of processing speed, RAM, and disk capacity.  Time-sharing 
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systems were used via remote teletype networks.  Graphical interfaces were still in the future and visual displays had to 

be constructed on paper from symbols available on a teletype keyboard. 

After a few analytic approaches were attempted, it soon became evident that the best way to deal with the 

problem was to use what is now called particle filtering.  In order to minimize the use of RAM, the state-space samples 

were stored off-line on disk and read into the central processor one record at a time. The sequential motion and 

information recursions in (7) - (11) were then carried out and the updated records read back onto disk. Richardson and 

Corwin9 provide a further discussion of this procedure.  

The following subsections briefly describe two representative computer systems that were used to develop and 

host the particle filtering algorithms. 

The CDC 3300 main frame
†. The CDC 3300 mainframe computer was used to develop the CASP system for 

the U. S. Coast Guard and was located at Coast Guard headquarters in Washington, D. C. The CDC 3300 computer was 

obsolete even by the standards of the time.  Its RAM memory consisted of 128K 6-bit bytes for program code and data 

plus another 128K for additional data.  Double-precision calculations required four-byte words and consequently 

allowance for program code reduced processing memory to fewer than 64K double-precision words. 

The Data General Nova 800 minicomputer
‡
. The Data General Nova 800 was used to develop the 

MEDSEARCH system and was located in Submarine Group Eight headquarters in Naples, Italy. The computer had four 

boards of ferrite core memory that consisted of wires wrapped around iron rings.  Each board had 8k of addressable 16 

bit words.  The memory had to accommodate the operating system, the executing program, the call stack, and all 

program variables. Integers were 16 bits which limited the range to ±32,000. There was no floating point processor so 

floating point operations were carried out with software.  The disk storage consisted of two "platters," one fixed and one 

removable.  Debugging was carried out by stepping through program instructions following panel lights. 

4. EARLY MARITIME APPLICATIONS 

We now describe applications of particle filtering developed in the 1970s and early 1980s.  All of these systems 

were used operationally by the Coast Guard or the Navy.  The search and rescue planning system CASP is still in use 

today by the Coast Guard. The section is organized chronologically since each new system used ideas and code from 

previous developments. 

4.1. U. S. Coast Guard CASP
10

The Computer-Assisted Search Planning (CASP) system was the first particle filtering system in the series 

developed by the authors and their colleagues.  Work began in the summer of 1970 and the basic CASP programs were 

completed in mid-1971. The programs were turned over to the Coast Guard for testing and evaluation using a CDC 3300 

mainframe. Coast Guard personnel modified the programs so that they could be used for operations over the Atlantic and 

Pacific teletype networks. 

The state-space for the particle filter consisted of the two-dimensional position of the target.  The computer 

record for each particle consisted of the latitude and longitude of the target together with its current likelihood weight.  

The user could model the prior information about target location in three different ways.  When a position 

report was available, a bivariate normal distribution could be generated for location of the initial distress event.  The user 

could then displace each target particle by a random distance and direction. Using the "exponential mapping" from 

differential geometry, the bivariate normal distribution was "wrapped" around the Earth to eliminate possible distortions 

that could be introduced when the probability distributions covered large regions. 

Prior information about target location could also modeled by a uniform distribution within a user-specified 

polygonal region.  This was often used when a fisherman was lost within a known fishing area.  Finally, in certain cases, 

such as when a float plan or flight plan was available, a target location probability distribution could be generated about 
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the intended track line specified in the plan.  If required, all three types of distributions could be combined to treat 

different "scenarios" concerning the target's loss. 

After the initial distress event, winds and currents would cause the target to drift, perhaps for days or weeks.  

Navy oceanographic data were used to estimate drift and random variables were use to represent uncertainties in the 

estimated parameter values. 

Standard manuals and tables were used off line to compute target probability of detection (POD) in the area 

covered by the search units.  When a period of search was unsuccessful, the particles in the search area had their 

likelihood weights multiplied by the search failure probability (1-POD).  Visual, radar, and other types of sensors could 

be treated in this way. 

Search ended with detection and hence there was no update procedure to account for the positive information 

provided by target contact.  Resampling was not used in the original CASP system. 

As an illustration of the versatility of the particle filtering approach, T. L. Corwin11 developed on short notice 

an innovative multiple-target version of the CASP system.  It was used to estimate the location of 520 cyanide containers 

lost in the Gulf of Mexico as a result of a collision between a freighter and a tanker in 1973. One of the goals was to 

predict when and where the containers would come ashore in the future, given that they were not destroyed in the 

collision or subsequently sunk. Observation data included the location of containers already found.

4.2. U.S. Navy CAST
7

The development of the Computer-Assisted Search and Tracking (CAST) system was undertaken for the Naval 

Air Development Center.  Work on the core programs began in 1972 and they were used in anti-submarine warfare 

operations the same year.  The software design was a derivative of the U. S. Coast Guard CASP system, with the major 

differences being the target-motion and sensor models, the inclusion of a tracking feature that could incorporate positive 

information from contacts, and the use of resampling. 

