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1. INTRODUCTION 

This tutorial addresses the problem of detection and tracking when there is at most one 

target present.  This problem is most pressing when signal-to-noise ratios are low.  This will be 

the case when one is performing surveillance of a region of the ocean’s surface hoping to detect 

a periscope in the clutter of ocean waves or when scanning the horizon with an infrared sensor 

trying to detect a cruise missile at the earliest possible moment.  Both of these problems have 

two important features:  (1) a target may or may not be present; and (2) if a target is present, it 

may not produce a strong enough signal to be detected on a single glimpse by the sensor. 

Likelihood ratio detection and tracking is based on an extension of Bayesian single target 

tracking, described in Section 2 below, to the case where there is either one or no target present.  

The methodology presented here unifies detection and tracking into one seamless process.  

Likelihood ratio detection and tracking allows both functions to be performed simultaneously 

and optimally. 

2. BAYESIAN SINGLE TARGET TRACKING  

In this section we present a Bayesian formulation of single target tracking and a basic 

recursion for performing single target tracking. 

Definition of Bayesian Approach.  To appreciate the discussion in this tutorial, the 

reader must first understand the concept of Bayesian tracking.  For a tracking system to be 

considered Bayesian, it must have the following characteristics. 

1. Prior Distribution.  There must be a prior distribution on the state of the 
targets.  If the targets are moving, the prior distribution has to include a 
probabilistic description of the motion characteristics of the target.  
Usually the prior is given in terms of a stochastic process for the motion of 
the target. 

2. Likelihood Functions.  The information in sensor measurements, 
observations, or contacts must be characterized by likelihood functions. 

3. Posterior Distribution.  The basic output of a Bayesian tracker is a 
posterior probability distribution on the (joint) state of the target(s).  The 
posterior at time t is computed by combining the motion updated prior at 
time t with the likelihood function for the observation(s) received at time 
t. 

These are the basics: prior, likelihood functions, posterior.  If these are not present, the tracker is 

not Bayesian.  The recursions given below for performing Bayesian tracking are “recipes” for 

calculating priors, likelihood functions, and posteriors. 
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2.1 Bayesian Filtering 

Bayesian filtering is based on the mathematical theory of probabilistic filtering described 

by Jazwinski (1970).  Bayesian filtering is the application of Bayesian inference to the problem 

of tracking a single target.  In this section, we consider the situation where the target motion is 

modeled in continuous time, but the observations are received at discrete, possibly random, 

times.  This is called continuous-discrete filtering by Jazwinski. 

2.2 Problem Definition 

The single target tracking problem assumes that there is one target present in the state 

space; as a result, the problem becomes one of estimating the state of that target. 

2.2.1 Target State Space 

Let S be the state space of the target.  Typically, the target state will be a vector of 

components.  Usually some of these components are kinematic and include position, velocity, 

and possibly acceleration.  Note that there may be constraints on the components, such as a 

maximum speed for the velocity component.  There can be additional components that may be 

related to the identity or other features of the target.  For example, if one of the components 

specifies target type, then that may also specify information such as radiated noise levels at 

various frequencies and motion characteristics (e.g., maximum speeds).  In order to use the 

recursion presented in this section, there are additional requirements on the target state space.  

The state space must be rich enough that (1) the target’s motion is Markovian in the chosen state 

space and (2) the sensor likelihood functions depend only on the state of the target at the time of 

the observation. 

The sensor likelihood functions depend on the characteristics of the sensor, such as its 

position and measurement error distribution which are assumed to be known.  If they are not 

known, they need to be determined by experimental or theoretical means. 

2.2.2 Prior Information 

Let ( )X t be the (unknown) target state at time t.  We start the problem at time 0 and are 

interested in estimating ( )X t  for 0t≥ .  The prior information about the target is represented by 

a stochastic process { ( ); 0}.X t t≥   Sample paths of this process correspond to possible target 

paths through the state space, S.  The state space S has a measure associated with it.  If S is 

discrete, this measure is a discrete measure.  If S is continuous (e.g., if S is equal to the plane), 

then this measure is represented by a density.  The measure on S can be a mixture or product of 

discrete and continuous measures.  Integration with respect to this measure will be indicated by 

ds.  If the measure is discrete, then integration becomes summation. 
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Markov Target Motion Assumption.  In order to calculate the posterior distributions in 

a recursive manner we shall assume that the target’s motion is Markovian in the state space S.  

With this in mind we define the transition function 

 1 1 1( | ) { ( ) ( ) }  for 1k k k k k k kq s s X t s X t s kPr− − −= = = ≥ , 

and let 0q  be the probability (density) function for X(0).  By the Markov assumption 

 { }1 1 1 0 0 0
1

( ) , , ( ) ( | ) ( )
K

K K k k k

kS

X t s X t s q s s q s dsPr −
=

= = = ∏∫… . (1) 

2.2.3 Sensors 

There is a set of sensors that report observations at an ordered, discrete sequence of 

(possibly random) times.  These sensors may be of different types and report different 

information.  The set can include radar, sonar, infra-red, visual, and other types of sensors.  The 

sensors may report only when they have a contact or on a regular basis.  Observations from 

sensor j take values in the measurement space .
j

H   Each sensor may have a different 

measurement space.  The probability distribution of each sensor’s response conditioned on the 

value of the target state s is assumed to be known.  This relationship is captured in the likelihood 

function for that sensor. 

2.2.4 Likelihood Function 

Suppose that we receive an observation (measurement) y from sensor j at time t.  We 

assume that we have a model of the sensor performance and its error characteristics that allows 

us to compute the probability (density) of the sensor observations as a function of target state.  

Specifically we assume that the senor observation Y is random variable whose distribution 

conditioned on target state s is known.  Thus we can compute 

 ( | ) { | ( ) } for L y s Y y X t s s SPr≡ = = ∈ . 

( | )L y ⋅  is defined to be the likelihood function for measurement y.  Notice that L is a function on 

the target state space S regardless of the measurement space of the sensor.  Thus likelihood 

functions become the common currency of information in a Bayesian Tracker.  They replace and 

generalize the notion of contacts.  Likelihood functions can represent sensor information such as 

detections, no detections, Gaussian contacts, bearing observations, measured signal-to-noise 

ratios, and observed frequencies of a signal.  Likelihood functions can represent and incorporate 

information in situations where the notion of a contact is not meaningful.  Subjective information 

also can be incorporated by using likelihood functions.  Examples of likelihood functions are 

provided in Section 2.4. 

