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Abstract – This paper considers the performance of two 

track-to-track association algorithms.  The first bases 

association decisions on a chi-squared distance between 

tracks and a fixed significance threshold to determine when 

no association is allowed.  The second algorithm finds the 

maximum a posteriori probability (MAP) set of 

associations between tracks from two independent tracking 

systems. For tracks whose state estimates are characterized 

by Gaussian distributions, the second algorithm may be 

viewed as a version of the first algorithm with an adaptive 

threshold.  This paper examines the performance of these 

two algorithms in terms of expected fraction of correct 

matches of tracks from system 1 to tracks from system 2 

and finds that the adaptive threshold algorithm performs as 

well or better than the fixed threshold algorithm and that 

adjustments to the adaptive threshold generally produce 

little or no benefit.  

Keywords:  Association, tracking 

1 Introduction 

In [1] and [2] Mori and Chong considered the problem of 

associating tracks from two independent tracking systems. 

They developed a formula for computing the posterior 

probability of an assignment of tracks from system 1 with 

those from system 2 being correct and an algorithm for 

finding the maximum a posteriori probability (MAP) 

assignment when the number of tracks held by the two 

systems may differ.  This algorithm is a snapshot approach 

in which only the most recent state estimates (in terms of 

probability distributions) are used to compute the MAP 

assignment. Since system 1 may hold tracks on targets not 

held by system 2 and vice versa, the algorithm allows for 

the possibility that a track in one system may have no 

match in the other.  The MAP algorithm in [2] is derived 

under the assumption that each system produces tracks with 

correct measurement to track associations and no false 

tracks.  The number of real targets is assumed to have a 

Poisson distribution and the target states are distributed as 

i.i.d. draws from a common prior distribution. Under these 

conditions, [2] shows that finding the MAP association 

reduces to the solution of a linear programming problem 

even for general target state distributions. 

 In the case where the target state distributions are 

Gaussian, the linear programming solution method is very 

similar to the one derived in [3].  In that case the problem is 

formulated as minimizing a cost function defined in terms 

of the chi-squared distance between state distributions.  To 

allow for the possibility that a track from system 1 has no 

match with a track from system 2, [3] sets a significance 

level. If the chi-squared distance between two tracks 

exceeds that significance level, no match is allowed. 

 In [4] the MAP algorithms were extended to include 

feature as well as kinetic information in computing 

association probabilities and finding the MAP assignment.  

The authors showed that adding feature information can 

improve on metric-only association performance.  They 

also explored the possibility of adjusting the adaptive 

threshold and performed tests on simulated data that 

showed no adjustment is necessary when features are 

considered. 

 In subsequent papers Mori and Chong, [5] – [7] 

extended their results to the case where the distribution of 

target states is i.i.d. but the number of targets is not Poisson 

distributed.  In [8] Ferry extended MAP to include target 

type information and to account for the possibility of 

missing feature measurements.  Using this approach he 

showed that incorporating feature information always 

improves association performance.  In [9] he finds exact 

solutions for the problem of joint bias removal and track-to-

track association.  In [13] Bar-Shalom and Chen take a 

somewhat different approach to incorporating features or 

attributes into the track-to-track association process. 

 The purpose of this paper is to return to the questions 

raised in [2] and [4] as to whether an adaptive threshold is 

better than a fixed one and whether the adaptive threshold 

can be improved.  This paper reports on simulation studies 

that show that the adaptive threshold is better than a fixed 

(significance) threshold and that adjustments to the adaptive 

threshold generally provide little or no benefit.  The 

measure of performance used in these studies is the fraction 

of correct matches.  A correct match occurs when a track 

from system 1 is correctly matched with a track from 
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system 2 or when a track from either system is correctly 

identified as having no match in the other system’s tracks. 

 In a sense, it is surprising that the MAP algorithm 

does so well using this measure of performance.  Finding 

the MAP association involves finding the association *a  

that maximizes the product in equation (7) below.  In 

contrast maximizing the fraction of correct matches or 

equivalently maximizing the expected number of correct 

matches involves maximizing a sum of pair-wise 

association probabilities as is shown in section 2.3.3. 

 The algorithms discussed in this paper presume that 

measurement bias has been removed before they are 

applied.  In general, the problems of bias removal and 

association must be solved jointly.  There are a number of 

approximate algorithms for doing this such as the one given 

in [10].  Reference [9] provides an exact solution to this 

problem. 

