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ABSTRACT 

Past attempts to use acoustic sensor performance predictions, typically probability of detection as a function of range, in 
naval undersea warfare tactical decision aids such as trackers and mission planning tools have met with great difficulty.  
These efforts have been hampered by the uncertainty often inherent in these predictions. In some cases, the use of 
incorrect predictions produced results or recommendations that were worse than not using the predictions at all.  The 
goal of the work reported in this paper is to develop a Track–Before–Detect (TBD) system that accounts for this 
uncertainty and has the following features: (1) It produces results are at least as good as those obtained with no 
performance prediction information.  (2) It produces a significant improvement in performance in some situations.  In 
this paper we describe an extension of a TBD system called the Likelihood Ratio Tracker (LRT) that incorporates 
uncertainty in performance prediction.  We have run LRT on data that simulate a multistatic active sonar detection 
system similar to one in use by the Navy.  In these simulated cases, we have shown that using performance prediction 
improves LRT tracking and detection performance even in the presence of large prediction errors. 
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1. INTRODUCTION 
In many undersea warfare situations it is desirable to predict the performance of acoustic sensors in detecting targets.  
These predictions can be used to develop efficient search plans and to improve localization resulting from underwater 
detection.  The predictions rely on estimates of environmental variables that are used to calculate the components of the 
signal excess equation described below. This equation is used to predict probability of detection as a function of range 
and bearing of the target from a sensor.   

The authors have developed a version of the Bayesian Track-Before-Detect (TBD) system called the Likelihood Ratio 
Tracker (LRT) that accounts for uncertainty in sensor performance prediction by extending the LRT state space to 
include uncertainty in predicted mean signal excess.  (See Stone et al1 for a description of likelihood ratio detection and 
tracking.)  In this paper we compare the results of running LRT on simulated data with and without performance 
prediction. The results show that incorporating performance prediction along with its uncertainty improves the 
performance of the tracker in the situations considered below.  The significance of this result is that it indicates that 
performance prediction can be used in naval tactical decision aids to improve their performance provided that the 
uncertainty in those predictions is properly accounted for. 

Researchers working on the Uncertainty Directed Research Initiative of the Office of Naval Research have been 
exploring the process of characterizing and quantifying the uncertainty in acoustic environmental predictions.  In 
addition they are developing methods for reflecting and displaying the effects of that uncertainty on tactical systems that 
rely on environmental inputs. Examples of such systems are those that predict sensor performance, recommend search 
plans, or track and detect targets.  In this paper, we discuss how we characterize uncertainty in the environmental 
predictions for the components of the sonar equation for multistatic active detection, and how this characterization is 
quantified and incorporated into the Bayesian TBD system, LRT.  We present an example showing the application of 
LRT to multistatic active detection and tracking that accounts for the uncertainty in the acoustic predictions.  For this 
example, the explicit inclusion of environmental uncertainty in the LRT makes it more robust to errors in predicting 
signal excess and estimating detection probabilities. Furthermore, it produces improved detection and tracking 
performance compared to using no performance prediction estimates. 
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2. DETECTION AND UNCERTAINTY MODEL 
For multistatic active detection, the mean signal excess (in dB) is given by Urick2 as 

 1 2 ( )= − − + − ⊕ −SE SL TL TL TS RL AN DT  (1) 

where  
 SL  = source level of ping (dB) 
 1TL and 2TL  = transmission loss to the target and from the target to the receiver (dB) 
 TS  = target strength (dB) 
 RL  = reverberation (dB) 
 AN  = ambient noise (dB) 
 DT  = detection threshold (dB). 

The detection threshold DT  is the signal to noise ratio (in dB) at which detection occurs with probability 0.5.  SE is the 
mean signal excess predicted for a single sensor in the multistatic active system.  Urick2 observes that about this mean 
there are short term fluctuations that that are approximately Gaussian in dB.  Typically, the fluctuations have mean 0 
and standard deviation of 8 or 9 dB.  Let ξ  be a Gaussian random variable with mean 0 and standard deviation σ .  In 
Urick’s model, detection occurs when 0ξ+ >SE .  The variation represented by ξ  is predictable only in a statistical 
sense and is already accounted for in many tactical decision aids used by the Navy. 