Conditional Independence.  Suppose that by time t we have obtained observations at the 

set of times 10 .Kt t t≤ ≤ ≤ ≤…   To allow for the possibility that we may receive more than one 
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sensor observation at a given time, we let kY  be the set of sensor observations received at time 

.kt   Let ky  denote a value of the random variable .kY   We assume that we can compute the 

likelihood function 

 ( | ) { | ( ) } for  and 1, ,k k k k kL y s Y y X t s s S k KPr= = = ∈ = … . (2) 

Let 1 2( ) ( , , , )Kt Y Y YY = …  and 1( , , )Ky yy= … .  Define 

 { }1 1 1( | , , ) ( ) | ( ) , , ( )K K KL s s t X t s X t sy Pr Y y… = = = … = . 

We further assume that 

 { } 1
1

( ) | ( ) ( ), 0 ( | , , ) ( | )
K

K k k k

k

t X u s u u t L s s L y sPr Y y y
=

= = ≤ ≤ = … =∏ . (3) 

Equation (3) means that the likelihood of the data ( )tY  received through time t depends only on 

the target states at the times 1{ , , }Kt t…  and not on the whole target path.  Furthermore, the 

likelihood function of the observation at time kt  is independent of the observations at all other 

times given ( )k kX t s= .  This is the conditional independence assumption made for Bayesian 

recursive tracking. 

2.2.5 Posterior on Target State 

Let 

 { }( , ) ( ) | ( )K K K K Kp t s X t s tPr Y y= = = . 

Note that the dependence of p on y has been suppressed.  The function ( , )Kp t ⋅  is the posterior 

distribution on ( )KX t  given ( ) .KtY y=   In mathematical terms, the problem is to compute this 

posterior distribution.  Recall that from the point of view of Bayesian inference, the posterior 

distribution on target state represents our knowledge of the target state.  All estimates of target 

state derive from this posterior. 

2.3 Computing the Posterior 

By the Markov and conditional independence assumptions, we may compute the 

posterior using the following recursion. 
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Basic Recursion for Single Target Tracking 

 Initialize Distribution: 0 0 0 0 0( , ) ( )  for p t s q s s S= ∈  (4) 

For k ≥ 1 and ks S∈ , 

 Perform Motion Update: 1 1 1 1( , ) ( | ) ( , )k k k k k k k kp t s q s s p t s ds
−

− − − −= ∫  (5) 

 Compute Likelihood Function kL  from the observation k kY y= . 

 Perform Information Update: 
1

( , ) ( | ) ( , )k k k k k k kp t s L y s p t s
C

−=  (6) 

The motion update in (5) accounts for the transition of the target state from time 1kt −  to 

kt .  Transitions can represent not only the physical motion of the target, but also changes in other 

state variables.  The information update in (6) is accomplished by pointwise multiplication of 

( , )k kp t s
− by the likelihood function ( | )k k kL y s .  If there has been no observation at time kt , then 

there is no information update, only a motion update. 

Except in special circumstances, this recursion must be computed numerically.  Today’s 

high-powered scientific workstations can compute and display tracking solutions for complex 

nonlinear trackers.  One way to do this is to discretize the state space and use a Markov chain 

model for target motion so that (5) is computed through the use of discrete transition 

probabilities.  The likelihood functions are also computed on the discrete state space.  A 

numerical implementation of a discrete Bayesian tracker is described in section 3.3 of Stone et 

al. (1999).  A more common numerical implementation is to use a particle filter as described in 

Doucet, de Freitas, and Gordon (2001). 

2.4 Examples of Likelihood Functions 

In the classical view of tracking, contacts are obtained from sensors that provide 

estimates of (some components of) the target state at a given time with a specified measurement 

error.  In the Kalman filter formulation, a measurement (contact) kY  at time kt  satisfies the 

measurement equation 

 ( )k k k kY X tM ε= +  (7) 

where 

 kY  is an r-dimensional real column vector 

 ( )kX t  is an l-dimensional real column vector 

 kM  is an r l×  matrix 

 ~ (0, )k kNε � . 
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Note that ~ ( , )N μ �  means “has a Normal (Gaussian) distribution with mean μ  and covariance 

� .”  In this case, the measurement is a linear function of the target state and the measurement 

error is Gaussian.   

2.4.1 Gaussian Contact Likelihood Function 

We can express a Gaussian contact in terms of a likelihood function as follows.  Let 

{ }( | ) Pr | ( ) .G k kL y x Y y X t x= = =   Then 

 ( ) ( ) ( ) ( )
1

12 2
1

2 det exp
2

r T

G k k kL y x y x y xM Mπ
− − −⎛ ⎞⎟⎜= − − Σ − ⎟⎜ ⎟⎟⎜⎝ ⎠

� . (8) 

Note that the measurement y is data that is known and fixed.  The target state x is unknown and 

varies, so that the likelihood function is a function of the target state variable x.  Equation (8) 

looks the same as a standard elliptical contact, or estimate of target state, expressed in the form 

of multivariate normal distribution, commonly used in Kalman filters.  There is a difference, but 

it is obscured by the symmetrical positions of y and k xM  in the Gaussian density in (8).  A 

likelihood function does not represent an estimate of the target state.  It looks at the situation in 

reverse.  For each value of target state x, it calculates the probability (density) of obtaining the 

measurement y given that the target is in state x.  In most cases, likelihood functions are not 

probability (density) functions on the target state space.  They need not integrate to one over the 

target state space.  In fact, the likelihood function in (8) is a probability density on the target 

state space only when kY  is an l-dimensional and kM  is an l l×  matrix. 

2.4.2 Line of Bearing Plus Detection Likelihood Functions 

Suppose that there is a sensor located in the plane at (70,0) and that it has produced a 

detection.  For this sensor the probability of detection is a function, ( ),dP r  of the range r from 

the sensor.  Take the case of an underwater sensor such as an array of acoustic hydrophones and 

a situation where the propagation conditions produce convergence zones of high detection 

performance that alternate with ranges of poor detection performance.  The observation 

(measurement) in this case is 1Y =  for detection and 0 for no detection.  The likelihood function 

for detection is 

 ( )(1| ) ( ) , where ( )d dL x P r x r x=  is the range from the state x to the sensor. 

Figure 1 shows the likelihood function for this observation.  

Suppose that, in addition to the detection, there is a bearing measurement of 135 degrees 

(measured counter-clockwise from the 1x  axis) with a Gaussian measurement error having mean 

0 and standard deviation 15 degrees.  Figure 2 shows the likelihood function for this observation.  