2 Track Association Algorithms 

We assume that at time t there are I tracks from system 1 

and J tracks from system 2.  In general I J≠ .  The tracks 

have been produced independently by the two systems, and 

the track estimates for time t are given in terms of Gaussian 

probability distributions on target (kinematic) state.  The 

means and covariances of the tracks are 

 1

ix  and 1

iV  for the ith track of system 1 

 2

jx  and 2

jV  for the jth track of system 2. 

Let 

 ( ) ( ) ( )1
2 1 2 1 2 1 2χ

−
= − + −

T

ij i j i j i j
x x V V x x  (1) 

denote the chi-squared distance between track i of system 1 

and track j of system 2.  Equation (1) assumes that state 

estimation errors in system 1 are independent of those from 

system 2.  Reference [12] has shown this is not true when 

the underlying motion models used by the two systems are 

related.  If that is the case, then 1 2

i jV V+  in (1) must be 

replaced with 1 2

i j ij jiV V V V+ − −  where ijV  and jiV  are the 

cross covariances due to common process noise. 

2.1 Definition of an Association 

Following [2], we define a track-to-track association to be 

a 1-to-1 mapping a of a subset { }Dom( ) 1, ,a I⊆ …  onto a 

subset { }Rng( ) 1, ,a J⊆ … .  For Dom( )i a∈ , ( )a i  equals 

the index of the track from system 2 associated with track i 

from system 1.  Tracks in { }1, , \ Dom( )I a…  are not 

associated with any track from system 2.  Correspondingly, 

tracks in { }1, , \ Rng( )J a…  are not associated with any 

track from system 1. 

2.2 Fixed Threshold Track Association 

Algorithm 

As observed in [2], the conventional fixed threshold 

association algorithm [3] may be defined as follows. Let 
2χ  be the fixed threshold corresponding a chosen 

significance level.  For example, the significance level 

0.003  is used in [3].  Define the cost function ijC  by 

 

( ) { } { }
{ }

2 2 2

2

if  and , 1, , 1, ,

if 1, ,  and 

otherwise

χ χ χ

χ

⎧⎪ < ∈ ×⎪⎪⎪⎪= ∈ = +⎨⎪⎪⎪∞⎪⎪⎩

… …

…
ij ij

ij

i j I J

C i I j J i (2) 

Then finding the minimum cost track-to-track association 
*a  in [3] is equivalent to finding 

*ξ  that solves the 

following linear program. 

[ ] ( ) { } { }

{ }

{ }

1 1

1

1

Minimize

Subject to 0,1  for , 1, , 1, ,

1 for 1, ,

1 for 1, ,

I I J

ij iji j

ij

I J

ijj

I

iji

C

i j I I J

i I

j I J

ξ

ξ

ξ

ξ

+

= =

+

=

=

∈ ∈ × +

= ∈

≤ ∈ +

∑ ∑

∑
∑

… …

…

…

(3) 

In [3] it is shown that this linear program produces integer 

solutions, i.e., { }* 0,1ijξ ∈ .  The association *a  is obtained 

by defining  

( )*a i j=  when * 1ijξ =  for ( ) { } { }, 1, , 1, ,i j I J∈ ×… …  

If * 1ijξ =  for j J i= + , then the ith track from system 1 is 

not associated with any track from system 2.  The effect of 

using the cost function in (2) is to force associations when 

there is a feasible one with chi-squared distance less than 

the threshold.  The optimization does this in a fashion that 

minimizes overall cost. 

2.3 Adaptive Threshold (MAP) Algorithm 

The MAP algorithm from [2] requires a more detailed 

model of the problem than the fixed threshold one above 

because we have to specify the probabilistic framework 

which will allow us to compute posterior association 

probabilities in a Bayesian manner. 

2.3.1 MAP Model 

 The MAP model of [2] assumes that the there are no 

false tracks generated by the two systems.  The number of 

true targets is Poisson distributed with mean ν .  The target 

state space is a subset of Euclidean n-space, 
nE .  Typically, 

the target state will consist of position and velocity in a 2 or 

3 dimensional space so that the state space is 
4E  or 

6E .  

The prior state distribution for each target is defined by a 

common probability density function 
0p  on 

nE . In other 
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words, the prior distribution on the number and state of the 

targets forms a Poisson Point Process [11]. A realization of 

the process may be obtained by first making a draw for N, 

the number of targets, from the Poisson distribution with 

mean ν , and then making N independent draws from the 

probability density 0p  to determine the state of each of the 

N targets.  

 For system k, the probability of detecting a target in 

state nx E∈  is ( )k

dP x  for 1,2k = .  Suppose that at time t 

the state distributions on the targets from systems 1 and 2 

are given by 

 { } { }1 2; 1, ,  and ; 1, ,
i j

p i I p j J= =… … . 