The uncertainty that we are primarily concerned with comes from the possibility that we have mis-estimated the mean 
of one or more of the components of signal excess equation (1).  This produces an uncertainty in SE , the mean signal 
excess.  This mis-estimation can be caused by a using a poor estimate of the sound speed profile, bottom type, or any 
environmental input required for computing SE .  In addition to environmental uncertainty, there may be uncertainty in 
the estimate of target strength TS .  The resulting uncertainty in SE  is represented by a probability distribution on 
SE as a function of target state.  The initial distribution on prediction error is computed from the uncertainty 
distributions on each of the components in (1).  These uncertainties are summed (their distributions are convolved) to 
produce the prior distribution on SE  used by LRT.   

 
3. DESCRIPTION OF LRT 

In this section we provide a brief description of Bayes Markov single target tracking and then likelihood ratio detection 
and tracking.  For a more detailed discussion see Stone et al1. 

3.1 Bayes Markov single target tracking 
Let S  be the state space of the target.  Typically, the target state will be a vector of components including position, 
velocity, and possibly acceleration.  There can be additional components that may be related to the identity or other 
features of the target.  Let ( )X t be the (unknown) target state at time t.  We start the problem at time 0 and are 
interested in estimating ( )X t  for 0t ≥ .  The prior information about the target is represented by a Markov process 
{ ( ) ; 0}.X t t ≥   This process is specified by a prior probability distribution on the state of the target at time 0 and a 
Markov motion model that describes the target’s motion through the state space S .  There are one or more sensors that 
produce a set of K  discrete observations or measurements 1( ) ( , , )Kt Y Y=Y …  obtained in the time interval [0, t].  The 
observations are received at the discrete (possibly random) times 1( , , )Kt t…  where 10 0 ... Kt t t t= ≤ ≤ ≤ . 

3.1.1 Likelihood functions 
Let ky  denote the value of the random variable kY  which represents the k th measurement.  Note kY  can represent 
multiple measurements received at time kt .  We assume that we can compute the likelihood function 

 { }( | ) | ( )  for k k k k kL y s Y y X t s s S= = = ∈Pr . (2) 

Note, we use Pr  to mean either probability or probability density as appropriate.  The computation in (2) can account 
for correlation among sensor responses if that is required. Let 1 2( ) ( , , , )Kt Y Y Y=Y …  and 1( , , )Ky y=y … .  Define 

 { }1 1 1( | , , ) ( ) | ( ) , , ( )K K KL s s t X t s X t s… = = = … =y Pr Y y  

We assume that 



 { } ( )1
1

( ) | ( ) ( ), 0 | ( ), , ( ) ( | )
K

K k k k
k

t X u s u u t L s t s t L y s
=

= = ≤ ≤ = … =∏Pr Y y y  (3) 

Equation (3) means that the likelihood of the data ( )tY  received through time t depends only on the target states at the 
times 1{ , , }Kt t…  and that the likelihood function kL  is independent of jL  for j k≠  given ( )k kX t s= . 

3.1.2 Bayes Markov recursion 
Let 

 { }0 ( ) (0)p s X s= =Pr  (4) 

be the initial distribution on target state at time 0.  The Markov motion model for the target has the transition function 

 { }1 1 1( | ) ( ) ( )   for 1k k k k k k kq s s X t s X t s k− − −= = = ≥Pr . 

Define 

 ( ) { }1, | ( ) ( ) | ( ) ( , , )k k k k kp t s t X t s t y y= = =Y Pr Y …  for s S∈  (5) 

to be the posterior distribution on target state s  at time kt  given the observations (measurements) ( )ktY  received,  
through time kt .  Under the above assumptions this posterior may be computed in the recursive fashion given below. 

Bayes Markov Recursion for Single Target Tracking 

 Initial Distribution ( ) 00, | (0) ( )  for p s p s s S= ∈Y  (6) 

For k ≥ 1 and s S∈ , 

 Motion Update ( ) ( )1 1 1 1 1 1, | ( ) ( | ) , | ( )k k k k k k k kp t s t q s s p t s t ds−
− − − − − −= ∫Y Y  (7) 

 Calculate Likelihood { }( | ) | ( )  for k k k k kL y s Y y X t s s S= = = ∈Pr  (8) 

 Information Update ( ) ( )1
1, | ( ) ( | ) , | ( )k k k k k kp t s t L y s p t s t
C

−
−=Y Y  (9) 

The constant C  in (9) normalizes the right-hand side to a probability distribution (density). 