Notice that, although the measurement error is Gaussian in bearing, it does not produce a 

Gaussian likelihood function on the target state space.  Furthermore, this likelihood function 

would integrate to infinity over the whole state space.  The information from these two 
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likelihood functions is combined by pointwise multiplication.  Figure 3 shows the likelihood 

function that results from this combination. 
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Figure 1.  Detection Likelihood Function for a Sensor at (70,0) 
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Figure 2. Bearing Likelihood Function for a Sensor at (70,0) 
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Figure 3.  Combined Bearing and Detection Likelihood Function 

2.4.3 Combining Information Using Likelihood Functions 

Although the example of combining likelihood functions presented in section  2.4.2 is 

simple, it illustrates the power of using likelihood functions to represent and combine 

information.  A likelihood function converts the information in a measurement to a function on 

the target state space.  Since all information is represented on the same state space, it can easily 

and correctly be combined, regardless of how disparate the sources of the information.  The only 

limitation is the ability to compute the likelihood function corresponding to the measurement or 

the information to be incorporated.  As an example, subjective information can often be put into 

the form of a likelihood function and incorporated into a tracker if desired. 

3. LIKELIHOOD RATIO DETECTION AND TRACKING 

This section describes the problem of detection and tracking when there is at most one 

target present.   

3.1 Basic Definitions and Relations 

We use the same assumptions as in Section 2, with the following difference.  We do not 

assume a target is present.  Instead the target state space S is augmented with a null state φ  to 

make .S S φ+ = ∪   The null state represents no target present.  There is a probability (density) 

function, p, defined on S
+  such that 

 ( )  ( ) 1
s S

p p s dsφ
∈

+ =∫ . 
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Both the state of the target ( )X t S
+∈  and the information accumulated for estimating the 

state probability densities evolve with time t.  The process of target detection and tracking 

consists of computing the posterior version of the function p  as new observations are available 

and propagating it to reflect the temporal evolution implied by target dynamics.  Target 

dynamics include the probability of target motion into and out of S as well as the probabilities of 

target state changes. 

Following the notation used in Section 2 for single-target Bayesian filtering, we let 

 ( ){ }1( , ) ( ) | ( ) ( ), , ( )  for Kp t s X t s t Y t Y t s SPr Y += = = ∈…  

so that ( , )p t ⋅ is the posterior distribution on ( )X t given all observations received through time t.  

Recall that  

 1 1 1 1( , ) ( | ) ( , )  for k k k k k k k k
S

p t s q s s p t s ds s S
+

− +
− − − −= ∈∫  

is the posterior from time 1kt −  updated for target motion to time ,kt  the time of the kth 

observation.  Recall also the definition of the likelihood function .kL   Specifically, for the 

observation k kY y=  

 { }( | ) | ( )k k k k kL y s Y y X t sPr= = =  (9) 

where for each ,s S
+∈  ( | )kL s⋅  is a probability (density) function on the measurement space 

kH . 

According to Bayes’ Rule, 

 

( , ) ( | )
( , ) for 

( )

( , ) ( | )
( , ) .

( )

k k k
k

k k k
k

p t s L y s
p t s s S

C k

p t L y
p t

C k

φ φ
φ

−

−

= ∈

=

 (10) 

In these equations, the denominator is the likelihood of obtaining the measurement ,k kY y=  that 

is, 

 ( ) ( , ) ( | ) ( , ) ( | )k k k k k k

s S

C k p t L y p t s L y s dsφ φ− −

∈

= + ∫ . 

3.1.1 Target Likelihood Ratio 

The ratio of the state probability (density) to the null state probability ( )p φ is defined to 

be the target likelihood ratio (density), ( );sΛ  that is, 
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( )

( )  for 
( )

p s
s s S

p φ
Λ = ∈ . (11) 

The notation for Λ is consistent with that already adopted for the probability densities.  Thus, the 

prior and posterior forms become 

 
( , ) ( , )

( , )   and  ( , )   for  and 0
( , ) ( , )

p t s p t s
t s t s s S t

p t p tφ φ

−
−

−Λ = Λ = ∈ ≥ . (12) 

The target likelihood ratio density has the same dimensions as the state probability 

density.  Furthermore, from the target likelihood ratio density one may easily recover the state 

probability density as well as the probability of the null state.  Since 

 
1 ( , )

( , )
( , )

S

p t
t s ds

p t

φ
φ

−
Λ =∫ , 

it follows that 

 

( , )
( , ) for 

1 ( , )

1
( , ) .

1 ( , )

S

S

t s
p t s s S

t s ds

p t
t s ds

φ

Λ
= ∈

′ ′+ Λ

=
′ ′+ Λ

∫

∫

 (13) 

3.1.2 Measurement Likelihood Ratio 

The measurement likelihood ratio 
kL  for the observation kY  is defined as 

 
( | )

( | )   for ,  
( | )

k
k k

k

L y s
y s y H s S

L y
L

φ
= ∈ ∈ . (14) 

( | )k y sL is the ratio of the likelihood of receiving the observation k kY y=  (given the target is in 
state s) to the likelihood of receiving k kY y=  given no target present.  As discussed by Van 
Trees (1967) the measurement likelihood ratio has long been recognized as part of the 
prescription for optimal receiver design. 

Measurement likelihood ratio functions are chosen for each sensor to reflect its salient 
properties such as noise characterization and target effects.  These functions contain all the 
sensor information that is required for making optimal Bayesian inferences from sensor 
measurements. 
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3.2 Likelihood Ratio Recursion 

Under the assumptions given in Section 2 for single-target tracking, the following 
recursion for calculating the target likelihood ratio holds. 

Likelihood Ratio Recursion 

 Initialize 0 0( , ) ( )  for p t s q s s S
+= ∈  (15) 

 For k ≥ 1 and ,s S
+∈  

 Perform Motion Update 1 1 1 1( , ) ( | ) ( , )k k k k k k

S

p t s q s s p t s ds
+

−
− − − −= ∫  (16) 

 Calculate Likelihood Function { }( | ) | ( )k k k k kL y s Y y X t sPr= = =  (17) 

 Perform Information Update 
1

( , ) ( | ) ( , )k k k kp t s L y s p t s
C

−=  (18) 

For k ≥ 1, 

 Calculate Target Likelihood Ratio 
( , )

( , )   for 
( , )

k
k

k

p t s
t s s S

p t φ
Λ = ∈ . (19) 

The constant, C, in (18) is a normalizing factor that makes ( , )kp t ⋅  a probability (density) 
function. 

