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EXECUTIVE SUMMARY 
 

This report describes the developments in the field of search theory from its origins during 
World War II to the present day. The completion of this report coincides with the formation of a 
team to develop the Coast Guard’s (CG) new search planning tool, thus providing a perfect 
opportunity to use this knowledge to develop a search tool that can handle more complex search 
scenarios with more accurate predictive capabilities. The compromises, simplifications and 
inaccuracies that have been introduced into the CG search theory over time are described in this 
report. This report also presents recommendations for the form and functionality of the CG’s 
new search planning tool. These findings can provide the basis for the CG’s new search theory 
tool. 
 
The basic principles of search theory were first applied to SAR planning around 1957 when the 
U.S. Coast Guard published its search planning doctrine in a search and rescue manual. To apply 
search theory to practical SAR planning problems, since computers were not then widely 
available, simplifications to the theory had to be made to develop a method feasible for hand 
calculations. This became known as the “classical search planning method” (CSPM), and it 
remains the basis for search planning support tools today.  
 
CSPM was originally a scientifically based, analytic method that was appropriate for the 
technology and data available when it was implemented in 1957. However, due to the 
technological limitations, it could address only the simplest of SAR scenarios. Later, attempts 
were made to extend the methodology to more typical, and more complex, situations. Sometime 
after 1963, a number of sub-optimal “field modifications” were made that are inconsistent with 
the underlying theory. The most notorious of these modifications is the Min/Max technique, 
which violates some of the basic assumptions of the CSPM and the scientific principles on which 
it was based. Partial attempts to rectify this situation, like the mid-point compromise, were not 
always improvements.  
 
The Search and Rescue Planning (SARP) system, the first implementation of search planning 
support on computers, occurred around 1970, well before the microcomputer age. SARP was 
basically a computerized version of the then current version of the modified CSPM with 
somewhat improved use of environmental data and drift computations. A few years later SARP 
was joined by the Computer Assisted Search Planning (CASP) system that took a computer 
simulation approach to the search planning and evaluation problem. Unfortunately, Coast Guard 
search planning support tools have not kept pace with technological advances in three important 
respects. First, they have not kept up with advances in search theory and algorithm development 
relevant to the practical application of search theory using computer simulation. Secondly, 
modifications made to the CSPM to make it applicable to typical, complex search scenarios are 
inconsistent with the basic theory. Third, and most importantly, the tools have generally not kept 
pace with the significant increases in the amount, level of detail, or accuracy of environmental 
data products or with new knowledge about drift behavior or detection.  
 
These shortcomings are evident in the four current computerized SAR planning support tools. 
Their primary difference from SARP is that most  run on desktop computers and are supported 
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by geographic information systems and other interactive tools. However, they all suffer from the 
limitations of the CSPM. Ironically, the Coast Guard’s C2PC/SAR Tools Automated Manual 
Solution suffers the most in this regard because it is the most faithful to the manual technique. 
The other three similar tools provide considerable improvement in the availability and use of 
environmental data for drift computations.  CASP 1.x is the most capable search planning tool 
available today, but only because it is the one tool that uses simulation techniques. CASP’s basic 
framework is more than 25 years old and even then it was severely limited by the obsolete 
computing environment in which it was forced to operate. In short, CASP 1.x is a primitive 
implementation of a sophisticated methodology and many key elements are still missing.  
  
In more recent years, the greatly increased availability of inexpensive but powerful 
microcomputers with high-resolution color geographic information systems has made near-real-
time computing support a normal expectation. Programming powerful workstations to emulate 
the hand calculations of the manual method, a technique developed to get around the lack of 
computing capability in the 1950’s, is unacceptable. Presently, the Coast Guard currently uses 
more sophisticated techniques to predict oil spill trajectories and perform risk analyses than for 
matters of life and death, such as SAR.  
 
It is recommended that the Coast Guard’s SAR planning theory be corrected and that stochastic 
analysis be the primary method for executing search plans. The U. S. Coast Guard needs and 
deserves a new computer simulation-based search planning support tool that takes full advantage 
of the advances in these areas to ensure efficient, effective use of expensive search resources. 
Those awaiting rescue deserve the time advantage such a planning support tool can offer. 
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CHAPTER 1. 

 
INTRODUCTION 

 
1.1 BACKGROUND 

A prime mission of the U.S. Coast Guard (Coast Guard) is Search and Rescue (SAR).  This 
mission involves rendering assistance to distressed vessels and aircraft and their crews and 
passengers within the territorial coastal waters of the United States, on certain large lakes (e.g., 
the U.S. portions of the Great Lakes), and on the high seas in those areas for which the United 
States has accepted SAR responsibility as a party to an international treaty or convention.  
Altogether, the Coast Guard’s area of SAR responsibility covers more than 28 million square 
nautical miles.  The Coast Guard also cooperates with and, resources permitting, often assists 
other nations in SAR planning, training and operations by virtue of its position as the world’s 
premier maritime SAR organization.  The Coast Guard Research and Development Center 
(R&DC) supports the marine SAR mission and helps maintain the Coast Guard’s position of 
world leadership with a variety of research, development, test, and evaluation (RDT&E) projects. 
 
For the past 25 years the R&DC has helped the Coast Guard continuously refine, test and 
evaluate the data, equipment, and procedures used in SAR.  The R&DC has addressed a broad 
spectrum of marine SAR issues covering such topics as improving the ability to predict search 
object drift, sensor performance testing and evaluation under operational conditions, and 
evaluation of search planning methods.  Much of the emphasis has been placed on acquiring the 
needed data and developing the methods for using it to determine where and how to search so 
that the chances of finding the search object are always maximized. 
 
Many SAR events are quite straightforward in nature.  A vessel in distress may notify the Coast 
Guard directly of its situation and precise location.  In such a case, the Coast Guard can dispatch 
or direct the appropriate assets to the scene to affect a rescue.  Although this is called a “SAR” 
incident, a case such as this would be a rescue mission primarily, with little or no searching 
required. 
 
Although the vast majority of “SAR” cases are straightforward rescue operations, the Coast 
Guard still must expend significant sums each year on those that are not.  The factors that keep 
these cases from being straightforward rescues usually involve significant uncertainty about the 
search object’s exact whereabouts, adding a significant amount of complexity to the SAR 
process.  Before a rescue can take place, the distressed persons must first be located, and this 
requires planning and conducting effective, efficient searches.  Both of these tasks can be 
daunting.  (Planning and conducting effective, efficient surveillance missions aimed at 
interdicting illegal drugs and migrants bound for the U.S. are similarly daunting tasks—perhaps 
even more so since those engaged in illegal activities are often evasive, actively seeking to avoid 
detection.)  For this reason, substantial portions of search and rescue manuals are devoted to the 
planning and conduct of search operations. 
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1.2 OVERVIEW 

Searching as a general activity has been a common everyday endeavor for millennia.  Perhaps 
this is the reason it has always been generally accepted that searches could consume considerable 
resources and that success was as much a matter of luck as anything else.  Although many 
searches were no doubt organized affairs, the reasons for organizing them were most likely 
related to logistics and simple resource management concerns rather than the issues of efficiency 
and effectiveness.  It was not until the demands of modern warfare, anti-submarine warfare in 
particular, placed such a high premium on the efficiency and effectiveness of search and 
surveillance operations that they came under serious scientific scrutiny, giving rise to the field of 
study now known as search theory. 
 
The developments in search theory and its application to SAR may be broken into three 
categories.  These are: 
 
Scientific research into search theory itself and the resulting developments, 

Development of search planning doctrine and “how to” methods for SAR manuals, and 

Development of computer-based search planning decision support tools. 
 
Unfortunately, these paths have not been as closely coupled as they should have been over the 
years since World War II when the study of search theory first began.  In the chapters that 
follow, we will look at each of these categories in turn and show where and how the latter two 
are connected to the first, as well as some instances where doctrine and/or computer models were 
modified in ways that do not seem to weather scientific scrutiny very well.  We will begin with 
the history of major scientific developments in search theory, starting with the work done during 
World War II and progressing to the present.  This survey of search theory history will include 
brief looks at some situations where search theory has been successfully applied.  Next, we will 
explain the basic principles of search theory in the simplest possible terms.  After that, we will 
turn the clock back to 1957 when the U.S. Coast Guard first articulated its search planning 
doctrine in the form of a search and rescue manual and show how the basic principles of search 
theory were applied to the SAR search problem.  We will then follow the developments in that 
doctrine through the various editions of the National Search and Rescue Manual and finally into 
the recently published International Aeronautical and Maritime Search and Rescue Manual 
(IAMSAR Manual).  Finally, we will look at computer-based search planning decision support 
tools, beginning with the U.S. Coast Guard’s Search and Rescue Planning (SARP) tool 
developed circa 1970.   
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CHAPTER 2. 
 

THE DEVELOPMENT OF SEARCH THEORY 

 
2.1 INITIAL DEVELOPMENT 

Search theory is the study of how to most effectively employ limited resources when trying to 
find an object whose location is not precisely known.  The goal is to deploy search assets to 
maximize the probability of locating the search object with the resources available.  Sometimes 
this goal is stated in terms of minimizing the time to find the search object.  Search theorists seek 
to find methods, procedures, and algorithms that describe how to achieve these goals.   
 
Work on search theory began in the U.S. Navy’s Antisubmarine Warfare Operations Research 
Group (ASWORG) in 1942 in response to the German submarine threat in the Atlantic (see 
Morse [1982]).  A summary of the work done by this group from 1942 to 1945 is given in 
Sternhell and Thorndike [1946].  Bernard Koopman joined ASWORG in 1943, and at George 
Kimball’s suggestion, Koopman, James Dobbie, and a few others were given the job of 
assembling the existing results on search into a coherent theory.  Morse [1982] credits Koopman 
with providing the basic probabilistic foundation of the subject and finding the first results on 
optimal allocation of search effort, specifically the optimal allocation of a fixed amount of search 
effort using the exponential detection function to detect a stationary search object having a 
bivariate normal distribution of possible locations. 
 
Koopman defined the elements of the basic problem of optimal search.  They are: 
 
A prior probability density distribution on search object location (so the probability of 

containment (POC) for any subset of the possibility area can be estimated), 

A detection function relating search effort density (or coverage, C) and the probability of 
detecting (POD) the object if it is in a searched area, 

A constrained amount of search effort, and 

An optimization criterion of maximizing probability of finding the object (probability of success 
or POS) subject to the constraint on effort. 

 
Finding the allocation (time, place, and amount) over some subset(s) of the possibility area for 
the limited amount of available search effort that maximizes the probability of success is called 
the optimal search problem.  The solution to this problem tells the search planner the sub-area(s) 
where search effort should be placed and how much effort should be placed in each. 
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The resulting synthesis of search theory by Koopman and his colleagues was published in Search 
and Screening (Koopman [1946]) as Operations Evaluation Group (OEG) Report 56.  (OEG was 
a descendant of ASWORG and other research groups where the relatively new applied science of 
operations research was being applied to naval military problems.)  Search and Screening 
defined many of the basic search concepts such as: 
 
Effective search (or sweep) width (W) 

Effective search (or sweep) rate (W x search speed) 

Lateral range (detection) function (POD as a function of distance off a searcher’s single track) 

Effort (total length of the searchers’ tracks while searching, L = vt) 

Search Effort (area effectively swept, Z = W x L) 

Search Effort Density (coverage, C = Z/area searched) 

Detection function (i.e., a POD vs. Coverage function, e.g., POD = 1- e-C) 
 
Koopman [1946] used these concepts to develop efficient methods for locating stationary objects 
and also provided methods for designing barrier searches and antisubmarine warfare screens to 
detect moving adversaries.  It presented mathematical models for visual, radar and sonar 
detection of objects.  Koopman [1946] and its updated version, Koopman [1980], are still the 
classic references on basic search theory. 
 
2.2 TYPES OF SEARCH PROBLEMS 

The work of Koopman and his colleagues in the ASWORG (and later the Operations Evaluation 
Group (OEG)) laid the groundwork for the development of search theory and the applications 
that followed.  It is convenient to categorize this subsequent work according to the type of search 
problem involved.  A detailed bibliography and discussion of the types of search problems can 
be found in Benkoski et al.  [1991].  We provide only a brief overview here. 
 
2.2.1 One-Sided Search Problems 

The simplest types of search problems are those in which the searcher can choose his strategy, 
but the search object neither chooses a strategy nor reacts to the search in any way.  These are 
called one-sided search problems.  Most maritime SAR searches are treated as one-sided search 
problems.  Usually the time and place of the SAR incident and any subsequent movement of the 
survivors are not deliberately chosen by the persons involved for the purpose of affecting their 
chances of being found by searchers since they did not plan to be the object of a search.  
Survivors also often cannot or do not react to searchers in a way that significantly affects the 
chances for detecting them.  The only exception to this rule occurs when the searchers come very 
close to the survivors and those survivors have signaling devices available and use them in 
response to the searcher’s presence to try to attract the searcher’s attention.  The simplest one-
sided problems involve searching for a stationary search object.   
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2.2.1.1 Stationary Search Objects 

A stationary search object is one that does not move.  The searches for the sunken treasure ship, 
SS Central America, the missing submarine USS Scorpion, and the H-bomb lost off the coast of 
Spain in 1966 are examples of searches for stationary search objects.  Other examples include 
searches for downed aircraft, hidden natural resources (gas, oil, minerals, etc.), searches for 
archeological sites and artifacts, and even searches for something as mundane as lost car keys.  
These are one-sided search problems because the search object has not chosen its location and it 
does not react to the searcher’s efforts. 
 
2.2.1.2 Moving Search Objects 

Search for a life raft adrift in the ocean is an example of a one-sided moving object search 
problem.  The movement of the raft is not (substantially) under the control of the people in the 
raft, and the people are not able to react to the search effort except perhaps by trying to signal an 
aircraft or vessel they observe passing nearby.  Searches for submarines can be considered one-
sided searches when the searching platform or system is covert, i.e., when the target submarine is 
unaware of the searcher’s presence. 
 
2.2.2 Two-sided Search Problems 

In two-sided search problems, both the search object and the searcher are allowed to choose their 
strategies.  Two-sided problems can involve either stationary or moving search objects.  An 
example of a two-sided stationary search object problem occurs when the search object chooses a 
place to hide and stays there.  The searcher then has to find the search object.  Most two-sided 
problems involve moving search objects.  Two-sided search problems divide into cooperative 
and non-cooperative searches. 
 
2.2.2.1 Cooperative Searches 

An example of a two-sided cooperative search is a rendezvous search.  In these searches each 
party behaves in a manner that maximizes the chances of one party finding the other.  Thus each 
party attempts to make itself as detectable as possible by the other while at the same time making 
the best use of its own ability to detect the other party.  (Sometimes the degree of cooperation is 
limited by the need for both parties to avoid detection by an adversary, as when searching for a 
downed allied pilot behind enemy lines.)  For example, when two people have become separated 
in a crowd and wish to find one another again, we have a cooperative search problem.  In 
addition to each person actively looking for the other, further cooperation may take such forms 
as wearing distinctive clothing or hats, waving, agreeing to be in a limited area within a certain 
timeframe, etc. 
 
Another example of two-sided search is searching for an intelligent person lost in the woods who 
understands how the searchers will operate if/when a search effort is mounted.  That person may 
try to move to a place where he can be found more easily or to cooperate in some way by leaving 
or giving signals to indicate his position.  Simply remaining in one place upon realizing one is 
lost is often a considerable aid to searchers.  In many areas, children are taught to “hug a tree” 
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and stay where they are if they become lost in the woods.  (Unfortunately, many children are also 
taught to avoid strangers, and in more than one case a lost child has delayed his own rescue by 
failing to respond to search parties passing nearby because they were strangers to him.  In fact, 
there have been times when children (and hunters with delicate egos) have turned what should 
have been a two-sided cooperative search into a two-sided non-cooperative search—a type 
discussed briefly below.)  Needless to say, two-sided cooperative searches are generally both 
shorter and more often successful than other types. 
 
2.2.2.2 Non-Cooperative Searches 

Many two-sided searches are non-cooperative.  One example is one submarine searching for 
another submarine that is trying to remain undetected when each is aware of the other’s presence.  
Another example is law enforcement officers searching for drug smugglers who are trying to 
evade detection.  Still another example is a manhunt for a suspect or an escaped convict. 
 
2.3 KOOPMAN’S EARLY WORKS 

Koopman’s original 1946 report, Search and Screening, was initially classified.  However, 
Koopman [1956a, 1956b, 1957] published three articles that summarized, in an unclassified 
fashion, the theoretical aspects of the work reported in Search and Screening.  In these papers 
Koopman showed how to find optimal allocations of search effort when the search object is 
stationary and the detection function is exponential.  This included showing how to solve 
explicitly for the optimal effort allocation for a bivariate normal search object location 
distribution. 
 
2.3.1 Effective Sweep Width 

In his groundbreaking work on search theory, Koopman [1946] defined the “effective search (or 
sweep) width” (often shortened to just sweep width) as follows:  If a searcher passes through a 
swarm of identical stationary objects uniformly distributed over a large area, then the effective 
search (or sweep) width, W, is defined by the equation, 
 
 

( ) ( )
W Number of Objects Detected PerUnit Time

Number of Objects PerUnit Area Searcher Speed
=

×
, (2-1) 

 
where all values are averages over a statistically significant sampling period.  If the lateral range 
function is known for a given search situation, then the area under the lateral range curve equals 
the sweep width, W, for that situation.  That is, if the detection probability is expressed as a 
function dr of lateral range x from a sensor’s single straight track through the swarm of objects, 
then 
 

 ∫
+∞

∞−
= dxxdW r )(  (2-2) 

 
This effective sweep width is also twice the maximum detection range of an “equivalent” definite 
range detection profile (one that is 100% effective out to some definite lateral range either side 
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of its track and completely ineffective beyond that range).  Here, “equivalent” means that the 
definite range detection profile and the actual detection profile both detect, on average, the same 
number of objects per unit time under the same conditions of object density and searcher speed. 
 