3.2 Likelihood ratio detection and tracking 
In the Bayes recursion given above, we have assumed that there is one target present and that all the observations 
(measurements) are associated to that target.  Likelihood ratio detection and tracking is based on an extension of the 
single target tracking methodology presented above to the case where there is either one or no target present. 

For LRT we identify a region R  of interest.  As above we let S be the single target state space for a target in the region 
R . If no target exists in R , we shall formally refer to this state as the null state and designate it by the symbol .φ   We 
augment the target state space S with this null state to make .S S φ+ = ∪   The augmented state space S+  includes not 
only all of the states within R  but the discrete null state φ  as well.  We shall assume there is a probability (density) 
function p defined on .S+   Since we are assuming that there is at most one target in the region R , we may write 

 0 0( )  ( ) 1
s S

p p s dsφ
∈

+ =∫ . 

We define the ratio of the posterior state probability (density) ( ), | ( )p t s tY  to the posterior null state probability 
( ), | ( )p t tφ Y  as the target likelihood ratio (density) ( ), | ( )t s tΛ Y ; that is, 

 ( ) ( )
( )

, | ( )
, | ( )  for 
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Following the notation in the Bayes Markov recursion, we let 
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The likelihood ratio density has the same dimensions as the state probability density. Furthermore, from the likelihood 
ratio density one may easily recover the state probability density as well as the probability of the null state.   

In LRT, the measurement likelihood ratio takes the place of the measurement likelihood function in Bayesian single 
target tracking.  It is the ratio of the likelihood of receiving the measurement given a target is present to the likelihood of 
receiving the measurement given no target is present.  Specifically, we define the measurement likelihood ratio for the 
measurement k kY y=  to be 

 ( ) ( | )|   for 
( | )

k k
k k

k k

L y sy s s S
L y φ

= ∈�L . 

3.2.1 Likelihood ratio detection and tracking recursion 
One can extend the Bayes Markov recursion for a single target given above to likelihood ratio detection and tracking by 
adding the state variable φ  to the state space S .  Having calculated the posterior distribution (density) on S+ , one then 
uses (10) to compute the posterior target likelihood ratio.  Instead of doing this, we generally make the assumption 
below which allows us to use a simplified version of the recursion.  Specifically, we assume that 
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This assumption says that under the motion model, the amount of probability mass that moves out of the region R  is 
equal to the amount that moves in for a given time period.  Under this assumption we obtain the following simplified 
likelihood ratio detection and tracking recursion. 

Simplified Likelihood Ratio Detection and Tracking Recursion 

 Initialize Likelihood Ratio ( ) 0

0

( )0, | (0)  for 
( )

p ss s S
p φ

Λ = ∈Y  (13) 

For 1k ≥  and s S∈  

 Motion Update ( ) ( )1 1 1 1 1 1, | ( ) ( | ) ( | ) , | ( )k k k k k k k k k
S

t s t q s q s s t s t dsφ−
− − − − − −Λ = + Λ∫Y Y  (14) 

 Measurement Likelihood Ratio ( ) ( | )|   for 
( | )

k k
k k

k k

L y sy s s S
L y φ

= ∈�L  (15) 

 Information Update ( ) ( ) ( )1, | ( ) | , | ( )   for  k k k k k kt s t y s t s t s S−
−Λ = Λ ∈Y Y�L . (16) 

3.2.2 Extension of LRT state space 
Ordinarily LRT uses the target’s kinematic variables for the tracker state space.  For example, the state is often taken to 
be the target’s 2 (or 3) dimensional position and velocity.  For this analysis, we have extended the kinematic state space 
(2 dimensional position and velocity) to include mean signal excess prediction error.  As sensor responses are obtained, 
LRT produces a joint estimate of target kinematic state and SE  prediction error. 

3.2.3 Numerical implementation of LRT 
The implementation of LRT used to produce the results in the examples below employs a discrete grid in position, 
velocity, and mean signal excess prediction error.  The methodology is similar to the gridded version of Nodestar 
described in Chapter 3 of Stone et al.1 

 



4. MSA MEASUREMENTS AND LIKELIHOOD RATIO FUNCTIONS 
The examples presented in this paper involve multi-static active (MSA) sonar.  There are a set of 10 to 30 buoy pairs.  
Each pair consists of a receiver buoy and a source buoy with two explosive charges.  These buoy pairs are distributed 
over an area where a target submarine may be present.  The charges on the source buoys are detonated sequentially, one 
every few minutes.  Between detonations, the hydrophones in the receiver buoys listen for echoes of the shockwave as it 
scatters off objects, potentially including a moving target submarine.  The time between the reception of the direct blast 
and an echo produces an ellipse of possible locations for the echo producer.  By accumulating a number of these echoes 
from the target, it is possible to call a detection and develop a track on the target, i.e., a distribution on the target’s 
position and velocity. 