Define 

( )

( )

6

6

6

1 2

0

1 2

2 1

( , )

( ) ( )
if ( , ) {1, , } {1, . }

( )

( ) 1 ( ) if {1, , } and 0

( ) 1 ( ) if 0 and {1, , } 

i j

E

i d
E

j d
E

L i j

p x p x
dx i j I J

p x

p x P x dx i I j

p x P x dx i j J

ν

=
⎧⎪⎪ ∈ ×⎪⎪⎪⎪⎪⎪⎨ − ∈ =⎪⎪⎪⎪⎪ − = ∈ …⎪⎪⎪⎩

∫

∫
∫

… …

…
 (4) 

where 0j =  means that no track from system 2 is 

associated with track i from system 1 and 0i=  has the 

symmetric meaning.  Let 

  
( , )

( , )  for ( , ) {1, , } {1, , }
( ,0) (0, )

L i j
i j i j I J

L i L j
= ∈ ×A … …  (5) 

  

( )2ln ( , )  for ( , ) {1, , } {1, , }

0 for {1, , } and 

otherwise

ij

i j i j I J

C i I j J i

⎧⎪− ∈ ×⎪⎪⎪= ∈ = +⎨⎪⎪⎪∞⎪⎩

A … …

…  (6) 

2.3.2 MAP Association 

Mori and Chong [2] show that the posterior probability of 

an association a  being correct is given by 

 { } ( )
( )

Pr , ( )
∈

= ∏ A
i Dom a

a K i a i  (7) 

where K  does not depend on a .  Thus finding the MAP 

association *a  in (7) is equivalent to finding *ξ  to solve the 

following linear program with 
ijC  defined by (6). 

1 1

1

1

Minimize

Such that [0,1] for ( , ) {1, , } {1, , }

1 for {1, , }

1 for {1, , }.

I J I

ij iji j

ij

I J

ijj

I

iji

C

i j I J I

i I

j J I

ξ

ξ

ξ

ξ

+

= =

+

=

=

∈ ∈ × +

= ∈

≤ ∈ +

∑ ∑

∑
∑

… …

…

…

 (8) 

When the target state distributions are Gaussian, i.e., 

 ( ) ( )1 1 1 2 2 2,  and ,i i i j j jp N x V p N x V∼ ∼ , 

0 ( )p x ρ=  over a finite region, and 1

d
P  and 1

d
P  are 

constant, we have 

 2

ij ij ijC Aχ= −  for ( , ) {1, , } {1, , }i j I J∈ ×… …  (9) 

where 

 ( ) ( )2
1 2 1 2ln (1 )(1 ) det 2 ( )ij d d i jA P P V Vνρ π⎡ ⎤=− − − +⎢ ⎥⎣ ⎦

 (10) 

Clearly we still obtain the MAP solution from (8) if we add 

ijA  to definition of 
ijC  in (6) and (9) to obtain 

 

2 for ( , ) {1, , } {1, , }

for {1, , } and 

otherwise

ij

ij ij

i j I J

C A i I j J i

χ⎧⎪ ∈ ×⎪⎪⎪⎪= ∈ = +⎨⎪⎪⎪∞⎪⎪⎩

… …

…  (11) 

Comparing (11) and (2) we see that finding the MAP 

association is equivalent to replacing the fixed threshold 
2χ  with the adaptive one ijA . 

2.3.3 Expected Number of Correct Pairwise 

Associations 

When we compare the performance of track-to-track 

association algorithms, we will do so in terms of the 

fraction of correct pair-wise associations defined as 

follows.  For {1, , }∈ …i I  and {1, , }∈ …j J , let 

1 if  is correctly associated with  
( , )

0 otherwise

1 if  is correctly not associated with any track
( ,0)

0 otherwise

1 if   is correctly not associated with any track
(0, )

0 othe

ψ

ψ

ψ

⎧⎪⎪=⎨⎪⎪⎩
⎧⎪⎪=⎨⎪⎪⎩

=

i j
i j

i
i

j
j

rwise.

⎧⎪⎪⎨⎪⎪⎩

 

Then, the number of correct pairwise associations for the 

association a  is 

  

( )
( ) ( ) ( )

( ) ( ) ( )

, ( ) ,0 0,ψ ψ ψ
∈ ∉ ∉

=

+ +∑ ∑ ∑
C

i Dom a i Dom a j Rng a

N a

i a i i j
 (12) 

 Suppose we run a number of Monte Carlo trials where 

each trial represents a realization of the model in section 

2.3.1, and for each trial we compute the MAP association 

*a  and ( *)CN a .  The average of ( *)CN a  over these trials 

is an estimate of [ ]( *)CE N a .  We can see from (12) that 

[ ]( *)CE N a  is equal to a sum of pair-wise association 
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probabilities.  We can perform the same computation for a 

fixed threshold association algorithm and compare the 

results with those from the MAP algorithm.  Dividing 

( )CN a  by the number of correct matches we obtain the 

fraction of correct matches. 