The effective sweep width, W, depends on three classes of factors.  These are, 
 
1. The search object’s characteristics affecting detection by the sensor(s) in use (object size, 

color, reflectivity/emission properties, etc.),  

2. The capabilities of the sensor(s) in use (visual acuity, a radar’s ability to reliably detect a 
standard test object at various ranges, the effect of speed on performance, etc.), and  

3. The environmental conditions at the place and time of the search that affect the performance 
of the sensor(s) in use (visibility, weather, sea state, vegetation (ground cover), etc.). 

 
2.3.2 Exponential Detection Function 

Suppose that we are searching with a sweep width W and moving at speed v.  If we are searching 
uniformly throughout a region of area A with the effectiveness of “random” search, then the 
probability of detecting the search object by time t given it is located in the region is 
 

 ( ) 





−−=

A
WvttP exp1  (2-3) 

 
The fraction /Wvt A  is the density of search effort in the region.  In operational search and 
rescue (SAR) terminology, this fraction is called coverage.  The numerator Wvt is called search 
effort or area effectively swept (Z).  Thus coverage is the ratio of the area effectively swept to the 
amount of area searched.  Equation [2-3] is called the random search formula.  This typically 
gives a lower bound on the effectiveness of a systematic search that tries to spread its effort 
uniformly over the search region.  The term “random search” must not be taken too literally.  
With completely random searching, one can obtain very non-uniform coverage of the search 
area, and as a result obtain a lower probability of detection than that given by the “random” 
search formula. 
 
Suppose that f(x) is the density of search effort (coverage) in the neighborhood of the point x in 
our search space, the plane.  Let 
 
b(x, f(x,y)) = probability of detecting the search object given it is located at x,y  

and the search density is f(x,y). 
 
If  
 
 ( )( ) ( )( )yxfyxfxb ,exp1,, −−= , (2-4) 
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we say that b is an exponential detection (vs.  coverage) function.  An exponential detection 
function means that in each local area, the search has the effectiveness of the random search 
formula. 
 
2.3.3 Search Object Location Distribution 

Suppose that the search object is stationary and our knowledge of the search object’s location is 
given by a bivariate normal probability distribution with its mean (center) at (0, 0).  This 
knowledge may have been obtained from a navigational fix with some uncertainty.  The density 
distribution of possible locations around such a navigational fix is often of the bivariate normal 
type.  Many times it is convenient to take the fix as the origin of our coordinate system so that 
the mean of the uncertainty distribution is at (0, 0). 
 
The density function, p, for this distribution is given by 
 

 ( ) 











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
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2
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1exp
2

1,
σσσπσ
xxxxp  (2-5) 

 
A graph of this density function is shown in Figure 2-1 for the case where 21 σσ = .  This is 
called a circular normal distribution.  The height of a point on the surface of the “mountain” 
above the 1 2( , )x x  plane represents the probability density at that point.  The probability density 
is highest at the center of the distribution (0,0) and decreases as distance from the center 
increases.  In theory, this distribution covers an infinitely large area since the probability density 
approaches, but never actually reaches, zero.  In practice some reasonable cutoff is applied. 
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Figure 2-1.  Probability Density Function For A Circular Normal Distribution. 
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2.3.4 Optimal Search Effort Density 

Suppose that the sweep width is W when the sensor travels at speed v.  If we have T hours of 
search time available, then Koopman showed that the optimal search effort density (coverage) f* 
is 
 

 
( ) ( )

( )

1 1
2 2

2 2
1 2 1 2

1 2 1 2
1 2 1

2
2

1 2
1 2
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where 
 

 
2 2

2 1 2
1 2 2 2

1 2

( , ) x xr x x
σ σ

= + . (2-6) 

 
Figure 2-2 shows an example of the optimal search effort density (coverage) for the circular 
normal location density in Figure 2-1 based on some specific amount of available search effort.  
Note that the optimal coverage is highest at the center where the location probability density is 
also highest.  The optimal coverage then decreases with distance from the center until at a certain 
radius where the optimal search effort density becomes zero.  In other words, all of the available 
search effort is expended within a certain radius (depending on the amount of effort available) 
and none is expended outside that radius even though there is some small probability of the 
search object being outside the corresponding circle. 
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Figure 2-2.  Optimal Search Density (Coverage) For A Circular Normal Distribution. 
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2.3.5 Posterior Search Object Location Density 

Suppose that we apply the optimal search density as shown in Figure 2-2 and fail to detect the 
search object.  The resulting distribution is shown in Figure 2-3.  This is the posterior search 
object location density given the search has been unsuccessful.   
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Figure 2-3.  Posterior Search Object Location Distribution given Failure 

to Detect with a Circular Search of Optimally Varying Coverage. 
 
The distribution shown in Figure 2-3 was computed by employing the form of probabilistic 
reasoning called Bayes’ rule.  The posterior density is flat inside the circle where search effort 
has been applied.  As more and more effort is applied (in an optimal fashion), the height of this 
“mesa” (posterior density) becomes lower and the radius of the circle of search increases making 
the distribution as a whole flatter.  Koopman [1957] later extended his optimal allocation results 
from normal distributions to a more general class of probability distributions. 
 
2.4 NON-EXPONENTIAL DETECTION FUNCTIONS AND CELLULAR DISTRIBUTIONS 

Koopman’s results have been extended in two important directions.  The first allows us to find 
optimal allocations of search effort when the detection function is not exponential and the second 
deals with search object location distributions composed of independent, possibly non-
contiguous, cells.  Some of the standard detection models used by the U.S. Coast Guard, such as 
the inverse-cube model initially postulated by Koopman [1946] as a model for visual detection, 
produce non-exponential detection functions.  Cellular search object location distributions 
commonly arise in both land and maritime SAR situations.   
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2.4.1 Non-exponential Detection Functions 

Koopman studied two other detection (vs. coverage) functions besides the so-called random 
search function.  These were the “definite range” and “inverse cube” detection functions for 
parallel track search patterns.  All three detection functions are shown in Figure 2-4. 
 

 
Figure 2-4.  Detection (vs. Coverage) Functions. 

 
In the case of definite range detection, detection of the search object is guaranteed to occur 
whenever the distance between the sensor and the object is less than or equal to the sensor’s 
“definite detection range” for the object in question under the environmental conditions at the 
time and place of the search.  There is never any detection beyond this range.  Therefore, the 
probability of detection at any instant is purely binary—one or zero—depending on the distance 
separating the object and the sensor.  When employed in parallel track searching, the probability 
of detection increases linearly with the search effort density (coverage) until both reach 1.0.  
Higher effort densities can produce no better result so the detection probabilities remain constant 
at 1.0 for all densities (coverages) greater than one.  Although the definite range detection 
function is not very realistic, it does provide an upper bound on all detection functions and has 
some other mathematical uses as well. 
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The inverse cube detection (vs. coverage) function was the result of Koopman’s efforts to model 
visual detection performance mathematically.  Koopman reasoned that the instantaneous (or “one 
glimpse”) probability of detecting an object visually is proportional to the solid angle subtended 
by the object at the observer’s eye.  In working out the geometric and mathematical 
consequences of this assumption, Koopman found that the instantaneous probability of detecting 
the object was inversely proportional to the cube of the distance between the observer and the 
object.  This relationship is the origin of the name “inverse cube law of visual detection.”  
Koopman went on to show that in a parallel track search pattern, this model of visual detection 
produces a detection function given by 
 

 ( ) 



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
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=
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The exponential and inverse cube detection functions have an important property.  They exhibit a 
decreasing rate of return.  This means that the probability of detection increases more and more 
slowly as the search effort density (coverage) increases.  This effect is seen clearly in Figure 2-4.  
In mathematical terms, this property is expressed by saying the detection function has a 
decreasing derivative.  A decreasing rate of return is a common property in economic situations 
in which effort may be measured in dollars, time, or manpower and return is in dollars.  Most 
detection functions have the decreasing rate of return property.   
 
DeGuenin [1961] extended Koopman’s results by finding the optimal allocation of search effort 
for a stationary search object for any detection function with a decreasing rate of return.  
Detection functions that include the origin (0,0) and have a continuous, positive and strictly 
decreasing first derivative (rate of return) are called regular detection functions. 
 
2.4.2 Optimal Allocations for Cellular Distributions 

In the above examples, the probability distributions have density functions that vary smoothly 
over space.  By contrast, Charnes and Cooper [1958] considered situations in which the search 
space is divided into cells with 
 

pj = probability the search object is in cell j 
Aj = area of cell j 
Wj = sweep width in cell j 
vj = search speed in cell j 
tj = time spent searching in cell j. 

 
The search problem is to divide the total search time T over the cells to maximize probability of 
success.  For an exponential detection function, Charnes and Cooper presented an algorithm for 
computing the optimal distribution of searching effort over these cells to maximize probability of 
success by search time T. 
 
The problem solved by Charnes and Cooper arises often in land search and rescue.  The 
probability distribution for the location of the search object, say a lost boy, is often cellular with 
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cells of varying size.  Because of variations in terrain, both the sweep width and the speed at 
which ground parties can search may vary from segment to segment.  If used, the Charnes-
Cooper algorithm could tell the search planner how many resource (searcher) hours out of the 
total number available should be devoted to each segment of the search area in order to have the 
greatest probability of a successful outcome. 
 
2.4.3 Uniformly Optimal Search Plans 

The search plans described above maximize the probability of detecting the search object by time 
T.  They tell us the total effort to put into each cell or region, but they say nothing about how the 
effort should be put into cells over time.  Suppose that we want a search plan that tells us how to 
allocate search effort in both space and time so that at each time t between 0 and T, we have done 
as well as possible.  In fact, we would like the result after any time t of searching to be optimal 
for time t.  A plan with this pleasing property is called uniformly optimal.  Uniformly optimal 
plans also minimize the mean time to find the search object. 
 
Koopman showed that when the detection function is exponential, a uniformly optimal plan 
exists.  In fact, the way to obtain a uniformly optimal plan is to organize the search effort so that 
by time t you have allocated search effort to be optimal for that time.  One then continues on to a 
plan that is optimal for time T t>  by adding the additional effort in each cell that is required by 
the time T plan over the time t plan.  Stone [1989] showed that uniformly optimal plans exist and 
may be constructed in a similar fashion whenever the detection function has the decreasing-rate-
of-return property. 
 
2.5 OPTIMAL SEARCH FOR MOVING AND MULTI-STATE SEARCH OBJECTS  

2.5.1 Optimal Search for Moving Search Objects 

Prior to Brown [1980], optimal allocation results for moving search objects were limited to very 
special cases.  Most moving search object problems were approached by freezing the search 
object motion over some increment of time, allocating effort as though the search object were 
stationary during that time increment, and then repeating the process for the next time increment.  
The U.S. Coast Guard’s Computer Assisted Search Planning (CASP) System, discussed in 
Richardson and Discenza [1980], still uses this technique by applying an adaptation of the 
Charnes-Cooper algorithm to the search object location probability density distribution at a 
specific point in time, usually the planned commence search time.   
 
Brown discovered an efficient algorithm for finding optimal search allocations for moving search 
object problems when the search object motion is Markovian and the detection function is 
exponential.  Brown’s algorithm maximizes detection probability at time T.  The U.S. Navy in 
searching for Soviet submarines applied this algorithm to great effect.  This application is 
discussed further below. 
 
Washburn [1983] generalized Brown’s algorithm to the class of forward and backward (FAB) 
algorithms that apply to a more general class of payoff functions.  Algorithms for non-
exponential detection functions and non-Markovian motions are given in Stone [1979] and 
Stromquist and Stone [1981]. 
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2.5.2 Optimal Survivor Search 

In the search problems discussed above, the goal is to maximize the probability of detecting the 
search object by some time.  In the case of search and rescue problems, a more appropriate goal 
may be to maximize the probability of detecting the search object alive.  A search with this goal 
may apply the initial effort in some lower probability areas that are particularly hazardous in 
order to recover a survivor quickly if he or she is located there.  This may involve some sacrifice 
of overall probability of success.  As an example, one might want to concentrate initially on 
search areas where a survivor would be located if he is immersed in the water and somewhat 
delay searching areas that would be likely only if he or she is still in a disabled boat. 
 
Discenza and Stone [1981] developed algorithms for solving this (moving search object) 
problem and for solving a more general class of problems called multi-state search problems.  A 
multi-state state search problem is one that involves searching for objects that may undergo 
changes in state following the initial distress incident, such as a person in a disabled boat 
abandoning it for a life raft and then possibly becoming a person in the water. 
 
2.6 CONSTRAINTS ON THE SEARCHER 

In the search problems considered above, we have assumed that effort can be distributed over the 
search space any way that we choose.  Sometimes this is a reasonable approximation.  A visual 
search by aircraft over a geographically limited region where the time to travel from one part of 
the region to another is small is an example.  Sometimes the constraints on the movement of the 
search platforms require that we consider special types of search plans.  Usually there are two of 
types of constraints that are considered—path constraints and simplicity constraints. 
 
2.6.1 Path Constraints 

If the search platform is a boat or a person walking on land, or even an aircraft with a large 
assigned search area, then the place where the platform is searching now significantly constrains 
the places where it can search in the next increment of time.  In these cases, we have an optimal 
searcher path problem.  Instead of finding an optimal allocation of search effort, the problem is 
to find an optimal path for the searcher.  The set of paths from which the optimum is chosen is 
restricted to those that obey the physical constraints on the movement of the search platform.  
This is a difficult class of problems, especially for moving search objects, but there has been 
some progress in solving them.  Stewart [1979, 1980], Eagle [1984], and Eagle and Yee [1990] 
have applied integer programming approaches to finding efficient algorithms for solving these 
problems.  Optimal searcher path problems are basically equivalent to the well-known NP-
complete “traveling salesman” problem. 
 
2.6.2 Simplicity Constraints 

In executing actual searches, it may be desirable to restrict the search patterns to a class of 
searches that are simple to execute operationally.  A typical example is to restrict search plans to 
be composed of searches consisting of a set of rectangles each with a uniform search density or 
coverage.  Such plans can be approximated by searches that employ straight, equally spaced, 
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parallel search paths in the rectangles.  In fact, this is the method usually employed when 
searching large areas from aircraft. 
 
Single Rectangle Searches.  In the case of search for a stationary search object with a bivariate 
normal location distribution, Richardson and Discenza [1980] show how to find optimal 
rectangle plans.  For such a plan, one chooses a single rectangle and spreads the search effort 
uniformly over that rectangle as illustrated by Figure 2-5.  Richardson and Discenza show that it 
is always possible to pick an optimal rectangle (uniform coverage) plan that comes within 3% of 
the probability of success produced by Koopman’s optimal (non-uniform coverage) plan. 
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Figure 2-5.  Posterior Search Object Location Distribution given Failure 
to Detect with a Square Search of Uniform Coverage. 

 
Multiple Rectangle Searches.  Discenza [1980] developed an algorithm for finding optimal 
multiple rectangle searches for the cellular search object location distributions generated by 
CASP.  These multiple rectangle searches consist of non-overlapping rectangles.  In each 
rectangle the search effort is spread uniformly over the rectangle.  Furthermore, each search asset 
(say an aircraft) is assigned to search one and only one rectangle.  The solution method proposed 
by Discenza involves some additional restrictions on the choices of rectangles to allow an 
efficient solution of this problem. 
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2.7 SEARCH AND EVASION PROBLEMS 

A classic two-sided search problem involves a search object that is trying to evade a searcher.  In 
one case the search object’s goal may be simply to avoid detection.  In other cases, the search 
object may have additional goals such as reaching a certain area undetected.  This would be the 
goal for a smuggler or an infiltrator.  The problem for the search theorist to solve is finding the 
optimal strategy for both the searcher and the evader.  These problems tend to have a game 
theory formulation.  Although they are difficult to solve, there has been some progress made by 
Auger [1991], Eagle and Washburn [1991], Gal [1980], Stewart [1981], and Washburn [1980]. 
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CHAPTER 3. 
 

PRACTICAL APPLICATIONS OF SEARCH THEORY 

 
3.1 RELATING THEORY AND PRACTICE 

The previous chapter emphasized the results of basic research into the theory of search.  This 
chapter will look at some examples of how the principles of search theory have been applied to 
obtain practical solutions to “real world” problems.   
 
As a prelude to discussing practical solutions to “real world” problems, Koopman [1980] points 
out several important facts.  The first is that the number and variety of constraints imposed on an 
actual search operation, “…while perfectly obvious to anyone engaged in carrying out the 
operation, are of so varied and irregular a nature that they defy precise mathematical 
formulation.”  In other words, the constraints discussed in the previous chapter are but a small 
subset of those with which a search planner must deal and there is no mathematical way to factor 
all the additional constraints into the optimal effort allocation problem.  One consequence is that 
even when a theoretically optimal allocation of effort can be computed, only a very crude 
approximation of that allocation can actually be realized with the available resources.  However, 
as Koopman also points out, “There is nothing peculiar to the theory of search in this; it affects 
every practical implementation of the theoretical results of operations research.” 
 