The signal processing algorithms associated with these buoys are presumed to process the time-series at the receiver 
hydrophones and call detections.  These algorithms produce a set of time values for each hydrophone where the signal 
or matched-filter output exceeds some threshold.  Each of these “detections” comes from one of three things: random 
stochastic fluctuations in the noise signal (false alarms), clutter echo, or a target echo.  These are the measurements used 
by LRT.  The algorithm begins with a prior over a gridded state space with position and velocity and SE  error as 
dimensions.  As sensors report information — in this case the series of detection times from the signal processor — 
their information content is incorporated into the posterior likelihood ratio on state space by the use of a measurement 
likelihood ratio function.  Between sensor measurements, the target likelihood ratio surface evolves according to a 
motion model prescribed for the target.  If a target is present, then we expect to see a peak form in its vicinity as time 
progresses and the measurement likelihood ratio peaks in the vicinity of the target reinforce one another.  In order to 
process these measurements, we construct a measurement likelihood ratio function for use by LRT. 

4.1 Measurement likelihood ratio function – known probability of detection 
To simplify our presentation, we first introduce the measurement likelihood ratio function for MSA sonar in the case 
where the detection probability is known.  For a single ping, let 1{ , , }l nτ τ= …τ  be the set of echo times detected at 
buoy l .  The measurement likelihood ratio for lτ  is 
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where 
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The derivation of (17) is given in the appendix.  To form the composite measurement likelihood ratio function for a 
single ping, we multiply the likelihood ratio for each of the buoys as follows.  Let 1( , , )

rN= …τ τ τ .  Then 

 ( ) ( )
1

|
rN

l l
l

s s
=

| =∏CL Lτ τ  (18) 

where rN  is the number of receiver buoys.  This measurement likelihood ratio is multiplied into the motion updated 
cumulative likelihood ratio to compute the posterior cumulative likelihood ratio in the information update step in (16).  
This process is repeated for each ping. 

The measurement density function ( | )lf sτ  represents the “ellipse” information from the time of detection.  Let m
sx  be 

the position of source m  and l
rx  be the position of the receiver buoy l .  Then the measurement error density function 

for the arrival time τ  from source m  is 



 ( ) ( )2
2 2

( , ) ( , )1| ( , ) exp
22

m l
s s r

l
s tt

c d x x d x x
f s x v

c
τ

τ
σπσ

  − −  = =      
 

where 1 2( , )d x x  is the distance between positions 1x  and 2x , and sc  is the sound speed.  We use tσ = 1 second.  This 
form of the measurement error density function can also be used to account for uncertainty in buoy position to first 
order, as we have shown elsewhere.  The false alarm density function w  is uniform over a 90 second interval. 

The ( )l
dP s  factor is where we require a performance prediction model for the sensors, and this is where environmental 

information is incorporated into the LRT algorithm.  To compute ( )l
dP s  for a given source m , we begin by computing 

the mean signal excess SE  in dB at the receiver buoy l  as follows. 

 ( ) ( ) ( ) ( ) ( ( ) )lm m m lm l lmSE s SL TL s TS s TL s RL s AN DT= − + − − + −  (19) 

where 
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The value of lmSE  given by equation (19) represents the mean signal excess level.  The actual value of signal excess 
jSE  is a random variable with fluctuations about this mean that are normally distributed with mean 0 and standard 

deviation SEσ  generally taken to be between 5 to 10 dB.  Detection occurs when j 0SE> .  Having calculated ( )lmSE s  
from (19), we can compute ( )k

dP s  as follows 

 ( ) 2

0

( , ( ), )k
d SEP s N x SE s dxσ

∞

= ∫  

where 2( , , )N µ σ⋅  is the density function for a normal distribution with mean µ  and variance 2σ . 