Simplified Recursion.  The recursion given in Equations (15) - (19) requires the 
computation of the full probability function ( , )kp t ⋅  using the basic recursion for single target 
tracking discussed in Section 2.  A simplified version of the likelihood ratio recursion has 
probability mass flowing from the state φ to S and from S to φ in such a fashion that  

 

_
1 1

1

( , ) ( | ) ( , ) ( | ) ( , )

( , ).

k k k k k

S

k

p t q p t q s p t s ds

p t

φ φ φ φ φ

φ

− −

−

= +

=

∫
 (20) 

Since 

 _
1 1( , ) ( | ) ( , ) ( | ) ( , )   for k k k k k k k k k

S

p t s q s p t q s s p t s ds s Sφ φ− −= + ∈∫ , 

we have  

 

1 1

1

1

( | ) ( , ) ( | ) ( , )

( , )
( , )

( | ) ( | ) ( , )

.
( , ) / ( , )

k k k k k k

S
k k

k

k k k k k

S

k k

q s p t q s s p t s ds

t s
p t

q s q s s t s ds

p t p t

φ φ

φ

φ

φ φ

− −
−

−

−

−
−

+

Λ =

+ Λ

=

∫

∫
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From (20) it follows that 

 1( , ) ( | ) ( | ) ( , )   for k k k k k k k k

S

t s q s q s s t s ds s Sφ−
−Λ = + Λ ∈∫ . (21) 

Assuming (20) holds, we can write a simplified version of the basic likelihood ratio 
recursion 

Simplified Likelihood Ratio Recursion 

 Initialize Likelihood Ratio 0
0

0

( , )
( , )   for 

( , )

p t s
t s s S

p t φ
Λ = ∈  (22) 

 For k ≥ 1 and ,s S∈  

 Perform Motion Update 1 1 1 1( , ) ( | ) ( | ) ( , )k k k k k k k

S

t s q s q s s t s dsφ−
− − − −Λ = + Λ∫  (23) 

 Calculate Measurement Likelihood Ratio  
( | )

( | )
( | )

k
k

k

L y s
y s

L y
L

φ
=  (24) 

 Perform Information Update ( , ) ( | ) ( , )k k k kt s y s t sL −Λ = Λ  (25) 

The simplified recursion is a reasonable approximation to problems involving 
surveillance of a region that may or may not contain a target.  Targets may enter and leave this 
region, but only one target is in the region at a time. 

As a special case, consider the situation where no mass moves from state φ to S or from S 
to φ under the motion assumptions.  In this case ( | ) 0kq s φ =  for all s S∈ and 

1( , ) ( , )k kp t p tφ φ−
−=  so that (23) becomes 

 1 1 1 1( , ) ( | ) ( , )k k k k k k

S

t s q s s t s ds−
− − − −Λ = Λ∫ . (26) 

3.3 Log-Likelihood Ratios 

Frequently it is more convenient to write (25) in terms of natural logarithms.  Doing so 
results in quantities that require less numerical range for their representation.  Another advantage 
is that, frequently, the logarithm of the measurement likelihood ratio is a simpler function of the 
observations than is the actual measurement likelihood ratio itself.  For example, when the 
measurement consists of an array of numbers, the measurement log-likelihood ratio often 
becomes a linear combination of those data, whereas the measurement likelihood ratio involves a 
product of powers of the data.  In terms of logarithms, (25) becomes 

 ln ( , ) ln ( , ) ln ( | )  for k k k kt s t s y s s SL−Λ = Λ + ∈ . (27) 
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The following example is provided to impart an understanding of the practical 
differences between a formulation in terms of probabilities and a formulation in terms of the 
logarithm of the likelihood ratios.  Suppose there are I discrete target states, corresponding to 
physical locations so that the target state 1 2{ , ,..., }IX s s s∈  when the target is present.  The 
observation is a vector, ,Y  that is formed from measurements corresponding to these spatial 
locations, so that 1( ( ),..., ( ))IY s Y sY= .  In the absence of a target in state, is , the observation 

( )iY s  has a distribution with density function ( ,0,1)η ⋅ , where 2( , , )η μ σ⋅  is the density function 
for a Gaussian distribution with mean μ  and variance 2.σ   The observations are independent of 
one another regardless of whether a target is present.  When a target is present in the ith state, the 
mean for ( )iY s  is shifted from 0 to a value r.  In order to perform a Bayesian update, the 
likelihood function for the observation 1( ( ), , ( ))Iy s y sY y= = …  is computed as follows: 

 

( ) ( )

( )21
2

1

( | ) ( ), ,1 ( ),0,1

exp( ( ) ) ( ),0,1 .

i i j

j i

I

i j

j

L s y s r y s

ry s r y s

y η η

η

≠

=

=

= −

∏

∏
 

Contrast this with the form of the measurement log-likelihood ratio for the same problem.  For 
state i, we have  

 21
2ln ( | ) ( )i is ry s ryL = − . 

Fix is  and consider ln ( | )isYL  as a random variable.  That is, consider ln ( | )isYL  
before making the observation.  It has a Gaussian distribution with 
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This reveals a characteristic result.  Whereas the likelihood function for any given state requires 

examination and processing of all the data, the measurement log-likelihood ratio for a given 

state commonly depends on only a small fraction of the data — frequently only a single datum.  

Typically, this will be the case when the observation Y is a vector of independent observations. 

Because of the importance of the logarithm of the target likelihood ratio density in this 

methodology, playing as large a role as the target likelihood ratio density itself, we shall assign a 

special symbol to it.  We define lnλ= Λ  in all of its variations, employing λ− to refer to the 

prior and leaving the unadorned symbol λ to refer to the posterior value.  Equation (27) assumes 

the following form in this notation: 

 ( , ) ( , ) ln ( | )  for k k k kt s t s y s s SLλ λ−= + ∈  (28) 
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Because the target likelihood ratio density is not a scalar but has dimensions of the inverse of the 

state space volume, the quantity λ  depends upon the units chosen to describe the state space of 

the target. 

3.4 Declaring a Target Present 

The likelihood ratio methodology allows the Bayesian posterior probability density to be 

computed, including the discrete probability that no target resides in S at a given time.  It extracts 

all possible inferential content from the knowledge of the target dynamics, the apriori probability 

structure, and the evidence of the sensors.  This probability information may be used in a number 

of ways to decide whether a target is present.  The following offers a number of traditional 

methods for making this decision, all based on the integrated target likelihood ratio.  Define 

 { }( ,1) ( , ) target present in  at time 
S

p t p t s ds S tPr= =∫ . 

Then 

 ( ) ( ,1) / ( , )t p t p t φΛ =  

is defined to be the integrated target likelihood ratio at time t.  It is the ratio of the probability of 

the target being present in S to the probability of the target not being present in S at time t. 

Minimizing Bayes’ risk.  To calculate Bayes’ risk, costs must be assigned to the possible 

outcomes related to each decision (e.g., declaring a target present or not).  Define the following 

costs: 

 (1|1)C  if we declare the target present and it is present 

 (1| )C φ  if we declare the target present and it is not present 

 ( |1)C φ  if we declare the target not present and it is present 

 ( | )C φ φ  if we declare the target not present and it is not present. 

We assume that it is always better to declare the correct state; that is, 

 (1|1) ( |1) and ( | ) (1| )C C C Cφ φ φ φ< < . 

The Bayes’ risk of a decision is defined as the expected cost of making that decision.  

Specifically the Bayes’ risk is 

 ( ,1) (1|1) ( , ) (1| )p t C p t Cφ φ+  for declaring a target present 

 ( ,1) ( |1) ( , ) ( | )p t C p t Cφ φ φ φ+  for declaring a target not present. 