Koopman goes on to describe how theoretical results relate to practical operations: 
 

“In spite of such discordance between what can be shown to be optimal and what 
can actually be done, the theoretical developments make, among others, three 
essential contributions to practical matters.  First, they show directions in which 
the practicable operations should be changed in order to improve them.  Second, 
by calculating a theoretical optimum or measure of effectiveness and then 
gauging the calculated or observed results of a practicable operation against such 
measures, they can indicate whether the [results] are unreasonably poor and ought 
to be improved.  Third, they can serve a useful purpose in limiting arguments, 
often valuable in excluding basically fruitless operations.” 

 
Perhaps the most valuable contribution of theoretical results is providing a good starting point for 
planning efficient, effective search, surveillance and screening operations.  For example, it is 
often possible to provide planners with methods for easily computing an optimal allocation of 
effort subject to only a few basic constraints and assumptions.  Suppose a planner computes an 
optimal allocation subject to a constraint on the amount of effort available, a requirement to 
search with uniform coverage and a known or assumed detection (vs. coverage) function.  This 
allocation ignores many practical physical constraints of the problem, such as those governing 
the physically possible movements of the sensor platform.  However, given the answer to the less 
constrained effort allocation problem, the planner can then use his knowledge of what is and is 
not operationally feasible to design an operational plan that approximates the less constrained 
optimal plan as closely as the myriad additional practical constraints will allow.  Plans developed 
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in this fashion will almost always be superior to those based only on “hunches,” intuition, past 
experience, or “judgment.” 
 
There is another more subtle, but no less important, benefit to using theory-based approaches to 
search planning.  In the editor’s preface to Stone [1989], John D. Kettelle makes the following 
observations: 
 

“The search process in inherently a nervous one.  Either you will find the ‘target’ 
or you won’t.  This involves more stress than the continuous penalties or payoffs 
associated with dullness or brilliance in dealing with problems such as scheduling 
or logistics.  This discontinuity makes search a little like litigation.  During an 
actual ‘case’ there is a sense of urgency and emergency.  This stress can trigger a 
major, sometimes frantic, effort.  Experts can be mobilized.  Armies (or navies) 
can be sent scurrying around.  A nervous principal or client can make intuitive 
decisions that are painfully wrong.” 

 
An orderly planning approach based on proven theories minimizes the likelihood for making 
“intuitive decisions that are painfully wrong.”  It also minimizes the likelihood of wasting scarce 
resources on ill-conceived plans and truly random, ineffective “helter-skelter” searches. 
 
3.2 NAVAL APPLICATIONS DURING WORLD WAR II 

In the last three chapters of Search and Screening, Koopman [1980] describes several ways in 
which search theory was successfully applied to specific types of naval warfare problems during 
the Second World War.  These included searching for targets in transit, setting up sonar screens 
to protect convoys and task forces from submarine attack, and aerial escort of convoys and task 
forces, again to protect against submarine attack.  Of the three, the type that is most germane to 
U.S. Coast Guard peacetime operations is searching for craft in transit. 
 
Koopman [1980] repeats his detailed description and discussion of how to construct “crossover” 
barrier patrols, initially given in Koopman [1946].  He also illustrates why such a technique is 
needed by showing the ineffectiveness of simple parallel sweeps across the adversary’s intended 
track due to unswept areas relative to the search object.  The objective of a barrier patrol is to 
prevent the undetected transit of an adversary through a “channel” (which may be some region of 
open ocean).  It is generally assumed that the search object’s intent and capabilities are 
reasonably well known.  To know the intent is to know the adversary’s approximate route, i.e., 
what geographical area it is coming from, approximately where it is going and areas it intends to 
transit to get from one to the other.  To know the adversary’s capabilities is to know such things 
as the range of possible speeds, endurance at the various speeds, etc.  The essential things to have 
are good estimates of the adversary’s course and speed in an area that meets two requirements:  
(a) the adversary intends to pass through it, and (b) the area can be effectively covered by one’s 
own forces (i.e., it cannot be too far from one’s own staging area(s).)  The barrier is considered 
effective when it detects adversaries attempting to cross it (assuming that such detection always 
makes it possible to successfully thwart the adversary).  It is also considered effective when the 
adversary abandons his objective to avoid detection.   
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Koopman provides three practical sample problems to illustrate how “crossover” barriers were 
successfully applied to intercepting blockade-runners during World War II.  He goes on to note 
that this type of search is feasible only when the searcher’s speed exceeds that of the search 
object by a substantial margin, such as in the case of patrol aircraft forming a barrier for enemy 
ships.  Barriers for situations where such disparities in speed do not exist are possible, but 
depend on so many factors that vary from case to case that there is no practical general solution.  
Each must be solved individually. 
 
U.S. Coast Guard law enforcement patrols to prevent the illegal entry of drugs, other types of 
contraband, and migrants are considered effective if they detect those heading for U.S. shores for 
illegal purposes, assuming detection implies successful interception and arrest.  Law 
enforcement patrols are also considered effective if smugglers and illegal migrants cease 
attempting to achieve their objectives due to fear of detection.  However, the overall effort may 
not be considered effective over time if it merely forces smugglers to shift their operations from 
one part of the coast to another that is less effectively patrolled. 
 
For search and rescue, one might be tempted to regard drifting survivors as analogous to “targets 
in transit” since they move from one general location to another with “courses” and “speeds” that 
can be predicted, if only approximately.  Unfortunately, barrier searches are of only limited 
usefulness in SAR.  A barrier search is effective against only a small range of search object 
speeds near the average speed for which the barrier is designed.  Although drift rates are slow, it 
is quite possible to have a large percentage error between the predicted and actual values.  In 
addition, drifting search objects do not tend to move along long, straight paths but instead exhibit 
only trends with a significant degree of randomness in their movements.  Finally, in many places 
where a barrier might seem most appropriate, such as the Straits of Florida or across a river or 
estuary, it is known that there will be a wide variation in search object speeds along any barrier 
that is established.  A barrier that is effective for small objects (e.g., life rafts) near the center of 
the Florida Straits moving northward at four knots will be largely ineffective for similar objects 
nearer the edges moving northward at less than two knots. 
 
Koopman [1946, 1980] also describes an expanding square search designed to prevent the 
undetected movement of a search object away from an area about a point of fix to another 
location (the so-called “fleeing datum” problem).  However, he first describes how to develop a 
near-optimal uniform coverage expanding square search plan for a stationary object having a 
circular bivariate normal distribution of locations.  Koopman provides a formula for computing 
the inscribed radius, sk, of each near-optimal search square in a series of n searches: 
 

 ( ) nkk
S
Wsk ...,,2,1,12

2
=−= πσ

 (3-1) 

 
The squares computed by this method define the bases of rectangular prisms with height W/S 
which, when stacked on one another to form a “stepped pyramid,” approximate the paraboloid of 
revolution in Figure 2-2 that represents optimal coverage.  We will return to this formula when 
we compare the “classical search planning method” from early versions of the Coast Guard and 
National SAR Manuals to formal search theory. 
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3.3 MORE RECENT NAVAL APPLICATIONS 

The U.S. Navy has used theory-based search planning techniques extensively in many, if not 
most, of its search problems—including many classified applications.  Computerized 
implementations are now the order of the day and are often integrated with signal processing and 
navigation systems. 
 
3.3.1 Finding Lost Objects 

The Navy has conducted numerous searches for lost objects.  Two that received a lot of publicity 
are the search for the H-bomb lost off the Mediterranean coast of Spain in 1966 and the search 
for the wreck of the submarine USS Scorpion in 1968. 
 
H-bomb Search.  In the H-bomb search, Richardson [1967] used computers and a multiple 
scenario approach to develop the probability map for the bomb’s location.  Because of the 
limitations of computers in 1966, the on-scene computation of the effects of unsuccessful search 
had to be performed manually, by Richardson.  Fortunately, this was a search for a stationary 
search object so a manual procedure was reasonable. 
 
Scorpion Search.  The same principles were applied to the Scorpion search.  Multiple scenarios 
were developed for the location of the Scorpion.  The uncertainties in each of the scenarios were 
quantified through the use of probabilities, and a probability distribution for the location of 
Scorpion was produced by Monte Carlo simulation on a computer.  Analysts were sent on-scene 
to update the distribution for search effort and to recommend the allocation of the continuing 
search effort.  This work is documented in Richardson and Stone [1971].  Again this process was 
strikingly successful.  The Scorpion was found within 260 yards of the highest probability cell in 
the distribution. 
 
In both of the above cases, successful outcomes would have been extremely unlikely without the 
use of techniques based on search theory. 
 
3.3.2 Soviet Submarines 

In the early 1970s the ideas behind the Computer Assisted Search Planning (CASP) system being 
developed for the U.S. Coast Guard were used by H. R. Richardson to develop computer search 
planning programs for the U.S. Navy.  These programs were initially used to help plan searches 
for Soviet submarines in the Atlantic.  This was later extended to the Mediterranean and the 
Pacific.  The most complete version of this system was developed for use in planning searches 
by antisubmarine warfare patrol aircraft for Soviet submarines patrolling in the Pacific in the late 
1970s.  This system was called OASIS and later VPCAS. 
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VPCAS.  VPCAS contained a number of improvements and extensions over the CASP system.  
Namely, 
 
VPCAS was capable of using historical information to form the probabilistic models used for 

submarine motion. 

As well as accounting for the effect of unsuccessful search though the use of detailed models of 
sonobuoy detection capability, VPCAS incorporated detection information from underwater 
surveillance sensors. 

VPCAS used the optimal-allocation-for-moving-targets algorithm developed by Brown [1980] to 
recommend the locations of sequences of sonobuoy fields over several days to maximize 
probability of success. 

 
Success of VPCAS.  For a certain period of time, as this system was introduced to the personnel 
who planned searches, some searches were planned using the standard manual techniques and 
some were planned using VPCAS (OASIS).  At the end of this period, analysts compared the 
effectiveness of searches that were planned with the computer system to those that were planned 
manually and discovered a striking result.  The probability of success for searches planned with 
VPCAS was twice as high as the probability of success for searches planned manually.  Table 3-
1 presents an unclassified version of the results of the analyses performed by Benkoski [1978] 
and McCoy [1978].  The numbers in parentheses indicate the number of searches over which the 
percentage was calculated.  The cases indicate variations on the definition of success, but all the 
definitions involve detection. 
 

Table 3-1.  VPCAS (OASIS) Operational Results. 

CASE VPCAS 
Success % 

Manual 
Success % 

   

I-A 73% (48) 32% (157) 
I-B 56% (48) 20% (157) 
II-A 82% (17) 43% (65) 
II-B 65% (17) 25% (65) 
III-A 71% (17) 32% (65) 
III-B 53% (17) 17% (65) 

 
Upon looking at these results, one might wonder if the computer system was used on the easy 
searches thereby giving it an unfair advantage.  Benkoski and McCoy looked at that possibility 
and found exactly the opposite.  VPCAS tended to be used on the harder searches because it was 
less familiar than the manual system.  Operators would use it only when they felt they needed it, 
and that was on the more difficult searches. 
 
3.3.3 Clearance 

In 1974, the U.S. Navy assisted the Egyptians in clearing unexploded ordnance from the Suez 
Canal following the settlement of the 1973 Yom Kippur war between Egypt and Israel.  
Computer search planning and evaluation of the clearance effort played a major role in assuring 
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that a thorough clearance job was done.  Search planning played a role in a number of aspects of 
the clearance operation. 
 
Computers were used to develop plans for testing and estimating the effectiveness of the search 

sensors, primarily side-looking sonars.  The search effectiveness of the sensors varied as the 
conditions in the canal varied.  Test plans were generated for each area.  Using the results of 
the tests, lateral range curves were estimated by statistical inference techniques. 

Using the performance estimates generated in-situ, computer systems were used to generate 
search plans that produced a high probability of detecting all unexploded ordnance. 

Computers were used to cluster the contacts produced by the side-looking sonar and to develop 
areas for divers to search in order to locate and identify likely contacts. 

As the operation proceeded, careful estimates were made of the actual clearance percentage that 
was obtained.  If the after-the-fact estimate was too low, additional clearance effort was 
applied to improve the clearance probability. 

 
3.4 HISTORICAL WRECKS—SS CENTRAL AMERICA 

Search theory was used to plan the search for the famous historical wreck of the SS Central 
America.  In 1857, while carrying passengers and gold from California to New York, the SS 
Central America sank in a hurricane nearly 200 miles from land, taking gold bars and coins 
worth an estimated 400 million dollars to the ocean bottom almost 8000 feet below.  Some 425 
people, including the captain, lost their lives.  In 1989, after only three short summer sorties to 
the area, the Columbus-America Discovery Group had located the wreck and recovered one ton 
of gold bars and coins from it.  This is in sharp contrast to typical treasure hunting operations 
where individuals spend many years, or even entire lifetimes, in unsuccessful efforts involving 
far less difficult search conditions. 
 
In 1985, Stone [1992] was given the task of developing a probability distribution for the location 
of the Central America.  This distribution was used for constructing the search plan that found 
the wreck.  The methods used to develop the distribution were based on classical search theory 
techniques and included a combination of historical, statistical, analytic, and subjective methods.  
This wreck had been the object of many previous searches, but none used a systematic search 
theory approach and none were successful. 
 
The first part of the search problem was to estimate the more likely, and less likely, locations for 
the wreck of the Central America.  Following the paradigm developed by Koopman [1946] and 
his colleagues in the Navy’s Operations Evaluation Group during World War II, this estimate 
was produced in the form of a two dimensional probability distribution on the location of the 
wreck.  To develop this distribution, Stone made use of the following information: 
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Historical: 
♦ Herndon’s last reported position as passed to the schooner El Dorado, 
♦ Sighting of the Central America by the brig Marine, 
♦ Recovery of survivors by the bark Ellen, 
♦ An estimate of the wreck’s location by Captain Badger, a passenger on the Central 

America, 
♦ The drift of the survivors on the raft, 
♦ Estimates of wind speed and direction recorded during the hurricane; 

Statistical: 
♦ Assumed probability density distributions around reported/estimated positions 
♦ Historical distribution of winds and currents in the area; 

Analytical: 
♦ Estimates of the uncertainty in celestial navigation, 
♦ Estimates of the effect of wind on the drift of the Central America, 
♦ Estimates of the wind-driven current; 

Subjective: 
♦ Weights representing the quality of the information used to estimate the wreck’s 

location. 
 
The methodology for combining these diverse types of information had its start with work done 
by Richardson [1967] during the 1966 search for the H-bomb lost off the Mediterranean coast of 
Spain.  In many search problems the information about the search object’s location comes from a 
variety of sources and is often inconsistent.  The information does tend to cluster into self-
consistent sets, however, each of which tells a “story” leading to possible locations of the search 
object.  These clusters are called scenarios.  Because of the inconsistencies among the scenarios, 
one cannot combine them in a standard statistical fashion as though they were independent and 
unbiased estimates of the search object’s location. 
 
In 1968, this search methodology was further developed by Richardson and Stone [1971] to 
produce probability maps for the successful search for the remains of the nuclear submarine, USS 
Scorpion.  The technology reached a more advanced state of maturity in the CASP developed for 
the U.S. Coast Guard by Richardson and Discenza [1980] with assistance from Stone and others.  
In fact, Stone [1992] used a modified version of the CASP software to produce probability maps 
for the location of the Central America based on each scenario.  The resulting combined 
distribution was used, in conjunction with estimates of sensor performance developed by Newton 
[1986], to produce an efficient search plan that yielded a high probability of success.  The 
resulting probability map and search plan are shown in Figure 3-1.  This plan consists of a series 
of long straight legs spiraling out from the high probability areas of the distribution.  Long legs 
were desirable because the sensor, a side-looking sonar, was to be towed at the end of very long 
cable.  A graph of probability of success as a function of search time is shown in Figure 3-2. 
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Figure 3-1.  Probability Distribution and Search Plan for the SS Central America. 
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Figure 3-2.  Probability of Success versus Search Time. 
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This successful search provides another example of the effectiveness of systematic searches that 
are planned using the concepts and methods that have been developed in search theory. 
 
3.5 THE EFFICACY OF THEORY-BASED SEARCH PLANNING TECHNIQUES 

The examples given above show that search plans based on search theory often succeed where 
less scientific methods fail.  It is abundantly clear that more scientific search planning using the 
levels of computing power now commonly available at low cost offers significant benefits.  
Although implementing scientific methods is not without its costs, these costs are quickly 
recovered by increased effectiveness in terms of mission performance (e.g., lives saved, 
smugglers interdicted, etc.) and decreased average time to locate search objects.  Decreasing the 
mean time to detect search objects saves resource hours and that translates directly into monetary 
savings.  Since both the search and surveillance missions of the Coast Guard depend heavily on 
aircraft, which are expensive to operate, such savings add up quickly. 
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CHAPTER 4. 
 

CLASSICAL SEARCH PLANNING METHOD 

 
4.1 INTRODUCTION 

In 1957 the U.S. Coast Guard published its first search and rescue manual.  This manual was to 
become the basis for the National Search and Rescue Manual that replaced it just two years later 
when the National Search and Rescue Plan was first adopted.  Like its successors ever since, a 
large portion of this first manual was concerned with search planning.  As we shall see, the 
search planning methodology contained in this manual was clearly based on the earlier work of 
Koopman.  The fact that the first SAR manual was published just after Koopman’s [1956a, 
1956b, 1957] unclassified articles appeared is unlikely to have been mere coincidence.  
Unfortunately, the original work that transformed the theory developed by Koopman into a 
practical method for planning SAR searches seems to have been lost.  Thus if we are to 
understand the specific connections between search theory and search planning doctrine, we are 
now faced with the somewhat daunting task of reconstructing the original developer’s work as 
best we can. 
 