4.2 Incorporating prediction uncertainty 
The procedure for computing the likelihood function described in the previous section assumes we know the terms in 
equation (19) with certainty.  When there is uncertainty in these terms, we must modify our procedure.  One method for 
doing this is to extend the LRT state space to include an “environmental-uncertainty” dimension where each value in 
this dimension represents one possible environment, E .  The likelihood function then becomes 

 ( ) ( ) ( )
( ) ( )( )

1

|1| , , 1 , ,
n

l il l
l d d
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f s
s E P s E P s E

w
τ

λ τ=

  = + −  
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where we now have a likelihood function that is defined not only over the target’s kinematic state space, but also over 
the extra environmental dimension.  The values of 1 2{ , , }E E E∈ …  represent all possible environments.  For the 
examples that we consider below, each environment consists essentially of a reverberation and transmission loss 
characterization.  Furthermore, as we are using range independent environments for this work, we have ( , )RL RL d t≡  
and ( )TL TL d≡ :  reverberation is a function of the distance between source and receiver and time since blast while 
transmission loss is a function of distance only.  Thus, { , }i i

iE RL TL≡ .  The Applied Research Laboratory, University 
of Texas, and the Applied Physics Laboratory at University of Washington have computed these functions for us from 
more basic environmental parameters such as bottom type and sound speed profiles appropriate for a specific ocean 
area. 

The number of environments needed to capture the full range of uncertainty is infinite because there is a continuum of 
uncertainties.  For LRT, we approximate this continuous distribution of uncertainties by choosing a discrete set of 



environments 1 2
ˆ ˆ ˆ{ , ,..., }NE E E  to include in the LRT state space.  Our first approach has been to form the mean over all 

environments provided to us, and let each possible environment be a constant offset from this mean.  Thus, we compute: 
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Each environment is then characterized by these mean curves and a constant offset iδ : ˆ { , , }i iE RL TL δ≡ .  For the ith 
environment we compute mean signal excess by 

 ( )lm iSE s δ−   

where ( )lmSE s  is computed by equation (19).  We can think of δ  as a random variable that equals the (unknown) 
constant error in the mean signal excess computation in equation (19).  In this case the measurement likelihood ratio 
function in (17) becomes 
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where 

 ( ) 2

0

, ( , ( ) , )l
d lm SEP s N x SE s dxδ δ σ

∞

= −∫ . 

The effect of adding the variable E  (or )δ  to the state space is that LRT is calculating a joint distribution on kinematic 
state and δ .  We expect to see a peak in the cumulative likelihood ratio surface for the environment with iδ  closest to 
the actual error.  The astute reader will note that appropriate value of iδ may change as the target moves through the 
state space.  The hope is that the target moves slowly enough that the appropriate value of iδ changes slowly.  We will 
address this issue in future studies. 

4.3 Measurement likelihood ratio without performance prediction 
In previous Metron work using LRT for MSA sonar, we have used a simple empirical model.  In this model, we set a 
maximum probability of detection at broadside aspect for the target to the sensor and let the probability fall off 
according to a Gaussian density in bistatic aspect angle where ϕσ  is the standard deviation of the density.  Let 0

lϕ  be 
the bistatic aspect angle with maximum response for sensor l  and ( )l sϕ  be the bistatic angle for a target in state s .  
This will depend on the location of the source buoy producing the ping as well as the receiver buoy.  The functional 
form of ( )l

dP s  is 
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The likelihood function in this case becomes 
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Equation (21) assumes that we know MAX ( )dP s .  When there is substantial uncertainty in estimating this probability, we 
assume it is uniformly distributed on [0,1].  Integrating the likelihood function in (21) over this distribution on MAX ( )dP s  
yields 
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The value of ϕσ  is set to approximately 15 degrees.  Equation (22) gives the likelihood function used in the previous 
MSA sonar versions of LRT.  We call this the baseline case.  It has a couple of obvious drawbacks.  The relationship 
between detection probability and aspect angle has been estimated in an empirical fashion.  One does not know how 
well this prediction will hold up outside of the situations which produced the data used to form this prediction.  Second 
the likelihood function clearly does not account for range.  According to the above likelihood function, targets at very 
long ranges from the receiver are as likely to produce detections as targets that are close in range. Furthermore, by 
integrating over a uniform [0,1]  distribution on probability of detection, we have in effect assumed that MAX ( )dP s  = 0.5.  
This will reduce the likelihood ratio for contacts obtained from targets with an average MAX ( )dP s  < 0.5.  One approach is 
to set MAX ( )dP s  equal to some minimal detectable level (i.e. the smallest dP for which the system is expected to generate 
a detection).  In this case we sacrifice some performance on stronger targets so that we can increase the chance of 
detecting weaker ones.  This is the minimum detectable level likelihood ratio function.  Section 6.3.4 of Stone et al1 
discusses this approach. 