One procedure for making a decision is to take that action which minimizes the Bayes’ 

risk.  Applying this criterion produces the following decision rule.  Define the threshold  
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 T

(1| ) ( | )

( |1) (1|1)

C C

C C

φ φ φ
φ
−

Λ =
−

. (29) 

Then declare 

 target present if ( ) TtΛ >Λ  

 target not present if ( ) TtΛ ≤Λ . 

This demonstrates that the integrated target likelihood ratio is a sufficient decision statistic for 

taking an action to declare a target present or not when the criterion of performance is the 

minimization of the Bayes’ risk. 

Target Declaration at a Given Confidence Level.  Another approach is to declare a 

target present whenever its probability exceeds a desired confidence level, .Tp   The integrated 

target likelihood ratio is a sufficient decision statistic for this criterion as well.  The prescription 

is to declare a target present or not according to whether the integrated target likelihood ratio 

exceeds a threshold, this time given by /(1 )T T Tp pΛ = − .   

A special case of this is the ideal receiver, which is defined as the decision rule that 

minimizes the average number of classification errors.  Specifically, if  

 (1|1)C  = 0, ( | )C φ φ  = 0, (1| )C φ  = 1, and ( |1)C φ  = 1, 

then minimizing Bayes’ risk is equivalent to minimizing the expected number of miscalls of 

target present or not present.  By (29) this is accomplished by setting 1,TΛ =  which corresponds 

to a confidence level of 1/ 2Tp = . 

Neyman-Pearson Criterion for Declaration.  Another standard approach in the design of 

target detectors is to declare targets present according to a rule which produces a specified false 

alarm rate.  Naturally, the target detection probability must still be acceptable at that rate of false 

alarms.  In the ideal case, one computes the distribution of the target likelihood ratio with and 

without the target present and sets the threshold accordingly.  Using the Neyman-Pearson 

approach, we find there is a threshold TΛ  such that calling a target present when the integrated 

target likelihood ratio is above TΛ  produces the maximum probability of detection subject to the 

specified constraint on false alarm rate.   

3.5 Track Before Detect   

The process of likelihood ratio detection and tracking is often referred to as track before 

detect.  This terminology recognizes that one is tracking a possible target (through computation 

of ( , )p t ⋅ ) before calling the target present.  The advantage of track before detect is that it can 

integrate sensor responses over time on a moving target to yield a detection in cases where the 

sensor response at any single time period is too low to call a detection.  In likelihood ratio 

detection and tracking, a threshold is set and a detection is called when the target likelihood ratio 
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surface exceeds that threshold.  The state at which the peak of the threshold crossing occurs is 

usually taken to be the state estimate, and one can convert the target likelihood ratio surface to a 

probability distribution for the target state. 

4. EXAMPLES 

In this section we present examples of likelihood ratio detection and tracking 

4.1 Simple Simulation 

In this section we present an example of likelihood ratio detection and tracking which 

illustrates the basic features of the methodology.  This example shows how to integrate sensor 

responses on a moving target over time so that even though each response is well below the 

detection threshold, the target log-likelihood ratio in the cell containing the target (which is 

changing over time) will build up to cross the detection threshold.  This allows us to 

simultaneously declare a detection and estimate the target’s state.  This feature is particularly 

important in low signal-to-noise ratio situations. 

Target Motion Model.  For this example the target moves in a one-dimensional space of 

position cells represented by J, the integers running from −∞  to +∞ .  The target can have one 

of nine base velocities where velocity is measured in cells per time step.  The state space is 

 { 3, 2, , 4,5}S J= × − − …  

so that a state s S∈  is an ordered pair ( , )i v where i is position and v is base velocity.  To S we 

adjoin the state φ , target not present, to obtain { }S S φ+ = ∪ . 

Let ( ) ( ( ), )X t i t v=  denote the target state at time t.  The target motion model is given by 

 ( 1) ( ) ( )i t i t v tδ+ = + +  (30) 

where 

 

1 with probability 0.1

( ) 0 with probability 0.8

1 with probability 0.1

tδ

⎧⎪⎪⎪⎪=⎨⎪⎪−⎪⎪⎩

 (31) 

and ( )tδ  is independent of ( )tδ ′  for t t′ ≠ .  Intuitively, the target has base velocity ,v  but there 

is noise in the velocity process so that the velocity varies randomly between 1v−  and 1v+ . 

For the initial distribution on target state, we assume that the probability the target is not 

present is 0.75.  If the target is present, then its position at time 0 has a uniform distribution on 

{1, ,100},…  and its base velocity has a uniform distribution over the nine possible velocities.  

Specifically, the remaining 0.25 probability is spread uniformly over the 900 position-velocity 

pairs in {1, ,100} { 3, 2, , 4,5}× − −… … .  The result is 



 
17 

 

(0, ) 0.75

0.25 1
(0, ( , )) =  for 1 100,  3 5

900 3600

(0, ( , ))
(0, ( , )) ln ln(2700) 7.9

(0, )

p

p i v i v

p i v
i v

p

φ

λ
φ

=

= ≤ ≤ − ≤ ≤

= =− =−

 

Sensor Model and Measurement Likelihood Function.  The sensor for this example 

views only the spatial cells with indices between 1 and 100 inclusive.  At each time step, the 

sensor receives a normally distributed response ( )Y i  from cell i for 1 100i≤ ≤ .  If the target is 

in cell j, for 1 100j≤ ≤ , then ( )Y j  has mean u and standard deviation 1.  The target signal spills 

over to the adjacent cells so that the responses from those cells have mean u/2 and standard 

deviation 1.  In all other cells, the response has mean 0 and standard deviation 1.  Thus if the 

target is in cell j, 

 1
2

(0,1) for < -1 or 1

( ) ~ ( ,1) for = -1 or +1

( ,1) for 

i j i j

Y i u i j j

u i j

N
N
N

⎧ > +⎪⎪⎪⎪⎨⎪⎪⎪ =⎪⎩

 

Let 1 100( , , )y yy= …  be the vector of responses obtained at a given time.  Then the likelihood 

function is 

 1 1
1 12 2

1
1

( |( , )) ( ,0,1) ( , ,1) ( , ,1) ( , ,1)i j j j

i j
i j

L j v y y u y u y uy η η η η− +
< −
> +

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∏  

where 2( , , )η μ σ⋅  is the density function for a 2( , )N μ σ  distribution.  Note that the above 

product omits factors with subscripts less than 1 or greater than 100.  The likelihood function 

does not depend on velocity.  The measurement log-likelihood ratio is 

 
2

1 1 3
ln ( |( , ))

2 2 4

j j

j

uy uy u
j v uyyL − += + + −  (32) 