3 Comparing the Fixed and Adaptive 

Threshold Associations 

This section describes simulation results in which we 

compare the performance of the fixed and adaptive 

threshold algorithms in terms of fraction of correct matches. 

3.1 Description of Simulation 

Following reference [2], we simulated the posterior 

distributions of 40 targets.  We set the detection probability 

to be 1

d
P  for the system 1 and 2

d
P  for the system 2 for all 

target states.  For each of the 40 targets we made an 

independent draw with success probability 1

d
P  to determine 

if it is detected by system 1 and another independent draw 

with probability of success 2

d
P  to determine if it is detected 

by system 2. 

 The target state space is 6D position-velocity.  The 

track posteriors are Gaussian in position-velocity space.  

We specify base covariances 1V  and 2V  for the system 1 

and system 2 tracks respectively.  The target density ρν  

was chosen to equal 5 targets per 3σ  hyper volume 

corresponding to the covariance matrix 1 2V V+ .  The true 

position of each target was chosen from the uniform density 

ρ  over a region of volume H such that 40Hρν = .  To 

obtain the posterior position-velocity distribution of a 

system 1 target we randomly varied the lengths of the axes 

of the base covariance 1V  over plus or minus 10% and 

randomly rotated the axes over plus or minus 1 degree to 

produce the posterior covariance.  The mean of the target 

state distribution was obtained by taking a draw from the 

Gaussian distribution with mean 0 and covariance 1V  and 

then adding this draw to the actual target state.  The same 

procedure was followed for system 2 targets using the base 

covariance 2V . 

 To test the performance of the fixed verses adaptive 

algorithms, we generated 100 sets of tracks for system 1 

and system 2 using the procedure described above.  For 

each set of tracks we applied the MAP algorithm and the 

fixed threshold algorithm using 0.1, 0.01, 0.003, and 0.001 

significance levels to determine the fixed threshold 2χ .  

For each set we computed the fraction of correct matches 

(associations).  We then computed the average fraction of 

correct matches over the 100 sets.  Recall that a correct 

match occurs if a track from system 1 is correctly 

associated with a track from system 2, or when a track from 

system 1 is correctly not matched with a track from system  

2 and vice versa. 

3.2 Results 

For the first set of results, we set 1 2

d d
P P=  and let the 

detection probability vary from 0.9 to 0.5.  The results are 

shown in Figure 1.  One can see that the performance of the 

MAP algorithm is consistently as good or better than any of 

the fixed threshold algorithms.  The performance of the 

MAP algorithm dominates all the fixed threshold 

algorithms for all detection probabilities.  This is a striking 

demonstration of the superiority of the adaptive threshold 

algorithm over fixed threshold algorithms.   

 Note that the standard fixed threshold algorithm, 

which is based on the 0.003 significance level, does 

substantially worse than MAP except when the detection 

probability is 0.9.  In addition the fixed threshold algorithm 

corresponding to significance level 0.01 is consistently 

better than the one for the 0.003 significance level. 

 

Figure 1. Comparison of the Adaptive vs Fixed Theshold 

Algorithms when 1 2

d dP P= . 

 In [2] Mori and Chong compared the performance of 

fixed threshold algorithms using a simulation similar to 

ours in which the number of targets detected on both 

systems was taken to be 80% of the actual targets present.  

They observed a similar effect.  Namely, that using the 0.1 

significance level threshold produced better results than the 

0.003 significance level threshold.  They explained the 

result by noting that the smaller significance level (higher 

threshold) tends to force more associations between tracks 

that should not have been matched.  However, in their 

results, MAP did not perform as well as the fixed threshold 

algorithm using the using the 0.1 or 0.03 significance level 

thresholds.  MAP did perform better than algorithms using 

the 0.01 and 0.001 significance level thresholds.   

We discussed this discrepancy with the authors of [2], but 

were not able to determine why their results differed from 

ours.  Since the software code used to perform the 
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simulations in [2] was not available at the time we had the 

discussions, we were not able determine the cause of the 

differences. 