5. SIMULATION RESULTS 
We present two comparisons of the performance of LRT with and without performance prediction.  In both 
comparisons, the version of LRT with performance prediction performs better than the one without. 

5.1 Baseline versus large environmental uncertainty 
For this case, we compare the output of LRT using the expanded LRT state space which includes environmental 
uncertainty and the likelihood function in (20) with the baseline case using the likelihood function in (22) and the 
standard kinematic LRT state space.  For the expanded state space, we have assumed that the prior distribution on δ , 
the error in mean signal excess prediction is uniform between -30 and 30 dB.  This is a case of great uncertainty in the 
environmental and performance predictions.  The results below show that using environmental information, even with 
great uncertainty, improves tracker performance in the simulated situation considered here. 

Researchers at the Applied Physics Laboratory at the University of Washington provided environmental predictions for 
two bottom types: low-frequency bottom loss which they designated LFBL and Fulford.  Both bottom types, and 
therefore the resulting RL/TL curves, are assumed to be equally likely.  We have used the Fulford bottom type to 
produce the simulated detection data used by the tracker.  Thus this becomes the true bottom type.  This is not known by 
the tracker.  The conditions of the environment are otherwise typical of the East China Sea.  The bottom depth is 100m, 
and the sound speed profile is range independent. 

The target in these simulations moves due east parallel to and 15 nm north of a buoy field.  The probability of detection 
for the target for any given source-receiver pair for each blast is between 0 and 0.1.  Figures 1 – 3 below compare the 
performance of these two methods at low and medium false alarm rates. The average number of false alarms per buoy 
per ping is 1 for the low rate and 20 for the medium rate. 

In Figures 1 – 3 below, the simulation has been run for about 2 hours using 72 pings spaced 100 seconds apart.  The 
figures show LRT output at the end of the simulation period.  Figure 1 shows the output of the version of LRT with 
performance prediction for the low false alarm case.  LRT has detected the target and correctly identified the 
performance prediction error (which is between 10 and 15 dB). Figure 2 compares this to output of LRT with no 
performance prediction, in particular using the baseline likelihood function.  One can see that LRT without performance 
prediction (baseline) fails to detect the target. When we have a medium false alarm rate (20 per receiver per ping),  
Figure 3 shows the baseline method again fails to detect the target, but adding an environmental uncertainty dimension 
to the state space and using performance prediction allows LRT to detect the target.  We also ran the simulation using a 
high false alarm rate case (~100 per receiver per ping).  In this case neither method detected the target. 

5.2 Minimum detectable level versus small environmental uncertainty 
For this case, we compare the output of LRT using the expanded state space with small environmental uncertainty and 
LRT with the standard kinematic state space using the likelihood function in (21) with MAX ( )dP s  = 0.05, a reasonable 
minimal detectable level and the actual mean Pd of the target in this exercise.  For the expanded state space, we have 



assumed that the prior distribution on δ , the error in mean signal excess prediction, is uniform between -5 and 5 dB.  
This is a case of low uncertainty in the environmental and performance predictions. 

We have used the Fulford bottom type environmental model to produce the simulated detection data used by the tracker.  
Thus this becomes the true bottom type.  This is not known by the tracker.  The tracker uses the Fulford model as the 
mean curve with a set of δ  values that range from -5 dB to 5 dB.  The conditions of the environment are otherwise 
typical of the East China Sea.  The bottom depth is 100 m, and the sound speed profile is range independent. 

The target in these simulations moves east parallel to and 10 nm north of a buoy field.  The probability of detection for 
the target for any given source-receiver pair for each blast is between 0 and 0.2.  Figures 4 – 5 show the cumulative 
LRT surfaces after 48 pings spaced 100 seconds apart.  They compare the performance of the two methods. 

In Figure 4 where the false alarm rate is low, the target shows a much sharper and higher peak in the cumulative 
likelihood ratio surface of the LRT with performance prediction and low uncertainty (right).  In Figure 5, we see the 
same comparison, here with a medium false alarm rate.  In this case, both methods would have tracked the target; 
however, the peak likelihood ratio with performance predication and low uncertainty (right) is higher than with the 
minimum detectable level method (left), and the target would have been detected sooner. 