Signal-to-Noise Ratio.  To compute the signal-to-noise ratio, we restrict our attention to 

the three cells containing the signal.  In those cells we are dealing with a signal that has a three-

dimensional Gaussian distribution with 

 mean 1 ( / 2, , / 2)T
u u uμ =  and covariance IΣ=  
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where I is the three-dimensional identity matrix.  The noise in those cells has a Gaussian 

distribution with mean 0 (0,0,0)Tμ = and covariance, I.  Thus the signal-to-noise ratio is 

 
2

1
1 1

3

2

T u
SNR μ μ−= Σ =  (33) 

4.1.1 Simulated Detection and Tracking Results 

This section presents the results of applying likelihood ratio tracking and detection to 

simulated data.  To produce the data, we set the target signal level u = 2.  This yields an SNR = 6  

(7.8 dB).  The target started at 30i=  at time 0 and moved with constant velocity 1v= .  We 

used a simulation to produce sensor responses in the 100 cells viewed by the sensor for 16 time 

periods.  Using these responses, we calculated the measurement log-likelihood ratio function in 

(32) for 0, ,15t = … . 

Since no mass moves from φ  to S or from S to φ , we used the Simplified Likelihood 

Ratio Recursion with (26) in place of (23) to calculate the target log-likelihood ratio function 

( , )tλ ⋅  for 0, ,15t = … .  To perform the step in (26), we exponentiated 1( , )kt sλ −  to obtain 

1( , )kt s−Λ , performed the motion update to get ( , )kt
−Λ ⋅ , and took logarithms to obtain ( , )kt sλ− .  

Finally, we applied (28) to compute ( , )kt sλ . 

Figures 4 to 7 show the target log-likelihood ratio surface ( , )tλ ⋅  at times 0t = , 5, 10, 

and 15, respectively.  Note, we show this surface only for the spatial cells with indices between 1 

and 100 inclusive.  The surface at time 0 (Figure 4) shows the effect of the observation at time 0.  

This surface is produced by adding the measurement log-likelihood ratio to the prior target log-

likelihood ratio.  Since the prior target log-likelihood ratio is a constant, equal to –7.9 for all 

states (except φ ), the surface at time 0 is simply the measurement log-likelihood ratio for time 0 

shifted down by 7.9 log-likelihood units.  Since the likelihood function does not depend on 

velocity, the surface at time 0 shows no velocity dependence. The target’s state is (30,1) at time 

0.  This surface is typical of the measurement log-likelihood ratio functions produced in the 

simulation.  There are many peaks with roughly the same height as the one at the target state. 

Figure 5 shows the target log-likelihood ratio surface at 5t = .  There is a peak 

developing in the vicinity of the target state at (35,1), but there are many noise peaks that are 

almost as high.  By time 10t = , the picture (Figure 6) has clarified dramatically, the largest peak 

is clearly at the target state (40,1). The height of this peak is 29 log-likelihood units.  There is 

still a substantial amount of background noise in the surface, although the peak levels are much 

below the one over the target state.  At time 15t =  (Figure 7), the peak at the target state is equal 

to 31 log-likelihood units and most of the noise peaks have dropped below –30 log-likelihood 

units.  Because of the “plant noise” in the velocity model (see (31)), the likelihood ratio at the 

target state is dispersed by each time step of motion.  This produces the spread in the log-

likelihood ratio peak at the target state that we see in Figures 6 and 7. 



 
19 

Time = 0

- 2

0

2

4

Velocity

20

40

60
80

100

Position

- 20

0

20

LLR
- 2

0

2

4

Velocity

- 20

0

20

LLR

 

Figure 4 Target Log-Likelihood Ratio Surface at t = 0. 
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Figure 5 Target Log-Likelihood Ratio Surface at t = 5. 
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Figure 6 Target Log-Likelihood Ratio Surface at t = 10. 
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Figure 7 Target Log-Likelihood Ratio Surface at t = 15. 

4.1.2 Comparison to Matched Filter Detection 

To call detections and estimate target state, we set a threshold Tλ  and call a detection 

(target present) whenever the target log-likelihood ratio surface rises above Tλ .  The state at the 
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peak of the surface can be used as a point estimate for the target state.  In the case of Figure 7, 

we could provide a probability distribution for the target’s state by fitting a bivariate normal 

distribution to the peak transformed to likelihood ratio units.  This is done by fitting a quadratic 

to the peak in the target log-likelihood ratio surface. 

In this section we compare the effectiveness of likelihood ratio detection and tracking to 

a more naïve detection scheme which is similar to matched filter processing.  The matched filter 

for the signal given the target is located in cell j is 

 
1 1

( )
2 2

j j

j

uy uy
H j uy

− += + +  (34) 

As an alternate to computing the target log-likelihood ratio surface at each time, we could 

compute the matched filter output for position j, for 1, ,100j= …  from the sensor responses at 

each time and declare a detection (and target position estimate) whenever the response for some 

position j* exceeds a specified threshold .Mλ    

Performance of Likelihood Ratio Detection and Tracking.  Section 6.2.2 of Stone et 

al. (1999) compares the performance of this matched filter detection methodology, which does 

not integrate sensor responses over time, to that of likelihood ratio detection and tracking.  The 

analysis in Stone et al. showed that for a given threshold setting, the likelihood ratio detection 

methodology produces a 0.93 probability of detection at a specified false alarm rate.  In order to 

obtain that same detection probability with the matched filter detector, one has to suffer a false 

alarm rate that is higher by a factor of 1810 .  This is an example of the impressive increase in 

performance that can be produced by using likelihood ratio detection and tracking.  This increase 

in performance allows one to detect and track targets at low signal-to-noise ratios. 

4.2 Periscope Detection 

We now present an example of likelihood ratio detection and tracking that involves a 

single target and a high rate of false alarms and clutter.  The objective is to use a high-resolution 

shipboard radar to detect submarine periscopes exposed for only a few seconds at a time within a 

10 mile radius of a ship.   

The radar in question has a 1 ft range resolution, 2 degree beamwidth, and a 5 Hz scan 

rate.  It is assumed that a periscope will be exposed on the order of 10 seconds, although this 

information is not directly used by the tracking system.  Because the radar is mounted on a ship 

and is looking out to ranges of up to 10 miles, the grazing angle of the radar signal is very low to 

the surface of the ocean.  A high resolution radar with a low grazing angle encounters significant 

clutter from breaking waves which generate substantially higher returns than the mean ambient 

level.  These high-intensity clutter spikes produce a high clutter rate and potentially a high false 

alarm rate.   
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The statistical behavior of this spiky clutter is described by a two-scale model.  In this 

model the received radar signal is represented as a compound process where a fast speckle 

process is modulated by a slower process describing the scattering features in a radar cell.  Over 

short time intervals (up to approximately 250 ms) the intensity observed in a fixed range cell is 

Rayleigh distributed.  Over longer times, the mean of the Rayleigh component follows a gamma 

distribution whose shape parameter is a function of the radar and ocean parameters such as 

grazing angle, resolution cell size, frequency, look direction, and sea state. 