The state-space used for the Coast Guard was enlarged to include target velocity as well as position. The 

computer record for each particle consisted of five numbers, the two-dimensional position and velocity of the target and 

the current likelihood weight. 

Two options were provided for modeling target location and motion.  The first used a bivariate normal 

distribution to represent the initial position. Subsequent target motion was modeled by using "truncated triangular" 

probability distributions to represent target course and speed.  The truncated triangular probability distributions were 

defined using upper, lower, and best estimates of the various parameters. The user also specified the ratio of the highest 

to the lowest probability density.  When the ratio was one, the distribution was uniform.  When the ratio was very much 

larger than one, the distribution was nearly triangular. 

The second method for modeling target motion consisted of specifying a target track using probability 

distributions for the target's postulated location at various times measured as offsets from a random start time. 

Air anti-submarine search used sonobuoys (passive acoustic listening devices) dropped from an aircraft and 

aided by fixed underwater surveillance systems. Off-line computers were used to estimate target detection probability for 

all systems under consideration. If the target was not detected, then the target particle likelihood weights were updated to 

reflect this negative information in the same manner as the Coast Guard CASP system. 

If the submarine was detected, then the target particle likelihood weights were updated to reflect the uncertainty 

in the position report. Since the operations continued on in a tracking mode, a resampling method (Section 3.2) was used 

to generate additional points in the high probability areas and reduce the number of points in the low probability areas. 

4.3. U. S. Navy MEDSEARCH 

The development of MEDSEARCH ("Mediterranean Search") began in 1976 at the request of Commander, 

Submarine Group Eight with headquarters located in Naples, Italy.  The particle filtering algorithms built upon previous 

work on CASP and CAST.  The targets of interest were submarines transiting and patrolling the Mediterranean Sea. 
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Modifications of the particle filtering algorithms were required to adapt to the confined geography of the 

Mediterranean Sea, with its many islands and restricted passages. In order to address these issues, a network of target 

transit lanes was established, and motion scenarios were formulated in order to describe various ways that the target 

might move through the network. Intelligence data were used to assign prior probability weights to each of the target 

motion scenarios 

The MEDSEARCH state space was enlarged to seven dimensions in order to accommodate these new 

complexities. Three more components were added to the four position and velocity components. The first of these was a 

component that specified the target transit scenario being followed. The second was a component that specified the 

average transit speed of advance, and the third new component specified the time that the target entered the 

Mediterranean and began its transit through the network. 

As with the other search systems, observations provided positive location information when the target was 

detected and negative search information when the target was not detected.  New features were added to incorporate 

negative and positive observations associated with search "barriers" located in various restricted passages. 

4.4. U. S. Navy PACSEARCH 

PACSEARCH was a particle filter developed from 1984-1987 and used in the Pacific. Its purpose was to 

evaluate and optimize anti-Submarine warfare operations against Soviet nuclear submarines with Third Fleet resources.  

These resources consisted primarily of the Sound Surveillance System and the Surveillance Towed Array Sensor System

along with air, submarine, and surface ship search assets. 

Although based on MEDSEARCH (and a related system for optimizing the use of anti-submarine warfare 

patrol aircraft known as VPCAS) PACSEARCH incorporated a number of significant innovations, facilitated by the 

availability of an early Unix desktop workstation, the Hewlett Packard 9020, with one megabyte of RAM and a fifty-five 

megabyte hard drive.  Some of these innovations included the use of (1) what is now known as sampling importance-

resampling, in which N unequally weighted particles are mapped into a new set of N equally weighted samples with very 

similar statistical characteristics, (2) very detailed non-homogeneous data to describe sensor effectiveness, and (3) 

complex target motion models with hundreds of possible target motion scenarios. 

A critical source of information for PACSEARCH was acoustic transmission loss and directional ambient noise 

data provided by the System for Prediction of Acoustic Response of Sensors installed at Commander, Oceanographic 

System Pacific (COSP). These data were used by fleet personnel and operations research analysts working on-site at 

COSP and Third Fleet to generate accurate sensor effectiveness estimates.  This capability was essential for processing 

negative information and optimizing search resources.   

Fleet personnel and operations research analysts working on-site at COSP and Third Fleet also generated target 

motion models utilizing automated PACSEARCH tools. These target motion models, together with all available positive 

and negative information, were then utilized by PACSEARCH to predict the estimated locations of targets of interest.  

Given these estimates of current and future target location, PACSEARCH was used to determine the optimal placement 

and orientation of towed array systems and to optimize the allocation of surveillance processing resources.  This 

significantly increased the operational effectiveness of Pacific ASW search and surveillance operations. 
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