6. CONCLUSIONS 
This work shows that using performance prediction in a manner that accounts for the uncertainty in the predications 
improves the performance of LRT compared to using likelihood functions that do not use performance prediction.  Note 
that in order to compute a likelihood ratio we have to assume some probability of detection.  In the IASW baseline case 
we have in effect used a probability of detection equal to 0.5 everywhere in the position component of the state space.  
While we are using a probability of detection, we are not using a performance prediction in a meaningful sense, only in 
the trivial sense of picking a single probability of detection to be used independent of target state. 

When we do have a good characterization of the environment with less uncertainty, the tactical picture produced by the 
tracker should reflect this, as it does in the comparison shown in case 5.2 above.  As an example, if we know that the 
signal excess falls off rapidly after some range, the LRT tracker will reject detections with large ranges.  In the future, 
we would like to examine alternate representations of the environmental dimension.  In some cases it may be possible to 
accurately represent the full range of environments with a manageable number of RL/TL curves, allowing us to reap the 
benefits of the frame-to-frame and sensor-to-sensor correlations in target strength demonstrated in these examples. 
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Figure 1. Low false alarm rate: On the left is the final log-likelihood ratio position marginal for the extended state space.  On the 
right is the marginal distribution on δ .  The peak has converged on the correct value of delta. The false alarm rate is 1\ping\receiver. 

 
Figure 2. Low false alarm rate: Final log-likelihood ratio position marginal (false alarm rate is 1\ping\receiver).  The version with 
performance prediction detected the target (left) while the baseline version (right) did not. 

 
Figure 3. Medium false alarm rate: Final log-likelihood ratio position marginal for the two methods where the false alarm rate is 20 
per ping per receiver.  The version with performance prediction (left) detects the target while the baseline version (right) does not. 



 
Figure 4: Low false alarm rate. Cumulative log-likelihood ratio surface for low false alarm rate case (15 per buoy per ping).  On the 
left is the position marginal of the minimum detectable level case with Pd = 0.05. On the right is the surface for the new method 
which uses performance prediction and an expanded state space. 

 
Figure 5: Medium false alarm rate. Cumulative log-likelihood ratio surface for medium false alarm rate case (25 per buoy per 
ping).  On the left is the position marginal of the minimum detectable level case with Pd = 0.05.  On the right is the surface for the 
new method which uses performance prediction and an expanded state space. 

 
APPENDIX 

This appendix provides the derivation of the measurement likelihood ratio function in (17). 

Let 1( , )l ny y=y …  be the set measurements received at a single buoy from ping k  corresponding to time kt .  These 
measurements can be arrival times of echoes or pairs of arrival times and estimates of bearing to the target.   We wish to 
compute the measurement likelihood ratio 
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which is the ratio of the likelihood of receiving the observation 1( , )l ny y=y …  given the target is in state s  to 
likelihood of receiving these measurements given there is no target present.  The measurement likelihood ratios from 
different buoys are be multiplied together to form the composite measurement likelihood ratio for ping k . 



As above, we define the probability of detection by ( ) ( ){target is detected by buoy | }l
d kP s l X t s= =Pr .  This function 

captures the bistatic scattering geometry. It will depend on the positions of the source and receiver as well as the 
heading and position of the target.  We define the probability density function of an observation to be 

 ( ) ( ){ }measurement from target = kf y s y X t s= =Pr . 

For the false-alarm model, let kΦ  be the random variable which equals the number of false alarms received at the buoy 
from the k th ping. In addition, let 

 ( ) ( ){ }1 1, , obtaining false alarm measurements , ,n n n kw y y y y n= … Φ =Pr… . 

Using these definitions, we compute 
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Note ( )1 ˆ, , , ,i ny y y… …  denotes the 1n−  vector obtained from ( )1, , ny y…  by deleting the  thi  component iy .  We 
also have from the definitions that 

 ( ) { } ( )1, ,l l k n nL n w y yφ = Φ =y Pr … . 

Dividing these two equations we obtain 
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. (23) 

Assuming that the false measurements are independent and identically distributed, i.e., 
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we have  
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Now assume that the number of false alarms at a buoy for a single ping is Poisson distributed with mean λ , that is  
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Then we have 
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When i iy τ= , (24) specializes to (17). 