We shall proceed through the basic elements of the optimal search problem as given originally 
by Koopman.  These elements are: 
 
A prior probability density distribution on search object location (so the probability of 

containment, POC, for any subset of the possibility area can be estimated), 

A detection function relating search effort density (or coverage, C) and the probability of 
detecting (POD) the object if it is in a searched area, 

A constrained amount of search effort, and 

An optimization criterion of maximizing probability of finding the object (probability of success 
or POS) subject to the constraint on effort. 

 
As we investigate each element, it will be well to bear in mind that the classical search planning 
method (CSPM) had to be kept as simple as possible.  All planning had to be done with nothing 
more than pencil, paper, standard navigational tools (dividers, parallel rules, etc.), and paper 
charts.  Computations had to be simple enough to be done quickly by hand or with the aid of 
graphs, nomograms, etc.  These requirements meant that some gross simplifications and 
sweeping generalizations had to be made.  We will point these out as we go along. 
 
Another important point to remember is that the classical search planning method is a complete 
system where each element depends on the nature and form of all the other elements, as well as 
on their quantitative measures.  For example, a distribution of effort that is optimal for one type 
of search object location probability density distribution will not generally be optimal for any 
other type.   
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4.2 PRIOR PROBABILITY DENSITY DISTRIBUTIONS 

The first and most obvious assumption is that the search object is located somewhere on the 
surface of the earth.  Since the fraction of the earth’s surface that contains all possible search 
object locations is typically quite small, the area of interest may be satisfactorily approximated 
by a two-dimensional plane surface. 
 
4.2.1 Incident Position 

The simplest SAR situation is when the distressed craft is able to provide its position at the time 
of the distress.  For example, a sinking vessel might issue a distress call giving its position and 
notifying recipients that the crew was abandoning ship.  Very often the incident position is 
established by a navigational fix or is estimated from a recent fix.  In 1957 the state of navigation 
technology made it common for such positions to be somewhat in error.  Position errors were 
often normally distributed with respect to parallels and meridians, giving the possible positions a 
bivariate normal distribution with the reported position as the mean.  The simplest bivariate 
normal distribution is the circular bivariate normal distribution where the standard deviations of 
the normal distributions along the meridians and parallels are equal and the two distributions are 
completely independent of one another (i.e., uncorrelated).  The probability that the actual 
position is within radius R (expressed as a multiple of the standard deviation, σ) of the mean 
(center) is given by 
 

 2

2

1
R

ePOC
−

−=  
 
Although the standard deviation (or “standard error”) is the usual method for quantifying the 
amount of error, or “spread,” of a distribution about the mean value, the quantity used for 
characterizing position error is probable error.  For a bivariate normal distribution, the probable 
error is the elliptical (or circular) contour centered on the mean that contains 50 percent of the 
distribution.  For a circular normal distribution, the relationship between probable error, ε, and 
the standard deviation, σ, is given by 
 
 ( ) σσε 18.15.01ln2 ≈−−=  
 
If the search object were known to be stationary (e.g., an aircraft that made a forced landing 
ashore and reported its position immediately prior to reaching the ground), then the assumed 
prior distribution would be a circular bivariate normal distribution with an estimated probable 
error (usually based on the navigational capability of the distressed craft).  Koopman [1946, 
1980] shows how to produce optimal search plans for this type of prior distribution both with and 
without the constraint of uniform coverage. 
 
4.2.2 Post-incident Search Object Motion and Datum 

Very often search planners must contend with post-incident motion.  On land, for example, 
survivors may wander away from an aircraft’s forced landing site.  We shall look at the marine 
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environment where objects on the ocean’s surface tend to drift away from the incident position 
under the influence of wind and current.   
 
If there is any significant time lag between a distress incident at sea and the arrival of SAR 
resources on scene, the survivors will have drifted away from the incident position.  In this 
situation, a search planner will have to estimate a new mean location, or datum, for the time at 
which search facilities will be searching.  The search planner will also have to increase the 
probable position error estimate to account for the uncertainties added by not having exact values 
for the wind and current and not knowing exactly how drifting objects respond to these forces. 
 
These added uncertainties raise a potential problem.  If the distribution of position errors 
resulting from uncertainties about search object drift is not circular normal, then the distribution 
about the new “drifted” datum will not be circular normal either, even if the distribution of errors 
about the incident position was circular normal.  Such added complexity would mean that 
Koopman’s solutions for optimal effort allocation over circular normal distributions could not be 
used and would also make search planning too difficult for manual implementation.  To take 
advantage of Koopman’s work and keep the problem tractable for manual calculation, the CSPM 
assumed that the distribution of position errors resulting from drift uncertainty was circular 
normal.  This assumption, together with the assumption of a single point datum, requires a 
number of other implicit assumptions. 
 
If a single drift trajectory is to characterize the search object’s motion except for random errors, 
then it must be assumed that the drift takes place in a homogeneous environment.  That is, for all 
possible search object locations at the beginning of a drift interval, the same distribution of 
possible drift vectors applies.  In other words, neither the mean drift nor the probable drift error 
is allowed to vary from one place to another, at least not for the duration of a drift interval 
between datums, i.e., between the incident time and the first search or between sequential 
searches in a series. 
 
A mean drift vector, or more precisely a mean drift distance vector, is computed as the product 
of the mean drift velocity and the amount of elapsed time since the incident time or time of the 
last datum.  The mean drift velocity is the vector sum of the mean leeway and mean total water 
current velocity vectors.  The total water current in turn is the vector sum of contributing currents 
(sea current, local wind current, etc.).  If the distribution of errors about the mean drift distance 
vector is to be circular normal, then the distribution of errors about the mean drift velocity vector 
must also be circular normal.  This means the distributions of errors about the mean leeway and 
all the mean water current vectors must be circular normal as well. 
 
4.2.3 Applicable Theorems from Statistics 

We have now discussed necessary and sufficient conditions to assure a circular normal 
distribution of possible search object locations about the new datum position.  However, we have 
not provided methods for computing the new datum position or quantifying the probable error 
about that datum position.  To do this, we will need some basic theorems from statistics. 
 
The theorems we need are those that deal with the distribution that results from adding two or 
more independent distributions together and the distribution that results from multiplying a 
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distribution by a constant.  We add leeway and current distributions to obtain the distribution of 
drift velocities.  We then multiply this distribution by the elapsed time, ∆t, to get the distribution 
of drift displacements.  Finally, we add the distribution of drift displacements to the distribution 
of possible incident positions to obtain the distribution of possible locations for the first search.  
The following theorems apply to this problem. 
 
Let Y denote a distribution of random variates, let Yi denote the ith distribution of random 
variates in a set of mutually independent such distributions, let µ{} denote the mean (expected 
value) of the distribution contained in the braces {}, and let ε{} denote the probable error of the 
distribution contained in the braces {}. 
 
Theorem 1: The mean of the sum of any number of independent probability density distributions 
equals the sum of the means of the independent distributions.  That is, 
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Theorem 2.  The mean of a constant multiple of a distribution equals the product of the constant 
and the mean of the original distribution.  That is, 
 
 { } { }YccY µµ =  
 
Theorem 3: The probable error of the sum of any number of independent probability density 
distributions is the square root of the sum of the squared probable errors of the independent 
distributions.  That is, 
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Theorem 4: The probable error of a constant scalar multiple of a distribution is equal to the 
product of the scalar constant and the probable error of the distribution.  That is,  
 
 { } { }YccY εε = . 
 
We will now show how these theorems are used to compute a datum distribution from an earlier 
incident distribution. 
 
4.2.4 Computing Datum 

We will now lay out a skeletal description of the steps used to arrive at an oceanic datum.  All 
speeds are in knots, all distances are in nautical miles, and all times are in hours.  All referenced 
graphs were present in the SAR manual. 
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1. Estimate the mean incident position and the probable error (X) of the estimate. 

2. Consult an appropriate data source to obtain an estimate of the mean wind (direction and 
speed) for the area surrounding the incident position over the period of time extending from 
the incident time to the time of the first search. 

3. Using the mean wind speed, enter the wind current graph to get an estimate of the mean wind 
current speed.  Add (or subtract) the appropriate angle off the downwind direction to obtain 
the mean wind current direction. 

4. Consult an appropriate data source to obtain an estimate of the mean sea current (speed and 
direction) for the area surrounding the incident position. 

5. Add the mean wind current and mean sea current estimates in vector fashion to obtain the 
mean total water current.  (Theorem 1 applies.) 

6. Using the mean wind speed, enter the leeway graph to obtain an estimate of the mean leeway 
speed.  Assume the leeway is in the downwind direction. 

7. Add the mean leeway to the mean total water current in vector fashion to get the mean drift 
velocity (speed and direction).  (Theorem 1) 

8. Multiply the mean drift velocity by the amount of time between the incident and the first 
search to obtain the mean drift displacement (direction and distance).  (Theorem 2) 

9. Add the mean drift displacement vector to the mean incident position to estimate the mean 
datum position.  (Theorem 1) 

10. Estimate the probable error of the mean drift displacement vector as one-eighth of its 
magnitude.  (De = 1/8 of the distance between incident and datum positions.) 

11. Estimate the probable position error of the search facility (Y). 

12. Compute the total probable error in the mean datum position relative to the search facility 
using the formula (Theorem 3) 

 

 222 YDXE e ++=  
 
13. Use E with appropriate “safety factors” (discussed later) to determine search area size. 
 
Historical note:  The formula contained in the original 1957 USCG SAR Manual was incorrectly 
stated as 
 

 22 BAdc e ++=  
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where there was an exact definitional correspondence between c and E, de and De, A and X, and 
B and Y.  Amendment 3 to the National SAR Manual corrected the error in 1963. 
 
The distribution of possible search object locations implied by the above computational steps is 
centered on the datum position, is circular normal, and has a probable error of E.   
 

Assumption 1:  The classical search planning method (CSPM) assumes that the 
distribution of search object location probability density is defined by a single 
mean position (known as datum) that has a circular normal distribution of possible 
errors characterized by a known or estimated radius of probable error. 

 
4.3 RELATING POD AND EFFORT DENSITY (COVERAGE) 

During the Second World War when Koopman began his work, electronic sensing technology 
was under intensive study and development.  A natural product of the development process was a 
great deal of detailed information about how these new sensors performed.  Such information 
significantly aided in the application of search theory to the development of effective tactics for 
using these sensors.  However, the reliability of electronic sensors in these early years was 
relatively low and it was not possible to install them in aircraft until relatively late in the war.  
Visual search from aircraft remained in widespread use and is still the primary technique used in 
SAR. 
 
Unlike the new electronic sensors under development, there were no data available on the 
performance of aircrews searching visually.  Due to wartime pressures there were neither time 
nor resources available to conduct any studies of visual detection.  Therefore, Koopman 
developed a hypothetical mathematical model of visual detection.  He then used this model to 
relate POD to search effort density (coverage) for search patterns employing long, straight, 
parallel, equally spaced tracks relative to the search object to approximate uniform coverage of 
an area. 
 
4.3.1 Koopman’s “Inverse Cube” Model of Visual Detection 

Koopman began by making certain assumptions about the nature of the Navy’s search problem 
in WW II.  These assumptions were: 
 
1. The observer (searcher) is in an aircraft flying at some height h above the ocean’s surface. 

2. The search object (target) is a vessel cruising on the surface of the ocean. 

3. The observer initially detects a cruising vessel by seeing its wake. 

4. The instantaneous (one-glimpse) probability of detecting a cruising vessel is proportional to 
the solid angle subtended at the observer’s eye by the vessel’s wake. 
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4.3.1.1 Instantaneous Visual Detection Probability 

Figure 4-1 illustrates the last assumption.  The observer is at point O and the rectangle on the 
surface with dimensions a and b represents the vessel’s wake. 
 

 

 
Figure 4-1.  Solid Angle Subtended at the Observer’s Eye by a Vessel’s Wake. 

 
Working through the geometry and associated mathematics, Koopman shows that when a and b 
are small in comparison to h, r, and s, the solid angle defined by the product αβ (in radians) is 
given by  
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Since the instantaneous probability, γ, of detecting the wake is assumed to be proportional to the 
solid angle, then 
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The final approximation in this sequence was considered valid because h was small compared to 
s and r in the majority of cases.  The constant of proportionality, k, contains the wake’s 
dimensions, or more precisely its area ab.  Stated another way, one of the factors on which k 
depends is the search object’s size.  In addition, this constant also depends on all other factors 
affecting detection that are considered to have fixed values during the search.  For SAR, a list of 
such additional factors is likely to include other search object characteristics (e.g., color), 
environmental conditions (visibility, weather, etc.), number of observers in the aircraft and their 
fields of view with respect to the surface, crew fatigue, and many others.  In fact, the value of k 
depends on the same three classes of factors as the sweep width (see paragraph 2.3.1).  The 
relation 

 3r
kh

≈γ  (4-1) 
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states that the instantaneous probability of detection is inversely proportional to the cube of the 
range from the observer to the search object.  Hence, Koopman called this model the inverse 
cube law of visual detection. 
 
4.3.1.2 Lateral Range Detection Function 

Koopman’s next step was to investigate the dependence of detection probabilities on the sensor’s 
track relative to the search object.  A case of particular interest to the Navy was one where both 
the sensor and the search object maintain constant speeds and courses over a considerable period 
of time.  In this case, the sensor’s track relative to the search object (or the search object’s track 
relative to the sensor) is a long straight line.  In this instance, the lateral range is simply the range 
at the closest point of approach (CPA).  If we make the observer the origin of our coordinate 
system and orient the y-axis so it is parallel to the search object’s relative track, we may compute 
the detection potential for an object at lateral range x by accumulating the instantaneous 
detection probabilities as the object approaches, passes, and moves away from the sensor in 
relative space.  This involves computing the line integral along the object’s relative track.  Using 
the simplified inverse cube relationship of [4-1] and assuming an infinitely long relative track, 
Koopman showed that the detection probability as a function of lateral range x is given by 
 

 ( ) 2
2

1 x
m

r exd
−

−=  (4-2) 
 
where  
 

 
v
khm =  

 
where v is the speed of the object relative to the sensor.  Koopman goes on to derive another 
relationship for the simplified inverse cube law of visual detection by integrating the right side of 
equation [4-2] to find the area under the inverse cube lateral range curve.  The result is, 
 
 mW π22=  (4-3) 
 
where W is the effective sweep width.  Solving [4-3] for m yields 
 

 
π8

2Wm =  (4-4) 

 
and substituting [4-4] into [4-2] produces 
 

 

2

4
1

1)(






−

−= x
W

exd π . (4-5) 
 
Graphing this function produces the lateral range curve shown in Figure [4-2]. 
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Figure 4-2.  Inverse Cube Lateral Range Curve. 

 
Note that in the case of the simplified inverse cube relationship [4-1], the lateral range curve 
attains a maximum height of 100 percent (guaranteed detection) on the sensor’s track and, in 
theory, the maximum detection range is infinite. 
 
4.3.1.3 The POD vs. Effort Density (Coverage) Detection Function 

The final step in Koopman’s analysis of his hypothetical inverse cube visual detection model was 
determining the relationship between the density of searching effort in an area and the 
probability of detecting the search object if it was in the area during the search.  Since a common 
method for conducting search operations in an area was to move the sensor along a series of 
long, straight, equally spaced parallel tracks, Koopman evaluated the effectiveness of using an 
inverse cube (instantaneous) detection function in this fashion.  The tracks were assumed to have 
all the characteristics just listed relative to the search object.   
 
One way to visualize the effect of such a plan is to construct a graph of adjacent lateral range 
curves and graph their cumulative effective detection probabilities as shown in Figure 4-3. 
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Figure 4-3.  Effect of Five Parallel Tracks. 

 
In Figure 4-3, the spacing between tracks is equal to the effective sweep width.  For parallel 
track search patterns covering rectangular search areas, this produces an average search effort 
density (coverage) of 1.0.  For the five tracks shown in Figure 4-3, the average cumulative 
detection probability across the four sweep widths shown is about 77.3 percent.  The traditionally 
accepted value for a search at a coverage of 1.0 is 78 percent.  Koopman showed that for many 
infinitely long straight parallel tracks spaced one sweep width apart, the average cumulative 
POD should be about 79 percent.  In fact, Koopman derived the general POD vs. Coverage 
detection function for this type of search using the simplified inverse cube model of visual 
detection and found that 
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where erf is the well-known error function 
 

 dtexerf
x
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W is the effective sweep width and S is the distance between adjacent parallel tracks (i.e., track 
spacing).  The graph of this detection (vs. coverage = W/S) function is shown in Figure 4-4.  This 
is the POD vs. Coverage curve that has appeared in the National SAR Manual for many years. 
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Figure 4-4.  Inverse Cube POD vs. Coverage (Parallel Sweeps). 
 
Historical note:  The POD vs. Coverage graph contained in the original 1957 USCG SAR 
Manual was that of erf(W/S) and not that of Equation [4-6].  Amendment 3 to the National SAR 
Manual corrected this error in 1963. 
 

Assumption 2:  The classical search planning method (CSPM) assumes that the 
detection (vs. coverage) function is based upon the inverse cube law of visual 
detection being applied under uniform search conditions by using search patterns 
consisting of long, straight, equally spaced, parallel tracks relative to the search 
object. 