Since the radar is looking for a submarine periscope, it is reasonable to assume that there 

is at most one target at any time within a 10 mile radius of the ship.  The result is that we have a 

single (or no target) problem with a potentially large number of false alarms.  To tackle this 

problem Stone et al. (1997) used a Likelihood Ratio Tracker (LRT).  The LRT employed 

consists of a clutter tracker and a target tracker.  The clutter tracker estimates the mean clutter 

level (i.e., the mean of the Rayleigh distribution mentioned above) in each range cell, every 1/5 

of a second using the intensity of the radar returns. 

Target Tracker.  Each beam of the radar is treated separately.  The nominal periscope is 

up for only a short period of time, and the chance of transiting from one beam to another is 

small, especially with overlapping beams.  Within each beam, the target’s state space is two-

dimensional: range and range rate.  All quantities are measured relative to the radar.  The 

tracker does not try to estimate motion orthogonal to the look direction because with the scales 

involved it is difficult to use a single radar to “triangulate” the target. 

The range space was discretized into 1 ft cells to match the radar range resolution.  The 

range rate component was discretized into 100 cells with a spacing of 0.1 m/sec to cover the 

range from roughly −10 kn to +10 kn.  The initial distribution was chosen with probability 5×10-

6 of the target being in the state space (i.e., the periscope being up).  This probability is uniformly 

distributed over the target state space.  The initial probability of no target present in the state 

space is 61 5 10 .−− ×   To allow for the possibility that a periscope exposure commences during a 

scan, there is probability 85 10−×  of a periscope appearing in a given cell per time period (0.2 

seconds). 

For each scan, the measurement used by this tracker is the set of observed intensities of 

the radar return from each range cell.  The observed intensity and the estimate of the mean 

clutter level for a cell are used to compute a measurement likelihood ratio statistic in that cell.  

This statistic is the ratio of the probability of receiving the return given the target is in the cell 

(i.e., the periscope is exposed) to the probability of receiving the return given no target present.  

The two probabilities are conditioned on the estimate of the mean clutter level in the cell.  This 

measurement likelihood ratio function is combined by pointwise multiplication with the motion 

updated likelihood ratio for the target to produce the posterior likelihood ratio function over the 

target state space.  The resulting likelihood ratio surface is then updated for motion (using the 

motion model described below) to form the motion updated likelihood ratio for the next time 

increment. 
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Over the short period of exposure of a periscope, the tracker assumes a constant course 

and speed for the target.  This produces a constant range rate for the target.  Let ( , )r r� represent a 

range and range-rate cell in the target state space.  The likelihood ratio in cell ( , )r r�  is displaced 

to the cell ( , )r t r r+Δ � �  over a time interval tΔ .  In this motion model, each velocity hypothesis 

can be treated independently. 

If the radar observations are consistent with a velocity hypothesis, peaks will develop in 

the likelihood ratio function at position-velocity cells consistent with that hypothesis.  Viewed 

over time, the peaks will lie along a straight line corresponding to the target’s track in range 

versus time.  Peaks that occur as noise and do not form according to a velocity hypothesis will 

not be reinforced.  They will tend to average to the background noise level.  Typically one sets a 

threshold level and calls a detection whenever a peak exceeds the threshold.  The state at which 

the peak occurs is used as the estimate of the target state.  The process of integrating the 

likelihood ratio functions over time according to velocity hypotheses provides much of the 

power of the likelihood ratio tracker methodology. 

Example.  The likelihood ratio tracker described above was applied to simulated clutter 

data with an injected target signal to produce the results shown below.  Figure 8 shows the radar 

scan data (intensity on logarithmic scale) for 30 seconds of data and for a 500 ft range interval.  

In the figure, time increases down the page and range increases from left to right.  Each 

horizontal line in the figure represents a single scan, and there are 150 scans of data shown.  The 

color scale had been adjusted to vary from blue for the minimum value to red for the maximum. 

Range(500 one foot range bins)

 
Figure 8 Radar Scan Data for 30 seconds (150 scans) 

In Figure 8, a target has been injected amongst the clutter for a 10-second interval.  This 

figure shows the clutter problem faced by the radar in this situation.  The clutter patches show up 

as darker areas moving toward the radar.  The patches appear predominantly along the crests of 

long waves.  It is very difficult to see the target track in this view.  A single uniform threshold 

that was set low enough to capture a substantial number of the target returns would also let pass 

a large number of false alarms.  It is clear that any simple thresholding scheme will either call an 

overwhelming number of false alarms or provide a very low detection probability. 

Time 
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Figure 9 shows the output of the likelihood ratio tracker.  The axes and dimensions in this 

figure are identical to those in Figure 8.  Each horizontal line represents the marginal posterior 

likelihood ratio function calculated through that scan.  Each dot on the line shows the marginal 

likelihood ratio in that range at that time.  The marginal likelihood ratio is obtained by adding 

the likelihood ratio corresponding to all velocity hypotheses in that range cell.  The marginal is 

shown for convenience of display only.  The actual comparison of peak values to a threshold is 

performed on the likelihood ratios as a function of both position and velocity. 

The results shown in Figure 9 are striking.  The target track, which is not visible in 

Figure 8, is shown clearly in this figure.  It has a peak likelihood ratio value of 4 × 107 compared 

to the value of 7.6 for the next highest peak in the figure.  If we draw the path of a target with a 

constant velocity (range rate) in the figure, it will appear as a straight line.  The line will slant to 

the right if range is increasing and to the left if it is decreasing.  The likelihood peaks line up 

very well along the target path to form an almost straight line.  The peaks disappear when the 

periscope submerges. 

Peak Value ove r Target Track: 40,000,000

Se cond Highest Peak Value: 7.6  
Figure 9 Output of the likelihood ratio tracker. 

An expanded view of the likelihood peaks is shown in the left-hand side of Figure 10.  

Here we can see the buildup of the likelihood ratio along the target track.  (Figure 10 employs a 

gray scale with white indicating the minimum and black the maximum.)  The right-hand side of 

the figure shows the marginal likelihood ratio in velocity (range rate) for the same time period as 

shown in Figure 9.  Here we can see a clear peak at the correct range rate.  This is the one 

corresponding to the line of peaks shown in Figures 9 and 10. 

Notice that in this example the tracker uses unthresholded sensor output.  Specifically, it 

does not rely on a thresholding scheme to call contacts and produce sensor measurements.  This 

tracker is based on sensor output rather than contacts.  As a result it can accumulate the sensor 

information from a number of sensor responses over time, all of which may be below a threshold 

value, until the cumulative result crosses a threshold and allows the tracker to simultaneously 

call a detection and provide a track estimate.   
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Figure 10 Expanded view of likelihood ratio peaks (left) and velocity likelihood marginal 

(right). 