 For the second set of results, we considered situations 

in which 1 2

d dP P≠ .  We set 1 0.9dP =  and let 2

dP  vary from 

0.9 to 0.5.  The results are shown in Figure 2.  Again one 

can see that the adaptive threshold performs as well or 

better than any of the fixed threshold algorithms and that 

the 0.003 significance-level fixed threshold algorithm is 

suboptimal except when 1 2 0.9d dP P= = . 

 

Figure 2. Comparison of the Adaptive vs Fixed Theshold 

Algorithms when 1 2

d dP P≠ . 

4 Adjustments to the Adaptive 

Threshold 

Recall that MAP is not designed to maximize fraction of 

correct associations.  It produces the association with the 

highest posterior probability so there is reason to believe 

that one can do better than MAP when using that measure 

of performance.  With this in mind we considered the 

modifications of MAP that are obtained by adding a 

constant to the adaptive threshold from MAP.  This 

produces an adjusted adaptive threshold. 

 Specifically, we modified the adaptive threshold ijA  

in (10) by adding an constant value Â  to obtain the 

adjusted adaptive threshold ˆ ˆ
ij ijA A A= + .  We call Â  the 

additional threshold.  We then used the same simulated data 

as described above for the 1 2 0.9
d d

P P= =  case but applied 

the MAP algorithm with the adjusted adaptive threshold.  

We let the additional threshold values vary from -10 to +10.  

Figure 3 shows the results.  For this discussion, we consider 

solely the metric-only case, the black line in Figure 3.  One 

can see that an additional threshold between 1 and 2 

produces slightly better results than no adjustment, ˆ 0A= .  

(The lines for SNR 1 through 64 refer to the effect of 

adding certain feature information to the metric 

information.  They do not concern us here.)  For this case, 

using ˆ 0A=  produced 99% or better of the correct matches 

that are obtained at the optimum threshold adjustment. 

 

Figure 3. Results of Threshold Adjustment when 
1 2 0.9
d d

P P= = .  The Adjusted Adaptive Threshold is 
ˆ ˆ

ij ijA A A= +  where Â  is the Additional Threshold. 

4.1 Additional Simulations with 
1 2
=

d d
P P  

In additional simulations we varied the mean number of 

targets, the target density ρ , and the detection probabilities 
1

d
P  and 2

d
P .  In these runs we used only the 3D position 

information for the target state.  Figures 4 – 6 show the 

results of varying the number of true targets and the target 

density when 1 2 0.9,  0.7,  and 0.5
d d

P P= = . 

 Figure 4 shows that for 1 2 0.9d dP P= = , ˆ 0A=  

performs almost as well as any other adjustment for a range 

of target densities.  Figures 5 and 6 compare performance 

of the additional thresholds when 1 2 0.7,  and 0.5d dP P= = . 

 In Figures 5 and 6, we see that performance of the 

algorithm corresponding to ˆ 0A=  degrades somewhat 

compared to negative additional thresholds at high target 

densities.  Recall that higher thresholds tend to force 

associations.  It appears that, in high density cases, reducing 

the threshold produces an advantage.  However, the target 

densities are very high. 

4.2 Additional Simulations with ≠1 2

d d
P P  

Figures 7 – 9 show the results of considering unequal 

detection probabilities for the two systems under same 

conditions as in section 4.1 but limited to the case of 40 

targets and a target density of 5 objects per 3sigma hyper 

ellipsoid. 

 Looking at Figures 7 – 9 we see that in most cases no 

threshold adjustment produces results almost as good as or 

better than any adjusted adaptive threshold. 
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Figure 4. Adjusted Threshold Performance, 1 2 0.9d dP P= =  

 

Figure 5. Adjusted Threshold Performance, 1 2 0.7
d d

P P= =  

 

Figure 6. Adjusted Threshold Performance, 1 2 0.5d dP P= =  

 

Figure 7. Adjusted Threshold Performance when 1 0.9dP =  

 

Figure 8. Adjusted Threshold Performance when 1 2

d d
P P≠  

 

Figure 9. Adjusted Threshold Performance when 1 2

d dP P≠  
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5 Conclusions 

In this paper we have compared the performance of the 

MAP association algorithm to the classical fixed threshold 

algorithm and to adjusted adaptive threshold algorithms in 

terms of fraction of correct associations.  These 

comparisons were made when the target state distributions 

are Gaussian.  In this case the MAP algorithm can be 

thought of as a version of the fixed threshold algorithm 

with an adaptive threshold.  Simulation results were 

presented in section 3 that show the MAP algorithm 

performs as well as or better than any fixed threshold 

algorithm.  In section 4 simulation results were presented 

that show the MAP algorithm performs (almost) as well or 

better than adjusted adaptive threshold algorithms except in 

high target density situations. 
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