 
4.4 CONSTRAINTS ON EFFORT 

A major factor affecting every search plan is the constraint on the amount of effort available for 
searching.  This constraint is imposed by “real-world” limitations of various sorts.  For example, 
there are no “perfect” sensors that can guarantee detection with the expenditure of a finite 
amount of effort, even if the area containing the search object is limited.  The number of 
available search platforms is always limited.  In addition, these platforms have limited ranges 
and they and their crews have limited times of endurance.  Although all these constraints are real 
and important, the CSPM did not define effort or search effort.  Nevertheless, it was clear even in 
1957 that the size of the recommended search area needed to be related in some way to the 
amount of available search effort.  In the paragraphs that follow, we will define effort and search 
effort.  In the next section we will examine the CSPM’s recommendations for sizing and 
covering search areas and will compare these recommendations to optimal effort allocations. 
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4.4.1 Constraints on Effort and Search Effort 

Effort, as used here, is defined as the distance, L, traversed by a search platform while searching 
in a defined geographical area.  If the average speed, v, of the platform while searching and the 
time, t, spent searching are known, then the effort, z, may be computed as 
 
 vtLz == . (4-7) 
 
Search Effort, Z, is defined as the amount of area effectively swept by expending effort in a 
defined search area.  The amount of area effectively swept is the product of the effective sweep 
width and the distance traversed by the search platform while searching in the area.  That is, 
 
 WvtWzZ == . (4-8) 
 
Before proceeding to discuss how the CSPM dealt with the constraint on available search effort, 
it may be well to examine some relationships among the three variables on which it depends. 
 
The search speed, v, depends on the capabilities of the search platform.  The minimum and 
maximum possible speeds clearly depend upon the type of platform in use.  However, the search 
speed affects both of the other two variables—sweep width and time on scene.  Generally 
speaking, increasing speed decreases time on scene because fuel is being consumed at a faster 
rate.  However, distance is also being covered at a faster rate.  For most search facilities, there is 
usually some “most economical” speed that maximizes the product of v and t, i.e., maximizes the 
distance that can be traversed with the available fuel.  However, the search speed can also affect 
the effective sweep width, W.  This is particularly true for aircraft.  Usually, increasing speed 
decreases sweep width.  For searching, the optimum search speed would be, in theory, the one 
that maximized the area effectively swept with the available fuel or in the available time. 
 
Time on scene is not necessarily limited by the type of platform in use or its fuel capacity.  For 
standard visual search, the amount of available daylight may be the limiting factor.  The 
approach of inclement weather may limit the time on scene, either by substantially reducing 
sweep width or by creating conditions too dangerous for the search facilities.  The endurance of 
the search facility may exceed that of its crew, making crew endurance the limiting factor rather 
than platform endurance.  In some environments, the expected or maximum survival time of the 
victims of a SAR incident may also limit the available time on scene if the survivors are to be 
saved. 
 
Sweep width is an obvious constraint on the amount of area that can be effectively swept.  It is 
also a quantity over which the search planner has little or no control. 
 
4.4.2 Other Constraints on Effort and Search Effort 

In addition to the above constraints, we also have the path and simplicity constraints described in 
Chapter 2.  The path constraint arises because real search facilities cannot instantly move from 
one place to another far away.  They must follow some track through space and time subject to 
their physical limitations (speed, rate of turn, minimum turning radius, etc.).  The simplicity 
constraint ultimately arises from path constraints but there is also a practical need to specify 
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search plans in simple forms that are easy to understand and carry out.  Simplicity also aids flight 
safety. 
 
Assumption 2 of the last section largely takes the path and simplicity constraints into account.  
We will simply add the observation here that search patterns meeting the requirements of 
Assumption 2 are, operationally, rectangular in shape.  Adding the symmetry of the circular 
normal distribution of possible search object locations described in Assumption 1 to the mix 
produces a square search area centered on datum. 
 
4.4.3 Accounting for Constraints on Effort and Search Effort 

Knowing the limitations on the available search effort is important for the same reasons as 
knowing the resource limitations for the accomplishment of any task.  The available resources 
need to be applied in a manner that maximizes the chances for successful completion of the task.  
When planning a search, the objective is to maximize the probability of success by applying the 
available resources in an optimal manner subject to the various “real-world” constraints.  Ideally, 
a search planning methodology would provide a means for the search planner to obtain the 
appropriate information about the available resources, use this information to estimate the 
amount of available search effort at the scene, and produce a workable search plan that 
maximized POS.  Based on Assumptions 1 and 2 above, the problem reduces to that of finding 
the optimal size for a square search area centered on datum as a function of available search 
effort.  In reality this is a very complex and difficult thing to do, especially for searches 
subsequent to the first search.  This complexity is no doubt why the developers of the CSPM did 
not provide any means for determining search area size from the amount of available effort and 
the total probable error of the datum position.  Instead, these developers took a different tack, 
described in the next section. 
 

Assumption 3:  The classical search planning method (CSPM) assumes that the 
optimal search area is a square centered on datum that is searched with a uniform 
density of search effort (uniform coverage). 

 
4.5 OPTIMAL EFFORT ALLOCATION 

All of the assumptions described so far are either obvious from a direct inspection of the CSPM 
(e.g., square search areas centered on datum) or are easily shown to be derived directly from 
either elementary statistics (e.g., the formula for estimating total probable error of position) or 
Koopman’s work (e.g., the POD vs. Coverage graph).  However, the rationale behind the 
CSPM’s technique for determining search area size is not immediately apparent. 
 
4.5.1 Koopman’s Uniform Coverage Squares 

Koopman [1946, 1980] described a method for determining the sizes of a series of uniform 
coverage square search areas over a circular normal distribution of search object location 
probability density.  The technique was based on the following line of reasoning:  Approximate 
the optimal coverage given by the paraboloid of revolution in Figure 2-2 with a series of 
successively larger uniform coverage square searches so the effort density forms a “piled slab 
solid,” like that depicted in Figure 4-5, having the same volume as the paraboloid of revolution.  
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In both cases, the enclosed volume represents the total amount of available effort.  In the case of 
the paraboloid this effort was applied in a continuously varying density—a technique that is 
operationally infeasible.  The “piled slab solid,” on the other hand, divides the available effort 
into a number of unequal discrete amounts represented by the volumes of the individual slabs.  
When the effort is applied in these amounts from smallest to largest (top to bottom in Figure 
4-5), an operationally feasible approximation to the ideal variable coverage solution results.  
Koopman also reasoned that since the search object location probability density was highest at 
the center, the accumulated effort density (coverage) at the center should always be optimal.  Put 
another way, the height of the “stepped pyramid” of successive uniform coverage square 
searches should equal the height of the paraboloid of revolution being approximated. 
 

 
Figure 4-5.  “Piled Slab Solid” Approximation to Optimal Coverage. 

 
In Figure 4-5, the height of each “slab” or layer equals the effort density or coverage and the 
square base of each slab represents the search area.  Koopman derived a formula, equation [3-1], 
for computing the “optimal” search radius (inscribed radius of the “optimal” search square) for 
each search in a series of searches where the coverages for all searches in the series are equal.  
Converting equation [3-1] to use the total probable error of the datum position, E, instead of the 
standard error, σ, we get, 
 

 ( ) nkk
S
WEsk ...,,2,1,12

355.2
=−= π . (4-9) 

 
For search patterns that employ straight equally spaced parallel tracks, the ratio W/S gives the 
coverage, C, for a rectangular area whose sides extend one-half of the track spacing beyond the 
search and cross legs of the pattern.  In Figure 4-6, the ratio W/S correctly computes the coverage 
or average effort density within the dashed rectangle. 
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Figure 4-6.  Parallel Sweep Search. 

 
Koopman provided no general guidance regarding what effort density (coverage) should be used 
for the “slabs” in Figure 4-5.  However, he did have a suggestion for the case where these slabs 
were searched by means of an expanding square search pattern like that depicted in Figure 4-7. 
 

 
Figure 4-7.  Expanding Square Search. 

 
With this type of pattern, the search platform would necessarily pass directly over (or through) 
the center of the distribution where the probability density was highest.  An inverse cube law 
detector following an infinitely long search leg passing through datum would cut a “groove” or 
“trough” right in the center of the search object location probability density distribution.  
Koopman provided a formula for estimating the optimum offset for the next leg in the opposing 
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direction by computing the optimum offset of a second infinitely long search leg parallel to the 
first.  When Koopman’s formula is converted to express this offset, which will become the track 
spacing, S, in terms of the effective sweep width, W, and the total probable error of position, E, 
the following is obtained: 
 

 EWS ×≈
3
2

 

 
Once S is known, then the coverage for the first slab may be computed as W/S.  Ensuring that the 
track spacing is optimal for the first few legs of the expanding square ensures that the search plan 
will be at least nearly optimal.  Koopman then assumed that the resulting coverage would be 
used for all subsequent searches.  However, this formula was not used in the CSPM.  In fact, 
very little explicit guidance regarding either coverage or effort allocation was provided. 
 
4.5.2 Koopman vs. Classical Search Planning “Safety Factors” 

Although the CSPM provided no explicit guidance, there has been a long-standing, if unwritten, 
element of U.S. Coast Guard search planning doctrine that strongly favors using a coverage of 
1.0 whenever possible.  In searches that employ parallel tracks, a coverage of 1.0 implies that the 
track spacing equals the sweep width (S = W).  Assuming S and W are equal in equation [4-9], 
we can compute the values of the first six search radii sk in terms of the total probable error E to 
get the following results: 
 

Table 4-1.  Koopman Search Radii. 

Search Number Search Radius 
1 0.75E 
2 1.30E 
3 1.68E 
4 1.99E 
5 2.26E 
6 2.50E 

 
The CSPM also contains a method for determining the search radius in terms of E for each 
search in a series of uniform coverage square searches over an initially circular normal 
probability density distribution.  The values given for use with the CSPM are: 
 

Table 4-2.  CSPM Search Radii. 

Search Number Search Radius 
1 1.1E 
2 1.6E 
3 2.0E 
4 2.3E 
5 2.5E 
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The coefficients of E listed in Table 4-2 are called “safety factors” in the CSPM.  Comparing 
Tables 4-1 and 4-2, one cannot help but notice that rounding the last three entries in Table 4-1 to 
two significant digits produces values that are identical to the last three entries in Table 4-2.  
Furthermore, the second CSPM search radius is still relatively close to the third of Koopman’s 
radii.  However, while the first CSPM radius is between the first and second of Koopman’s 
values, there is no obvious relationship between the CSPM first search radius and either of 
Koopman’s first two radii. 
 
4.5.3 Optimal Search Radius for Maximum POS 

Upon close examination, it can be seen that Koopman’s line of reasoning presents some 
problems if the objective is to maximize the probability of success.  Let us examine the first 
search represented by the highest and smallest slab in Figure 4-5.  To ensure the coverage at 
datum is optimal, the upper surface of this slab is made tangent to the peak of the paraboloid 
illustrated by Figure 2-2.  It is fair to ask whether applying the amount of effort required to cover 
this square at a coverage of 1.0 produces the maximum possible POS.  To compute the POS, it is 
necessary to know how much probability is contained in the square.  The radius of Koopman’s 
first square is found to be 0.88623 standard deviations.  This value may be found either by 
converting from 0.75269E as computed by equation [4-9] to standard deviation or by using 
equation [3-1] directly.  The amount of probability under the normal “bell” distribution between 
plus and minus 0.88623 standard deviations is 0.62456.  The joint probability that both the x-and 
y-coordinates of the search object’s location will be within this range, i.e., the probability that the 
search object is in the square area, is 0.624562 or about 0.39.  Assuming an inverse cube law of 
detection and a pattern of parallel sweeps at coverage 1.0, the POD from equation [4-6] will be 
about 0.79.  Computing the POS as POC × POD produces 0.39 × 0.79 = 0.3081 (30.81%).   
 
The amount of search effort required to cover Koopman’s first square at coverage 1.0 is simply 
the square’s area or about (2 × 0.75269 × E)2 = 2.26617E2.  It is possible to compute the 
inscribed radius of the optimal search square that yields the maximum POS for this amount of 
effort.  However, the computations cannot be done directly.  Numerical techniques must be 
invoked.  The most straightforward solution is to write a computer program that will compute 
POS values for squares of successively larger (or smaller) size (inscribed radius).  This will 
produce points on a POS vs. radius curve.  A method of successive approximations may then be 
applied to locate the maximum value of this curve.  When this is done, it is found that the 
maximum attainable POS is about 0.31641 (31.641%)—when the radius is about 0.845E or, 
equivalently, 0.9949σ.  Since the level of effort was held constant, the coverage of this larger 
square must necessarily be less than 1.0.  The coverage of the larger square would only be about 
0.8, yielding a POD of about 0.68397.  The probability of containment (POC) for the larger 
square is about 0.4626.  The product of these last two values yields the maximum POS figure 
given above. 
 
Although the difference in POS values is small (less than one percentage point), this exercise 
shows that Koopman’s allocation of effort was not perfectly optimal in terms of maximizing the 
POS.  However, we seem to be no closer to resolving the mystery surrounding the CSPM’s first 
search “safety factor” of 1.1.  Perhaps if we perform a test on the CSPM’s recommended first 
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search square similar to the one we just performed on Koopman’s first search square, something 
of interest will come to light. 
 
4.5.4 Rationales for the CSPM First Search Radius 

The CSPM’s recommended first search radius is 1.1E, or about 1.3σ.  Using the same method as 
above, we find that the POC of a square with this inscribed radius is 0.64762.  Assuming a 
coverage of 1.0 with a consequent POD of 0.79 as before, we find that the POS is about 0.51162 
(51%).  Using the same numerical technique and computer program as before, the optimum 
radius for 4.84E2 units of search effort is found to be 1.09E, yielding a coverage of about 1.02, a 
POC of 0.64099, a POD of 0.79889, and a POS of about 0.51208 (51%).  It is clear that the 
CSPM radius is very, very close to optimal for the amount of effort needed to search the 
recommended square at a coverage of 1.0. 
 
Noting that the POS values produced are just over 50 percent, i.e., since following the CSPM’s 
first search recommendation produces a slightly better than 50-50 chance of locating the search 
object, it seems reasonable to ask whether this might have been the true objective of the original 
developers.  To obtain a POS of exactly 0.5 using a coverage of 1.0 requires that the square 
search area contain about 0.5/0.79 = 0.63291 or about 63 percent of the distribution.  The 
corresponding square has an inscribed radius of 1.26877σ or 1.07759E.  Checking this figure 
with the computer program produces an optimal search radius for (2 × 1.07759E)2 units of search 
effort that is about 1.073E.  The coverage of this slightly smaller square would be 1.00857, the 
POC would be 0.62980, the POD would be about 0.794, and the POS would be 0.50006.  Note 
that rounding either of the coefficients of E to two significant digits, the CSPM’s first search 
“safety factor” results. 
 
Finally, just for the sake of completeness, we determine the optimal radius for the first uniform 
coverage 1.0 square search over a circular normal probability density distribution on search 
object location.  That radius is just under 1.065E, producing a POC of about 0.62445 and a POS 
of about 0.49331.  This is the most efficient coverage 1.0 search in the sense that it produces the 
highest POS per unit of effort expended.  Again, the coefficient of E, when rounded to two 
significant digits, equals the CSPM’s first search “safety factor.” 
 
It is not known whether the objective of the original developers of the CSPM was to  
 
1. Find the optimal inscribed radius for the most efficient uniform coverage 1.0 square search,  

2. Find the inscribed radius for the most efficient uniform coverage allocation of effort over a 
square area that would ensure the chances for locating the search object with the first search 
were at least 50-50, or 

3. Find the inscribed radius for a uniform coverage 1.0 square search that would ensure the 
chances for locating the search object with the first search were at least 50-50. 

 
The latter approach, accompanied by a test to ensure that such an allocation of effort was not 
seriously sub-optimal, seems to be the most likely approach since it is the easiest to compute.  
(We must not forget that in 1957 computers were much slower, much more expensive to use, and 
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much less accessible than they are today.  It is very unlikely that the developers of the CSPM had 
the use of any computers.  Not only was the CSPM developed for search planners whose 
computing resources were limited to paper, pencil and perhaps a slide rule, all the computations 
done during the development of the CSPM itself were probably also done by hand.)  Within the 
precision of the CSPM methodology and real-world operations, any of the above approaches 
would have produced the same result.  It seems virtually certain that the CSPM’s first search 
“safety factor” is based on efficiently attaining a desired first search POS of about 50 percent. 
 

Assumption 4:  The classical search planning method (CSPM) assumes that the 
probability of success (POS) for the first search should be about 50%, and that 
this value should be attained with a uniform coverage square search in the most 
efficient manner possible.  These requirements are met very closely by using a 
“safety factor” of 1.1 to determine the size of the square search area and by 
covering that area with sufficient effort to attain a coverage of 1.0. 

 
4.5.5 Subsequent CSPM “Safety Factors” 

Now that we believe we have discovered the rationale behind the CSPM’s first search “safety 
factor,” we can ask whether, given that the first search is performed as recommended but fails to 
locate the search object, the second search “safety factor” produces an optimal uniform coverage 
1.0 square search area.  If no searching had been done, the POC for a square having an inscribed 
radius of 1.6E is easily computed to be 0.88424 using the same technique as above.  However, if 
the first search covered a square with an inscribed radius of 1.1E at a coverage of 1.0 producing a 
POS of 0.51162, then the un-normalized POC remaining in the larger square is the difference 
0.88424 – 0.51162 = 0.37262.  A uniform coverage 1.0 search would produce a POS for the 
second search of 0.29437.  This is, in fact, an almost perfectly optimal result for 10.24E2 units of 
search effort. 
 