Since the tracker has been accumulating sensor responses along many possible tracks, it 

has, in some sense, been performing tracking before detection.  In the example shown here, the 

tracker implicitly considers over 30 million possible tracks to determine if the cumulative 

likelihood ratio for any one of them exceeds a specified threshold. 

4.3 TENET Example 

Musick et al. (2001) have explored the applicability of nonlinear tracking techniques to 

the problem of low SNR tracking, particularly in the case were the sensor data are unthresholded 

outputs from a grid of pixels.  An example is pixelized data from point-target image tracking 

data. 

Sensor Model.  Musick et al. consider the following sensor model.  The image contains 

M pixels, and the sensor measurement at time k consists of the pixel output vector  

 ( )1, ,k k kMY YY = … . 

The target occupies only one pixel in the image.  If there is no target present at pixel m at time k, 

then the distribution of the output kmY  of pixel m is Rayleigh distributed with density 

 
2

0 ( ) exp  for 0
2

km

km km km

y
f y y y

⎛ ⎞− ⎟⎜ ⎟⎜= ≥⎟⎜ ⎟⎟⎜⎜⎝ ⎠
. (35) 

If the target is located at pixel m at time k, then the pixel output is Rayleigh distributed with 
density 
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where 0λ> .  Calculating the divergence between 0f  and 1f  one obtains  
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which Musick et al. call the signal-to-noise ratio for this sensor.  The distribution of the sensor 

response in one pixel is assumed to be independent of that in any other pixel. 

Likelihood Functions.  Let ( )X k  denote the position (pixel) of the target at time k.  

Then the likelihood function for the sensor response 1( , , )k k k kMy yY y= = …  is 

 ( ) { } 1 0| ( ) ( ) for 1, ,| ( )k km kik k

i m

L m f y f y m MX k my Pr Y y
≠

≡ = == = ∏ … , 

and the measurement likelihood ratio function is 
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Challenge Problem.  Musick and Greenewald (2001) have posed a challenge problem to 

promote the development of effective numerical techniques for nonlinear tracking applications.  

The problem is called TENET which is an acronym for TEchniques for Nonlinear Estimation of 

Tracks.  As part of this challenge they have developed a simulation (see 

https://www.tenet.vdl.afrl.af.mil/) which generates target tracks according to the motion model 

described below and sensor responses according to the pixel distributions described above.  

Using this simulation, Musick and Greenewald compared the performance of a nonlinear 

particle-filter tracker and a cellular discrete nonlinear tracker based on the Alternating Direction 

Implicit (ADI) finite-difference method.  They found that the performance of the particle filter 

was generally superior to the ADI tracker. 

The simulation produces sensor output consisting of scenes of 256 by 256 pixels at each 

time.  The trackers are given the approximate location of the target at time 0 within a gate of 10 

by 10 pixels.  The challenge is to see how well the tracker can localize and maintain lock on the 

target given this initial “detection.” 

Motion Model.  Target state, 1 1 2 2( , , , )X x v x v= , is 4-dimensional where 1 2 and x x  are 

the position coordinates and 1 2 and v v  the velocity coordinates.  The target’s motion is a 

continuous time diffusion sampled at a discrete set of times kt k= Δ  for some 0Δ> .  The 

target motion is governed by the following equation: 
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and the ( )kV Δ , 1, 2,k = …, are independent 4-dimensional Gaussian random variables with 

mean (0,0,0,0)  and covariance  
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. 

In the example below we take 45 10q
−= ×  which produces target paths with almost constant 

velocity. 

Example.  In the challenge problem, it is assumed that the target has been detected and 

the location of the detected target is used to start the tracking problem.  For the example that we 

present below, we shall back up one step and see whether we can use a Likelihood Ratio Tracker 

(LRT) to detect the target.  The detection called by the LRT could be used to initiate a tracker. 

For our example we took the scenes to consist of 61 x 61 pixels with the field of view as 

shown in Figure 11.  There are 10 pixels per unit length.  The target’s initial position is (0,0)  

with velocity (0.2,0) .  (This is unknown to the LRT.)  The target’s path is generated from the 

motion model above in discrete time for for 0, ,10kt k k= = … .  The signal-to-noise ratio is 10 

dB ( 10.9λ= ).  At each time the pixel response in the pixel containing the target is obtained by 

an independent draw from the density 1f  in (36), and the response in pixels not containing the 

target are obtained by independent draws from 0f  in (35).   

We generated 100,000 sample points at time 0 from a distribution that is uniform over 

[ 1.5,4.5] [ 3.0,3.0]− × −  for position and uniform over [ 0.5,0.7] [ 0.6,0.6]− × −  for velocity.  We 

took the prior probability of a target being present in the field of regard to be 0.1  so that the 

initial likelihood ratio on a each point is 
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For the LRT, we computed the measurement likelihood ratio for each sample point from (37) 

using the response kmy  in the pixel closest to the sample point.  The cumulative likelihood ratio 

for this point was then multiplied by the measurement likelihood ratio.  After this, the points 

were resampled to split the ones with high likelihood ratio and delete ones with low values.  

Each of the sample points was then motion updated according to the motion model described 

above.  The results are shown in Figures 11 – 20 below. 

For times 0,2,4,6,t = and 8 the figures show the posterior position log likelihood ratio 

surface and the posterior velocity log likelihood ratio surface.  The white star in the figures 

marks the target’s true position or velocity.  At time 0 (Figures 11 and 12.) the first sensor 

measurement has been processed, and we can see that there is very little information about the 

target’s location or velocity.  The same is true for time 2 (Figures 13 and 14.)  At time 4 (Figures 

15 and 16.) we can see the log likelihood ratio surface beginning to peak up at the target’s 

position and velocity.  By times 6 and 8 (Figures 17 – 20), we can see a strong peak in the log 

likelihood ratio surface near the target’s position and velocity. 
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Figure 11. Position Log Likelihood Ratio at 0t =  

 

Figure 12. Velocity Log Likelihood Ratio at 0t =  
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Figure 13. Position Log Likelihood Ratio at 2t =  

 

Figure 14. Velocity Log Likelihood Ratio at 2t =  
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Figure 15. Position Log Likelihood Ratio at 4t =  

 

Figure 16. Velocity Log Likelihood Ratio at 4t =  
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Figure 17. Position Log Likelihood Ratio at 6t =  

 

Figure 18. Velocity Log Likelihood Ratio at 6t =  
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Figure 19. Position Log Likelihood Ratio at 8t =  

 

Figure 20. Velocity Log Likelihood Ratio at 8t =  

 