A similar analysis shows that the CSPM’s third search “safety factor” of 2.0 is likewise almost 
perfectly optimal for a coverage of 1.0 (16E2 units of search effort), given the failure of two 
earlier coverage 1.0 searches of the CSPM’s recommended first and second search squares.  We 
can see by consulting Tables 4-1 and 4-2 that at this point, Koopman’s original fourth search 
radius and the CSPM’s third search radius are in very close agreement.  However, when we look 
at the CSPM’s fourth and fifth search radii, which are also in close agreement with Koopman’s 
fifth and sixth search radii, we find that they do not maximize POS for the levels of effort 
implied by coverage 1.0 searches.   
 

Table 4-3.  Comparison of Recommended Search Radii. 

Search 
Number 

Koopman 
Radius 

 Search 
Number 

CSPM 
Radius 

Optimal 
Radius 

1 0.75E  - - - 
2 1.30E  1 1.1E 1.09E 
3 1.68E  2 1.6E 1.59E 
4 1.99E  3 2.0E 2.02E 
5 2.26E  4 2.3E 2.40E 
6 2.50E  5 2.5E 2.74E 
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In light of the preceding discussions, the following interpretation of Table 4-3 seems as likely as 
any:  The first three CSPM “safety factors” were chosen to produce, for an inverse cube 
detection function, very nearly optimal (maximum POS) search areas for a sequence of uniform 
coverage 1.0 concentric search squares over a circular normal search object location probability 
density distribution.  The third CSPM radius agreed with the fourth Koopman radius.  The latter 
was based on uniform coverage 1.0 search squares that kept the “cumulative (random search) 
coverage” at the datum position optimal while producing a “piled slab solid” whose volume 
(search effort) equaled that of the optimal paraboloid.  Rather than attempt to find the optimum 
(maximum POS) inscribed radius for additional uniform coverage 1.0 square searches, a task that 
was becoming increasingly difficult, especially without a computer, the decision was made to 
revert to Koopman’s radii for the fourth and fifth “safety factors.”  Thus the two techniques were 
“blended” together at the point where both produced essentially the same result.  The 
aesthetically pleasing sequence of differences between successive CSPM “safety factors” that 
resulted (0.5, 0.4, 0.3, 0.2) may also have influenced the original CSPM developers. 
 

Assumption 5:  The classical search planning method (CSPM) assumes that for 
all searches, the track spacing will equal the sweep width, i.e., the coverage will 
be 1.0. 

 
Assumption 6:  The classical search planning method (CSPM) assumes that for 
all searches, the size of the recommended search square will be governed by the 
prescribed “safety factors,” and the amount of search effort available and 
expended will equal the amount required to cover the recommended search square 
at a coverage of 1.0. 

 
4.6 CLASSICAL SEARCH PLANNING IN PERSPECTIVE 

At the time of its development in 1957, the classical search planning method (CSPM) was an 
outstanding example of a brilliant and pragmatic application of search theory to the practical 
problem of searching for distressed persons and craft at sea.  Despite the true complexity of the 
marine SAR search problem, the method was simple, relatively quick and easy to use, and 
generally well matched to the available technologies of the day.   
 
Although it served the marine SAR community well for many years, the CSPM was far from 
perfect.  Each of the six major assumptions on which the CSPM is based requires a number of 
underlying assumptions, many of which are often a poor match for the SAR situation at hand.  In 
addition, technology has changed dramatically since 1957 in many areas that affect SAR and 
search planning.  We will examine the assumptions and technology changes briefly in the 
paragraphs that follow so we can identify some of the CSPM’s basic weaknesses.  A few of these 
weaknesses could have been addressed, at least partially, in the original development without 
adding significantly to the complexity or computational burden of the CSPM, i.e., a few were 
preventable.  Most could not be addressed without the aid of computers and other technological 
developments as well as more recent developments in search theory. 
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4.6.1 Pre-Search Probability Density Distributions 

There are a number of “simplicity constraints” imposed on the CSPM.  These are needed to keep 
the computational burden on the search planner within reasonable limits.  However, each of these 
presents problems when it comes to representing actual SAR scenarios. 
 
4.6.1.1 Incident Position 

If a specific single distress position (and time) is given or one can be estimated, along with its 
probable error, a circular normal probability density distribution of possible distress positions is 
often a reasonable assumption.  Figure 4-8 below shows the corresponding probability map. 
 

0.88%0.03% 0.38% 0.38% 0.03%

0.38% 4.97% 11.59% 4.97% 0.38%

0.88% 11.59% 27.05% 11.59% 0.88%

0.03%

0.38% 4.97% 11.59% 4.97% 0.38%

0.38% 0.88% 0.38% 0.03%

 
Figure 4-8.  Circular Normal Probability Map. 

 
However, there are many SAR situations where there is insufficient information to estimate 
either a specific incident position or a specific time of the incident.   
 
A classic situation where a single distress position and time cannot be reasonably estimated is 
when a vessel or aircraft becomes overdue or unreported.  One example is when a vessel or 
aircraft in transit between two points fails to arrive at its destination (overdue) or fails to report 
as scheduled during the transit (unreported).  Another example is when a vessel, such as a fishing 
vessel, fails to report as scheduled during operations in some general area (e.g., the Grand 
Banks) or fails to return to port.  A slightly different situation arises when a vessel or aircraft 
issues a distress call but either does not provide a position or the receiver is unable to copy the 
position.  In this case, the time of the incident is known and sometimes a position can be 
estimated if the identity and intended route of the distressed craft can be ascertained.  However, 
distress situations often arise in circumstances where the distressed craft was unable to maintain 
its intended route and/or schedule, so positions estimated in this fashion must be treated with 
extreme caution, as they can be very misleading. 
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Although some attempts have been made to extend the CSPM so it would cover situations such 
as those described above, they are very difficult to implement manually and often cause more 
problems than they solve.  In an overdue transit scenario, the initial search object location 
probability density distribution clearly cannot be represented by a single circular normal 
distribution about a specific point at a specific time.  Instead, the distribution is spread along the 
missing craft’s intended track and also spread over some period of time.  One extension of the 
CSPM calls for choosing a number of possible incident positions and times along the intended 
track, computing drift updated datums and probable errors for each, and enclosing the resulting 
circles and the areas between them with some arrangement of rectangular search areas.  In a 
manual method, only a few datums may be computed in this fashion and the results may not 
represent the situation at the commence search time very well.  It is virtually certain that any 
manually developed search plan for such situations will be substantially sub-optimal as 
compared to plans that could be developed with appropriate computer assistance. 
 
4.6.1.2 Mean Drift Estimation 

The CSPM assumes a homogeneous environment in space and time where variations from the 
mean drift vector are random and have a circular normal probability density distribution.  This in 
turn requires that all the components of the drift vector (leeway, wind current, sea current, etc.) 
all share these same properties. 
 
The assumption of a homogeneous environment is most realistic in environmentally stable areas 
such as where the trade winds blow over the open ocean far offshore.  In most other parts of the 
world, wind and current often vary significantly and systematically (vice randomly) over space 
and time on scales that are small compared to the areas that are covered by initial distributions 
and the lengths of the drift intervals.  For example, a probable incident position error of only five 
nautical miles implies that half the distribution lies within five nautical miles of the incident 
position while all but a tiny fraction of the other half lies between 5 and 15 nautical miles of the 
incident position.  This means the distribution covers more than 700 square nautical miles.  
Furthermore, the size of the distribution will grow larger with time as drift and drift uncertainties 
are taken into account.  Scenarios involving overdue or unreported craft typically cover much 
larger areas and may involve significant differences between the earliest and latest possible 
incident times.  In addition, drift intervals are often 24 hours in length or longer.  Significant 
changes in wind speed and direction often occur over much shorter spans of time.  Near shore, 
tidal currents are known to vary substantially and systematically over short distances and time 
spans. 
 
For the CSPM, the assumption of a homogeneous environment was an inescapable 
approximation.  Only one drift trajectory was being computed.  If this single trajectory was to be 
representative of all possible trajectories, i.e., the mean of all possible trajectories, the 
environment had to be stable and homogeneous.  In 1957, such an assumption was not an 
unreasonable approximation offshore due to the lack of detailed environmental data.  There were 
no supercomputers running sophisticated models of the atmosphere and ocean, no satellites 
gathering and relaying back to earth masses of environmental data every day (in fact, there were 
no man-made satellites at all), no offshore special-purpose weather buoys (just synoptic 
observations from a few light ships, ocean station vessels, and vessels of opportunity), no 
weather radar, etc.  Environmental data for search planning was restricted to small-scale paper 
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atlases, pilot charts, and possibly a few observations at or near the scene from craft of 
opportunity.  Search planners really had no choice but to assume the sparse, low-resolution data 
available to them was homogeneous over large areas and spans of time.  As a result, there was a 
reasonably good match between the CSPM and the quality of the available environmental data. 
 
Today, a number of organizations routinely provide high-resolution environmental data that 
resolve many significant environmental features that were previously invisible to search 
planners.   
 
When currently available environmental data products are displayed, any observer familiar with 
the earlier data sources and the CSPM can quickly discern some important differences between 
the situation today and that in 1957: 
 
Just one or a handful of computed drift trajectories cannot realistically represent the possible drift 

trajectories and the consequent probability density distribution of possible search object 
positions that must result from the detailed environmental data now available, even in cases 
where the incident position and time are accurately known.  Furthermore, such distributions 
are very, very unlikely to be circular normal or have any other simple form, even if the 
incident position probability density distribution was circular normal at the time of the 
incident. 

When high-resolution data are available, computed datum positions often become very sensitive 
to the exact placement of the estimated incident position.  Even a small error in this estimate 
could make a difference of several miles in the computed datum position over intervals of 
less than 24 hours. 

Even if one or a handful of computed drift trajectories could realistically represent the 
distribution of possible drift trajectories, the data are so finely gridded in some places that 
drift sub-intervals as short as one hour would be required to use the available data effectively 
and avoid skipping over data points without using them.  This would be a 24-fold increase in 
the computational burden placed on the search planner. 

 
Figure 4-9 below illustrates how a typical CASP probability map might look after a day or so of 
drift. 
 
In short, the CSPM, and its extensions (to be discussed later), are very poorly matched to the 
quality and resolution of the environmental data now available.  In fact, the match is so poor as 
to render the CSPM and its extensions virtually useless without computerization, and even then 
there are other, far more effective, ways to use the same computing resources to aid the search 
planning process. 
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Figure 4-9.  An Example of a CASP Probability Map. 

 
4.6.1.3 Drift Error Estimation 

Perhaps the weakest link in the CSPM right from the beginning has been the way in which drift 
error has been estimated.  This weakness has now become critical due to improvements in 
navigation technology.  The Global Positioning System (GPS) now allows virtually all persons 
and craft to determine their positions to within a few meters with a quite modest investment in a  
GPS receiver.  Recall that the total probable error of the search object’s position is a function of 
the incident position error, the search craft’s position error and the drift error.  The reasonable 
cost and widespread use of GPS has greatly decreased the number of cases where the uncertainty 
in either the distressed craft’s reported position or the search craft’s position is significantly 
different from zero.  In an increasing number of cases, the drift error is the only significant 
source of error in the search object’s location and the only significant factor affecting optimal 
search area size.  Therefore, obtaining accurate and statistically valid estimates of drift error has 
become imperative for planning searches.  There are several aspects of the CSPM drift error 
estimate that need closer examination if we are to understand the nature of this problem. 
 
Recall that the CSPM began by estimating the probable drift error as one-eighth of the distance 
drifted.  Roughly speaking, this implies that for half of all drift distances computed by search 
planners, the computed distance drifted would be within 12.5 percent of the correct value, 
regardless of the amount of time the object has been adrift.  When one considers the sparseness 
and low quality of the data the search planners were using, this was a very optimistic assumption.  
Even today, it would be difficult to find a professional oceanographer with a long history of 
studying a particular region of ocean who would claim to be able to accomplish such a feat even 
in the area under study.  The problem, stated in terms of physics, is to predict the motion of a 
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tiny solid object suspended at the turbulent interface between two huge masses of dissimilar 
fluids (the ocean and the atmosphere).  This is a very difficult thing to do with any accuracy. 
 
If there were four equal sources of error, each expressed as a fraction of its respective mean 
value, then Theorem 3 of paragraph 4.4.3 tells us that each of these would need to have a 
probable error equal to one-sixteenth (1/16) of its mean to produce a total probable error equal to 
one-eighth (1/8) of the resultant mean vector’s magnitude.  Environmental data that is within 
6.25 percent of the correct value half the time is very accurate indeed.  Even today it would be 
hard to find data of this quality that would be available to search planners.  In short, the 1/8 
factor for drift error was unrealistically small.  This factor was later increased to three-tenths 
(3/10, 0.3), but even this may have been optimistic.  For four equal sources of error, each would 
have to be within 15 percent of its mean value half the time to produce a resultant probable error 
of 0.3. 
 
In addition to the assumed value of the error, or “confidence” factor, the technique itself is a very 
poor way to estimate probable error.  Estimating probable error as a fraction of the mean value 
forces the error estimate to be correlated with the mean value.  A small mean produces a small 
error estimate while a large mean produces a large error estimate.  Very often the size of the 
error is largely independent of the mean value.  For example, in the trade winds, the mean wind 
might be ENE/15 knots with a probable error of only one or two knots for several days.  On the 
other hand, a fast-moving gale passing over the Grand Banks might cause the wind to “box the 
compass” in a 24-hour period, causing the vector average wind over the period to be close to 
zero.  However, the probable error of that estimate could easily be 15 or 20 knots or more.  When 
dealing with even just a single environmental parameter, estimating the probable error as a fixed 
fraction of the mean value is, at best, very unreliable.   
 
Drift estimates typically depend on several environmental parameters (e.g., winds and currents) 
and on our knowledge of how other elements of the problem respond to them (e.g., wind current, 
search object leeway).  The direction and rate of drift are estimated by adding leeway and current 
vectors.  Since the wind and current are often largely independent of one another, any 
combination of leeway and current are possible.  If the leeway is in the same direction as the 
total water current (TWC), then the drift velocity, drift distance and CSPM-estimated drift error 
may be large.  If the leeway and TWC are opposed, then the drift velocity, drift distance and 
CSPM-estimated error are likely to be small.  The actual amount of error in the drift estimate 
should depend on the quality of the environmental data and the quality of our knowledge of how 
search objects and the ocean’s surface react to environmental forces.  Certainly the relative 
directions of the winds and currents should not affect the quality of the drift estimate.   
 
Figures 4-10a to 4-10f show the results of simulations where the probable errors of the 
environmental data and the methods for computing the search object’s response to them were 
held constant, the mean TWC was held constant, the mean magnitude of the leeway was held 
constant, but the leeway direction “boxes the compass” in 60 degrees increments in a clockwise 
direction as one progresses through the figures.  The initial position error at IP was taken to be 
0.1 NM.  Five hundred points were distributed around the IP at random according to a circular 
normal probability density distribution.  A mean sea current was entered with a probable error of 
0.3 knots.  The mean leeway and mean wind current were computed from the mean wind that 
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was input.  Each of these was assumed to have a probable error of 0.3 knots.  Using Theorem 3 
from section 4.2.3, the total probable drift velocity error was computed to be 0.5196 knots, 
resulting in a probable drift position error after 24 hours of 12.47 NM (Theorem 4).  To 
demonstrate the validity of this value and compare it with the probable error computed by the 
CSPM method, the following Monte Carlo technique was used:  For each of the points initially 
distributed around the IP, a sea current error vector was chosen at random and added to the mean 
sea current to get a sample sea current.  Sample leeway and wind current vectors were obtained 
in the same way.  All samples were independently drawn.  These sample vectors were then added 
to get a sample drift velocity direction and speed in knots.  The sample drift velocity was 
multiplied by the length of the drift interval (24 hours in this case) to get a sample drift direction 
and distance whose position was then plotted.  In this fashion, the results of 500 independent 
drift trajectories were computed.   
 
In each figure below, the heavy black circle shows the probable drift error computed from the 
probable errors of the inputs to the drift computation.  The red circle shows the CSPM estimate 
of the probable error using a “confidence factor” of 0.3.  The probability of containment (POC) 
values given in the tables under the figures are based on counting the number of points contained 
in the circles shown.   
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Figure 4-10a.  Monte Carlo Distribution. 

 
Average values:  Wind 180T/20 kts, TWC 000T/1.0 kt, Leeway 000T/1.0 kt 

 
 E Probability Contained in Circle 
Present CSPM Method 14.40 NM 58.2% 
Proposed Method 12.47 NM 50.0% 
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In Figure 4-10b below, both methods happen to produce identical results. 
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Figure 4-10b.  Monte Carlo Distribution. 

 
Average values:  Wind 240T/20 kts, TWC 000T/1.0 kt, Leeway 060T/1.0 kt 

 
 E Probability Contained in Circle 
Present CSPM Method 12.47 NM 49.0% 
Proposed Method 12.47 NM 49.0% 
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Figure 4-10c.  Monte Carlo Distribution. 

 
Average values:  Wind 300T/20 kts, TWC 000T/1.0 kt, Leeway 120T/1.0 kt 

 
 E Probability Contained in Circle 
Present CSPM Method 7.20 NM 20.6% 
Proposed Method 12.47 NM 49.0% 
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Note that in Figure 4-10d, the probable error of position using the present method is not missing.  
Since the average leeway and average total water current have exactly the same magnitudes but 
opposite directions, the net mean distance drifted is zero.  This means Equation [3-7] will 
compute a total probable drift error of zero.  The average initial position and the datum position 
are in the same place in Figure 4-10d. 
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Figure 4-10d.  Monte Carlo Distribution. 

 
Average values:  Wind 000T/20 kts, TWC 000T/1.0 kt, Leeway 180T/1.0 kt 

 
 E Probability Contained in Circle 
Present CSPM Method 0.1 NM 0.2% 
Proposed Method 12.47 NM 48.0% 
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Figure 4-10e.  Monte Carlo Distribution. 

 
Average values:  Wind 060T/20 kts, TWC 000T/1.0 kt, Leeway 240T/1.0 kt 

 
 E Probability Contained in Circle 
Present CSPM Method 7.2 NM 20.8% 
Proposed Method 12.47 NM 50.0% 
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In Figure 4-10f below, both methods again happen to produce identical results. 
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Figure 4-10f.  Monte Carlo Distribution. 

 
Average values:  Wind 120T/20 kts, TWC 000T/1.0 kt, Leeway 300T/1.0 kt 

 
 E Probability Contained in Circle 
Present CSPM Method 12.47 NM 49.6% 
Proposed Method 12.47 NM 49.6% 
 
Note that the CSPM estimate of the total probable error varies from virtually zero to a value 
somewhat greater than the total probable error that was computed from the actual “component” 
probable error values on the parameters used in the simulation.  The validity of the latter method 
is confirmed by the fact that the number of points contained in the black circles is always very 
close to 50 percent of the total number of points in the simulation.  This is a graphic example of 
why estimating the probable error of the sum of several vectors as a fixed fraction of the 
resultant’s magnitude is extremely unreliable. 
 
Finally, as the accuracy of environmental data and models of search object drift motion improve, 
the probable errors in computed drift values will decrease.  Such improvements should result in 
an appropriate decrease in the probable drift error that in turn will lead to a decrease in the total 
probable error of position.  Ultimately, this means the size of the optimal search area for a given 
level of effort will decrease.  More concentrated searching in smaller areas that have a high 
probability of containing the search object will lead to earlier search object detection and more 
lives saved with fewer resource hours.  In short, such improvements will take some of the 
“search” out of search and rescue.  However, there is no way to realize these benefits as long as 
the drift error is estimated as a fixed fraction of the distance drifted. 
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Historical note:  At some point prior to 1973, the method of computing drift error was modified.  
It was recognized that a drift trajectory could turn back toward the incident position at some 
point, thus shortening the net distance drifted since the object started drifting.  Taking one-eighth 
of this distance would have caused a reduction in the size of the assumed circular normal 
probability density distribution when common sense and the laws of physics indicated it should 
continue to expand.  The “patch” to fix this problem was to compute probable drift error as one-
eighth of the distance drifted since the time of the last computed datum plus the sum of all 
previously computed drift errors.  This was not statistically correct, but it did have the effect of 
forcing the drift error to increase monotonically. 
 
4.6.1.4 Summary of Pre-Search Distribution Issues 

A single incident position with a circular normal probability density distribution of position 
errors is inadequate for representing the initial distributions for many SAR situations.  This 
portion of the CSPM cannot be extended to include other types of distributions in a manner 
that is simple to implement, statistically correct, and consistent with the remaining portions 
of the CSPM. 

In most of the world, a single mean drift trajectory with a circular normal probability density 
distribution of drift errors is inadequate for representing the distribution of possible drifting 
object positions after more than a few hours adrift, even when the initial distribution of 
possible incident positions has a circular normal probability density.  Often the post-drift 
datum position is very sensitive to small variations in the incident position estimate. 

The CSPM technique for estimating probable drift error is fundamentally flawed, making it 
inadequate, inappropriate, and unreliable.  This has become a critical problem in recent years 
as modern navigation technology, especially GPS, has virtually eliminated both distressed 
craft and search craft contributions to the total probable error of position.  This has left drift 
error as the sole significant contributor to search object positional uncertainty, a primary 
determinant of search area size.  The CSPM drift error estimation technique also does not 
provide a mechanism to account for improvements in either the quality of environmental data 
or the accuracy of drift motion models by reducing the drift error estimate appropriately. 

The CSPM’s method for establishing initial search object location probability density 
distributions is poorly matched to reality and poorly matched to current technology.  Current 
technology makes much more realistic estimates of initial distributions possible. 

 
4.6.2 The Detection Function 

In 1957 the developers of the CSPM chose to use the detection function derived from the inverse 
cube model of visual detection developed by Koopman [1946, 1980].  This choice carried with it 
a large number of implied assumptions, some of which are clearly invalid for SAR.  Koopman 
had a ready answer for this problem.  Making reference to a figure like Figure 4-11 below, he 
wrote, 
 

“At one extreme is the case of the definite range law, at the other the case of 
random search.  All actual situations can be regarded as leading to intermediate 
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curves, i.e., lying in the shaded region.  The inverse cube law is close to a middle 
case, a circumstance which indicates its frequent empirical use, even in cases 
where the special assumptions upon which its derivation was based are largely 
rejected.” 

 

 
Figure 4-11.  Three Detection Functions. 

 
Nevertheless, we shall examine these special assumptions with a view toward determining 
whether they may be safely ignored in the context of SAR.  There are two basic categories of 
assumptions to examine.  First, there are the assumptions directly related to the nature of visual 
detection.  These are the assumptions that led to the inverse cube model of instantaneous 
detection by the unaided human eye.  Second, there are the assumptions related to the motion 
characteristics of both search platforms and search objects. 
 
4.6.2.1 Inverse Cube Model of Instantaneous Visual Detection 

The basic assumptions of the inverse cube model of instantaneous visual detection were stated in 
paragraph 4.3.1 above.  We will examine each and comment on its applicability to SAR. 
 
The first assumption, that the observer is at some height h above the ocean’s surface, seems 
reasonable since virtually any searcher will have some “height of eye” above the surface.  
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However, there are two problems.  First, the assumption makes sense in the context of 
Koopman’s geometric rendition of the model (Figure 4-1) only for airborne search platforms.  
Although most SAR searches involving large areas are conducted from aircraft, many localized 
searches are conducted from vessels where other factors, such as horizon distance, sea state, etc., 
interfere with Koopman’s assumed geometry.  Second, Koopman makes the approximation that 
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He justified this approximation by claiming that the detection range, r, is much larger than h in 
the majority of cases.  His claim was probably reasonable for the wartime situations he 
envisioned.  However, for small SAR search objects, h is a significant fraction of  r, in the 
majority of cases for airborne search platforms.  Koopman’s approximation also implies that 
detection of all search objects lying on the search craft’s track is guaranteed (POD = 100%) 
regardless of the search platform or search conditions.  There is ample evidence from U.S. Coast 
Guard operational SAR experience that this is not the case.  Nevertheless, this characteristic of 
Koopman’s approximation contributes significantly to the form and POD values of the 
corresponding POD vs. Coverage curve for parallel track search patterns.  A non-zero value for h 
will produce a lateral range curve that has a different shape and a lower maximum detection 
probability than that produced by Koopman’s approximation.  These changes will tend to move 
the POD vs. Coverage curve downward toward the “random” search curve. 
 
The second assumption, that the search object is a vessel underway, is clearly false in the vast 
majority of SAR cases.  Vessels of the type Koopman had in mind—namely warships at least the 
size of a surfaced WWII diesel-electric submarine—are rarely the object of a SAR search.  SAR 
searches usually seek persons in the water, life rafts, or small boats that are adrift. 
 
The third assumption, that the search object is initially detected by sighting its wake, is also 
clearly false in virtually all SAR cases.  Drifting objects, even those with significant leeway, 
leave no visible wake.  The object itself must be sighted for a detection to take place. 
 
The last assumption, that the instantaneous (one-glimpse) probability of detecting a cruising 
vessel is proportional to the solid angle subtended at the observer’s eye by the vessel’s wake is 
likewise clearly false in a SAR context because there is no visible wake present to detect.  
However, one could make the argument that Koopman’s geometry could be applied to the search 
object itself rather than its wake.  Such a modification would at least keep Koopman’s model 
within the realm of plausibility for SAR.  Unfortunately, in all the years since Koopman first 
postulated the inverse cube model of visual detection, it does not appear that anyone has 
attempted to test his hypothesis either in the laboratory or in field trials. 
 
4.6.2.2 Search Platform and Search Object Motions 

Koopman’s inverse cube model of instantaneous visual detection standing alone does not provide 
a way to relate the probability of detecting an object known to be in some area with the amount 
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of searching effort expended in that area.  Certain other assumptions are necessary.  These 
include the following: 
 
1. Either the search object is stationary and the search platform approaches the search object 

from a long distance away along a straight path at constant speed, passes the object at some 
lateral range, and continues along the same straight path at the same speed for a long distance 
beyond the search object, or both the search platform and search object are moving along 
long, straight tracks at constant speeds for a long time before and after their closest approach, 
producing the same effect relative to the moving search object as in the case of the stationary 
search object. 

2. Areas are searched by means of long, straight, equally spaced, parallel tracks relative to the 
search object. 

 
The first assumption allowed Koopman to develop a lateral range curve that expressed the 
probability an object would be detected by an inverse cube “sensor” as a function of the lateral 
range or distance between the search platform and the search object at the closest point of 
approach.  Figure 4-2 depicts the lateral range curve for Koopman’s simplified inverse cube 
model. 
 
Koopman’s assumption about the basic nature of the relative motion between the search platform 
and the search object may have been a reasonable one when using aircraft to patrol for enemy 
ships.  Although air navigation was poor by today’s standards, the sweep widths were large in 
comparison to the expected magnitude of the variations from the intended track due to random 
navigational error.  It was also reasonable to expect enemy ships to follow approximately straight 
tracks at constant speeds. 
 
SAR searches tend to be quite different in character.  The search objects are small with 
correspondingly small sweep widths.  Until recently, aircraft navigation errors were often large 
in comparison to sweep widths.  Diverting from the intended search track to investigate sightings 
was probably more frequent than it was in wartime patrols, adding to the problems of navigation.  
Finally, drifting objects are subject to the vagaries of the environment and do not tend to move in 
long straight lines like ships in transit.  In recent years a great many satellite-tracked buoys have 
been deployed for various oceanographic studies.  The tracks of these buoys are jagged and often 
contain “inertial loops” where the buoy exhibits a circular or cycloidal motion as it follows the 
water in which it is floating.  Other phenomena such as rotary tidal currents, warm-core and 
cold-core eddies spun off from the Gulf Stream as well as its meandering, and other natural 
phenomena tend to complicate drift trajectories even more.  For objects with significant leeway, 
wind shifts often occur over relatively small time scales, complicating both drift trajectories and 
the navigational problems of searching aircraft.  Nevertheless, the first assumption above is still a 
good approximation for any single track due to the short time during which the search object can 
be within the search craft’s detection envelope.  For example, if the maximum (practical) 
detection range is 4.5 NM and the search aircraft is moving at 180 knots, then the search object 
will be detectable for only about three minutes at most, give or take a few seconds to account for 
search object drift rate.  On the other hand, it could take an aircraft several hours to complete its 
assigned search pattern and this presents a potential problem for the second assumption above. 
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Most searches over water use some type of parallel track search pattern relative to the earth.  
Typically, a single aircraft tries to perform a series of parallel sweeps in an assigned search area.  
Generally it takes several hours to complete a search pattern.  With no landmarks for ready 
reference, and without the most modern of navigational aids, flying a perfect search pattern over 
the ocean is a very difficult proposition.  Figure 4-12 below shows how a search craft’s actual 
track might compare to its intended track.  (Very similar examples, and worse, were actually 
recorded by accurate tracking devices during early sweep width experiments.)  If the search 
object is stationary, then a perfect geographic pattern will remain intact relative to the search 
object.  However, if the object is moving, such patterns are susceptible to both additional random 
and systematic distortions when viewed from the search object’s perspective.   
 

Actual Track 

Intended Track

 
Figure 4-12.  Actual versus Intended Search Craft Track. 

 
Although drifting search objects move very slowly when compared to the speeds of searching 
aircraft, it is not unusual for them to drift several miles while the aircraft are on scene searching.  
It is also not unusual for an hour or more to elapse between the time when the search aircraft is at 
a certain point on one leg and the time at which it returns to a similar position on an adjacent leg.  
Since search objects are moving, often with a significant degree of randomness over such time 
scales, and often at a significant rate of speed compared to the search craft’s creep rate 
perpendicular to its search legs, there is no guarantee that the search object will remain in 
substantially the same location relative to the search pattern as the search progresses. 
 
Figure 4-13 below shows an example of a systematic distortion of an otherwise perfect search 
pattern.  In this case, the search craft was “creeping” in the same direction as a search object 
moving with constant direction and speed.  The rate of creep was four times the drift rate.  To 
give a concrete example, if the search area was 60 NM long in the direction of the search legs, 
the track spacing was 4.0 NM, and the aircraft’s search speed was 120 knots true speed over the 
ground, then the creep rate is 8.0 knots.  If the search object were drifting in the same direction 
as the creep at 2.0 knots, then we would have the situation depicted in Figure 4-13. 
 
Note that the search legs are no longer parallel and that about 25 percent of the search area (the 
portion above the dashed line) is not covered.  Any object in the northern 25 percent of the 
planned search area would have drifted out of the area by the time the search pattern was 
completed.  The average coverage of the other 75 percent is about 1.33 times the intended 
coverage, but this coverage is less uniform than it would have been if the search legs had 
remained parallel.  The result is a somewhat lower POD for the reduced area than one would 
expect from a perfect pattern at the increased coverage.  If the planned search had been 
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optimized for maximum POS, the distortion shown would likely result in a substantially sub-
optimal POS value. 
 

Creep Rate 000T/8 knots

CSP

Drift 000T/2 knots

 
Figure 4-13.  Systematic Relative Motion Distortion. 

 
Koopman [1946] developed “barrier” search patterns to address this type of distortion and 
produce undistorted patterns relative to a moving search object.  These were used primarily for 
defense and blockades where the objective was to prevent the undetected movement of enemy 
shipping into or out of an area when the speed and direction of such movements were either 
known or could be predicted with reasonable accuracy.  The barrier search pattern is not 
particularly useful for SAR since in many cases there can be considerable variation in search 
object drift from one possible location to another within an area that makes, from an operational 
perspective, a good search area otherwise.  Barrier patterns are quite sensitive to differences 
between the search object’s predicted speed, which the barrier is designed for, and the actual 
search object speed. 
 
Orienting the search legs parallel to the mean predicted direction of drift makes the search 
pattern much less sensitive to variations in search object speed.  The search object’s motion may 
then be addressed in one of two ways.  The length of the area can be extended in the down-drift 
direction far enough to ensure any object in the originally desired search area will not be able to 
leave the planned search area before the search has been completed.  Alternatively, the desired 
search area can be skewed into the shape of a parallelogram to compensate for the object’s 
motion.  Although this type of pattern probably has very limited non-SAR military value, 
orienting the search legs in the direction of the mean expected drift vector has proven very 
effective for SAR searches. 
 
Nevertheless, search object motion during the performance of a search remains an uncertain 
quantity.  It is impossible to compensate for all possible drift trajectories in any practical search 
operation.  Therefore, when one is faced with estimating the probability of detecting a search 
object given that it was in the search area when the search began, but whose exact motion during 
the search is unknown, one is faced with something approaching “random” searching even when 
there is compensation for the mean motion.  It is almost certain that the POD estimates for past 
searches have been overly optimistic because the assumption of “perfect” search patterns relative 
to the search object was not met.   
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In many past cases, and probably some more recent ones as well, failure to compensate for mean 
expected drift must have resulted in significant systematic pattern distortions in addition to the 
non-systematic distortions caused by the random component of the drift motion and search craft 
navigational error.  The latter can also have both random and systematic (when navigational 
conditions are poor) components.  The result would have been grossly inflated assessments of 
search effectiveness, again because the assumption of “perfect” patterns relative to the search 
object was false. 
 
4.6.2.3 Summary of Inverse Cube Issues 

The primary justifications for using Koopman’s inverse cube model of visual detection seem to 
be the following: 
 
The inverse cube model of visual detection has a plausible mathematical basis. 

“Common sense” seems to dictate that an organized parallel sweep search effort with imperfect 
“real world” sensing should produce results falling between those of “perfect” definite range 
sensing in combination with perfect parallel track search patterns and those of a uniform 
coverage “random” search. 

The inverse cube POD vs. Coverage detection function is regular and falls roughly halfway 
between that of the definite range model and that of uniform coverage “random” search. 

Under ideal search conditions, U.S. Coast Guard Research and Development Center studies often 
produced results that were roughly consistent with Koopman’s model. 

 
However, it seems that a stronger case can be made for using the so-called “random” search 
detection (vs. coverage) function for SAR searches in the marine environment. 
 
There is no experimental evidence to support (or refute) Koopman’s hypothetical inverse cube 

model of visual detection, even for wakes of large vessels. 

All but the first of Koopman’s assumptions leading to the inverse cube model are clearly false 
for SAR situations.  Even that first assumption (that the observer is in an aircraft flying over 
the ocean at a constant altitude) is false when the search platform is a vessel. 

Koopman’s simplification of the inverse cube model’s lateral range curve produces an 
unrealistically high POD at zero lateral range and a questionable shape near zero where it is 
almost flat (i.e., nearly 100%) for a non-trivial distance either side of the search platform’s 
track. 

It is impossible to produce a search plan where the tracks are perfectly straight, parallel, and 
equally spaced relative to all possible search object drift trajectories.  Plotting a 
representative sample of all possible relative search patterns stemming from operationally 
feasible search plans for a single SAR search situation would likely produce a result that 
looks very much like “random” search.  In all of the U.S. Coast Guard R&DC detection 
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studies, the search objects were anchored and accurate navigational aids for the participating 
SRUs were available in the test area, thus removing both systematic and random motion 
issues. 

R&DC studies did find some significant departures from Koopman’s model, especially for small 
search objects combined with poor search conditions.  However, the impact of these 
departures, which were manifested in the form of lateral range curves that were clearly 
different from that of Koopman’s inverse cube model, was not addressed. 

Although search craft navigational errors have now been virtually eliminated by GPS, they were 
a significant additional source of random search pattern error in earlier years. 

The “random” search detection function is independent of the exact nature of the instantaneous 
detection function and shape of the resulting lateral range curve.  The “random” search POD 
depends on only two things:  A reasonably uniform distribution of the searching effort over 
the area searched and the average density (coverage) of that effort.  Assuming an 
approximately uniform distribution of effort can be assured (usually by using parallel track 
search patterns), then the “random” search POD depends only on the sweep width (W), the 
effort (z = vt) expended in the searched area, and the size (A) of the searched area. 

 
The above considerations seem to indicate that the inverse cube POD vs. Coverage curve is 
definitely optimistic when applied to SAR.  Although the “random” search curve is generally 
regarded as a lower bound on the POD for an organized uniform coverage search effort, these 
considerations seem to indicate that the “random” search curve is very possibly a less biased and 
more realistic estimator of operational SAR POD values than the inverse cube’s parallel sweep 
POD vs. Coverage curve. 
 
One way to help resolve this issue would be to enhance CASP so that it models the simultaneous 
motions of its simulated search objects (“replications”) and search craft while using the lateral 
range curves derived from R&DC sweep width experiments to estimate the POD for each 
replication based on its CPA relative to the search craft for each search leg.  This enhancement 
would provide a much more operationally accurate picture of the true effects of searching for 
drifting objects.  It would also provide a valuable tool for determining whether the “random” 
search curve is the best estimator to use when search planning and evaluation must be done 
manually.  In addition, it would dramatically illustrate the effects of systematic relative search 
pattern distortion on different search plans and pattern orientations—something that would be an 
invaluable aid to search planners. 
 
4.6.3 Post-Search Probability Density Distributions 

When searching for an object, it is reasonable to assume that searching a particular area without 
success implies that the chances for the object having been in that area at the time of the search 
are reduced while the chances for it having been elsewhere at the time are enhanced.  This type 
of reasoning is called Bayesian inference and was first developed by the Reverend Thomas 
Bayes (1702-1761) who first used probability inductively and established a mathematical basis 
for probability inference (a means of calculating, from the number of times an event has not 
occurred, the probability that it will occur in future trials).  A simplified version of the procedure 
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for computing a Bayesian update of a CASP probability map is easily illustrated using Figure 4-9 
above and Figures 4-14 and 4-15 below. 
 
Suppose the shaded area in Figures 4-14 and 4-15 is searched under ideal search conditions at a 
coverage of 1.0.  Using Koopman’s inverse cube model to estimate POD, we get a value of about 
78 percent or 0.78 if we accept the traditional interpretation of the POD vs. Coverage graph.  
(The actual theoretical value computed by Koopman is closer to 79%.)  If we multiply the 
original cell probabilities in the shaded area (from Figure 4-9) by 1 - POD or 0.22, we obtain the 
values shown in Figure 4-14.  This produces an un-normalized probability map.  The sum of the 
cell probabilities in Figure 4-9 was 100 percent, while the sum of the cell probabilities in Figure 
4-14 is only 59.74 percent.  To restore the sum of the cell probabilities to 100 percent, i.e., to re-
normalize the probability map, all of the cell probabilities in Figure 4-15 are divided by 0.5974, 
producing the map shown in Figure 4-15.  It is also worth noting that the probability of success 
(POS) for the search of the shaded area was 1- 0.5974 or about 40.26 percent. 
 
The actual CASP process is more detailed than the above example indicates.  Each CASP 
“replication” is a simulated search object that represents one possible combination of incident 
location, incident time, search object type, and drift trajectory.  CASP can currently have up to 
20,000 replications representing a particular situation.  In addition to its type, current position 
and time, and certain other data, each replication has a P-fail value.  This value is the probability 
that the object represented by the replication would still be undetected by all searching done to 
date.  The initial P-fail value for all replications is 1.0 (100%) since all are undetected prior to 
the commencement of search operations.  For each search where a replication is contained in a 
search area, its P-fail value is updated in an un-normalized fashion just as in the first step of the 
above example for updating cell probabilities.  When CASP is asked to produce a probability 
map, the P-fail values of all the replications contained in each cell are summed and then that sum 
is divided by the total sum of all P-fail values in the simulation to produce the cell probabilities 
for a normalized probability map. 
 
The allocation of search effort implied by the selection of search area and coverage in this 
example was not optimal.  However, algorithms exist for computing optimal effort allocations 
for probability maps like those CASP produces.  For static distributions, the Charnes-Cooper 
[1958] algorithm provides a good starting point that can often be transformed into an 
operationally feasible search plan using appropriate heuristics.  Brown’s [1980] algorithm and 
extensions to it may be applied to dynamic distributions. 
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3.25%0.16% 0.33% 0.97% 0.42%

0.51% 1.45% 1.64% 1.18% 0.73%

2.43% 3.92% 1.71% 1.65% 1.13%

2.12%

3.48% 4.43% 0.72% 1.38% 1.21%

6.07% 3.33% 2.00% 1.52%

1.40% 3.88% 2.92% 2.05% 1.75%

 
Figure 4-14.  Un-normalized Update of CASP Probability Map. 

 

5.44%0.27% 0.55% 1.62% 0.70%

0.85% 2.43% 2.75% 1.98% 1.22%
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5.83% 7.42% 1.21% 1.21% 2.03%

10.16% 5.57% 3.35% 2.54%

2.34% 6.49% 4.89% 3.43% 2.93%

 
Figure 4-15.  Re-normalized Update of CASP Probability Map. 

 
In contrast, the CSPM is based entirely on a single assumed type of probability density 
distribution—circular normal.  The CSPM does not produce nor does it work with probability 
maps explicitly, although maps consistent with the CSPM assumptions could be constructed.  
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The CSPM also does not explicitly produce POS values from which search effectiveness can be 
judged.  This too, could be computed, given the necessary knowledge and statistical tables.  
However, the CSPM does produce near-optimal search plans within the constraints of limited 
effort and uniform coverage, but it does so for only one specific set of conditions: 
 
The probability density distribution of search object locations is circular normal and centered on 

datum, 

Either the distribution does not move during the search or the time required to complete the 
search is short enough to make search object drift during the search negligible,  

The effective sweep width is the same everywhere, 

The available effort is exactly equal to that required to search the CSPM-recommended square 
search area (based on the CSPM “safety factors”) at a coverage of 1.0. 

 
The CSPM also assumes that as the probable error about the datum position increases with time 
adrift, the completed square search areas also expand at the same rate with no probability 
“bleeding” across search area boundaries between searches due to search object motion.  In 
effect, a 10 NM × 10 NM area searched on one day could be treated as a 12 NM × 12 NM 
searched area when planning the next day’s search just as a result of the increase in the total 
probable error of the datum position after another day of drifting.  It was on the basis of this 
assumption that the CSPM developers justified extending their use of Bayes’ theorem when 
computing the so-called “safety factors” for a static circular normal distribution to distributions 
that moved and expanded between searches. 
 
Although CASP can generate generalized distributions based on high-resolution environmental 
data files for computing drift motion, it still suffers from some limitations. 
 
CASP also assumes that the distribution does not move during the search.  A “snapshot” of the 

distribution is taken at the mid-search time and the average POD for the search area is 
applied simultaneously to all replications contained in the area at that instant. 

CASP can generate near-optimal search plans for generalized probability density distributions 
within certain constraints, but these plans are not always operationally feasible. 

Although CASP computes un-normalized Bayesian updates of each replication’s P-fail value, it 
uses the same “cookie cutter” approach as used in the above example with cell probabilities.  
That is, the same POD is applied to every replication in the searched area regardless of how 
closely or how distantly the search facility may have approached the object represented by 
the replication at CPA.  Since CASP “freezes” the distribution during search updates, the 
relative motion between search facilities and search objects is not simulated nor are CPA 
distances computed.  Furthermore, no POD is applied to replications immediately outside the 
designated search area even when they are within the search facility’s detection envelope. 
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CHAPTER 5. 
 

MIN/MAX MODIFICATIONS TO 
CLASSICAL SEARCH PLANNING 

 
5.1 INTRODUCTION 

The entire classical search planning method developed circa 1957 was based on obtaining an 
estimate of a single mean, or expected, position (datum) for the search object together with an 
estimate of the probable error about that position relative to the search craft.  This estimate, 
called the total probable error of position, was then used to determine the recommended search 
area.  About ten years later, a technique called “minimax” was introduced to handle situations 
where one of the drift variables, such as leeway rate, could take on one of two significantly 
different values, and perhaps all intermediate values as well.  As we shall see, integrating a 
method that computed two “extreme” results with one that was originally built to handle only a 
single “mean” result had a great potential for causing serious problems. 
 
5.2 THE “MINIMAX” TECHNIQUE 

Over the years, the Min/Max or “minimax” technique has been applied to several different 
elements of drift estimation.  These have included minimum and maximum leeway rates (e.g., 
life raft with and without a drogue deployed), leftmost and rightmost leeway divergence off the 
downwind direction, minimum and maximum distress incident times, minimum and maximum 
altitude for parachute opening, and even “minimum” and “maximum” distress incident positions 
(e.g., minimum and maximum distance of a flare from the observer along a line of bearing).  
Although every drift parameter can have a range of values from some minimum to some 
maximum, the minimax technique was generally applied to only one variable at a time.  The 
instructions in the most recent edition of the National SAR Manual [1991] state, “The SMC 
[SAR Mission Coordinator] should select the variable with the greatest impact on drift and solve 
for datum using the possible extremes…” We will examine the instructions for minimax usage in 
due course.  Before doing that, we will look at how the minimax technique evolved. 
 
5.2.1 LEEWAY RATE 

In the 1957 USCG SAR Manual, a graph was provided for estimating leeway.  The graph had 
two curves, one for a raft with a drogue or sea anchor deployed and one for a raft with no drogue 
deployed.  For leeway with a drogue deployed, the curve was nearly linear at about 2.5 percent 
of the wind speed.  Leeway behavior without a drogue deployed was, according to this graph, 
decidedly non-linear with respect to wind speed.  It ranged from 12.5 percent of the wind speed 
in very light breezes down to about 3.6 percent of a wind blowing at 30 knots.  The maximum 
difference in the two leeway rates occurred at about 14 knots when it was just under 0.6 knots 
(0.958 – 0.375 = 0.583).  The leeway direction was assumed to be directly downwind in all 
cases.  Min/Max solutions were not mentioned. 
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In 1967, Amendment 4 to what in 1959 had become the National SAR Manual, contained the 
first Min/Max procedure.  This procedure was applied only to life raft drogue/no drogue leeway 
rates.  The method instructed the search planner to compute two “datum” positions, datummin and 
datummax, based on the “minimum” leeway rate (drogue deployed) and the maximum leeway rate 
(drogue not deployed).  A circle was then drawn around each position with a radius equal to one-
eighth of the respective distances drifted.  Finally a single large circle was drawn about a point 
between the two “datums” such that the large circle contained and was tangent to the two smaller 
circles.  The center of this large circle was called “datumminimax” and its radius was taken to be 
the probable drift error and called “de minimax.”  Figure 5-1 illustrates the results of the Min/Max 
procedure applied to the life raft problem when it is not known whether a drogue has been 
deployed.  The leeway rates used were from the original leeway graph for a mean wind of 
240°T/14 knots.  The total water current was assumed to be 000°T/1.0 knot and the time adrift 
was taken to be 24 hours.  The drift error in this example was estimated as one-eighth of the 
distance from the starting position (0,0) to be consistent with the doctrine that was in effect at the 
time this method was introduced. 
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Figure 5-1.  Min/Max Applied to Leeway Rate. 

(De = 0.125 × distance drifted) 
 
It is instructive to study Figure 5-1 carefully.  Prior to the introduction of Min/Max solutions, 
each of the smaller circles would have been taken to be the probable error in the search object’s 
estimated position (ignoring incident and search craft position errors for the moment) for the 
drogue and no-drogue scenarios, respectively.  It would have been assumed that the distributions 
of possible locations around each “datum” were circular normal.  Under these assumptions, the 
union of the two circles would contain about 50 percent of the search object’s possible locations.  
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However, this means the large circle containing both of the smaller circles cannot possibly be the 
50 percent containment contour on a circular normal distribution nor even a close approximation.  
Nevertheless, its radius, de minimax, is used as the probable drift error when it is combined with the 
incident and search craft position errors to compute the total probable error of position, E.  
Furthermore, the same “safety factors” are used with this greatly increased estimate of E to 
compute the recommended search area. 
 
Clearly the large circle in Figure 5-1 must contain much more than 50 percent of the search 
object’s possible locations under the assumptions given.  Furthermore, the distribution is not 
circular normal and the large circle must contain significant amounts of area where the search 
object has little or no chance of being located.  This will become increasingly true as the “safety 
factors” increase with continued searching.  In short, there is a great potential for wasting scarce 
resources searching in very unlikely places if Figure 5-1 is used to plan a search. 
 
In 1986, the “confidence factor” for estimating drift error was increased from one-eighth to 
three-tenths of the distance drifted.  Figure 5-2 shows the impact of this change. 
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Figure 5-2.  Min/Max Applied to Leeway Rate. 

(De = 0.3 × distance drifted) 
 
This increase in the drift error estimate was based on some comparisons between actual 
trajectories of satellite-tracked drifting objects and predictions made by using the methods 
prescribed for search planning.  It was concluded that the drift error factor of one-eighth 
significantly underestimated the probable error in SAR drift predictions and that three-tenths was 
a more realistic figure.   
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It is instructive to analyze this solution to the same problem as that of Figure 5-1, the only 
difference being the different estimates of the drift distance error.  Note that although the large 
circle in this case is larger than in the previous example, the difference between its area and the 
combined areas of the two smaller (but larger than before and now overlapping) circles is not 
nearly as pronounced.  In other words, if the larger estimate of De is more appropriate, then 
approximating the two probable error circles with a single circle drawn in the prescribed fashion 
may not be as unreasonable as it previously appeared. 
 
Finally, suppose we estimate the total probable error in the drift velocity estimate, DVe, not as a 
percentage of the mean drift velocity, DV, but as a function of the quality of the inputs used to 
estimate DV.  If there were four inputs to the computation of DV and each had a probable error of 
0.3 knots, then by Theorem 3 of section 4.2.3, DVe would have been 0.6 knots.  If we multiply 
this value by the 24 hours the object was adrift, we get the results shown in Figure 5-3 below. 
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Figure 5-3.  Min/Max Applied to Leeway Rate. 

(DVe = 0.6 knots) 
 
Note that both of the smaller circles now have the same radius as a consequence of computing 
drift distance error on the basis of the probable error in the drift velocity estimate and the amount 
of time the object has been adrift rather than as the same percentage of two different drift 
distances.  The increase this change caused in the estimate of the “maximum” probable error is 
relatively small while that of the “minimum” probable error increased much more substantially.  
If this estimate of the “minimum” and “maximum” probable position errors is valid, then the 
single large circle approximation continues to improve. 
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5.2.2 Integrating Min/Max with Classical Search Planning 

The most obvious explanation for why the originators of the Min/Max technique chose to 
establish a single “datumminimax” as the center of a single large circle is that they wanted to 
integrate the Min/Max results into the basic classical methodology.  Recall that the classical 
search planning method is based on establishing a single datum and a probable error about that 
datum.  However the method is also heavily dependent on the assumption of a circular normal 
distribution—an assumption that the Min/Max results just described clearly violated for the small 
“minimum” and “maximum” drift error estimates being made at the time, as Figure 5-1 shows.  
It seems likely that the originators of the Min/Max technique acting some ten years after the 
classical method was developed were unaware of the underlying statistical assumptions on which 
that method was based. 
 
It seems obvious that in all of the situations represented by the examples given in paragraph 
5.2.1, a more nearly optimal allocation of the available search effort could be obtained by 
covering a rectangular area centered on the line connecting the “minimum” and “maximum” 
datums and including both of them.  This is especially true if intermediate leeway rates are also 
possible.  For the life raft problem we have been dealing with, intermediate leeway rates were 
clearly possible.  First, there was no guarantee that either a drogue was always deployed or it was 
never deployed.  Second, there was also no guarantee that even if it was always deployed that it 
was deployed correctly so as to achieve the maximum effect.  Either situation would produce, in 
effect, an intermediate leeway rate.  In allowing for such possibilities, it would be reasonable to 
assume that a ridge of high probability density exists between the “minimum” and “maximum” 
datums as depicted in Figure 5-4 below.   
 
However, there are at least two things to consider.  First, it would be difficult to establish an easy 
manual method for determining the size and placement of the optimal rectangle, although 
establishing the optimal search radius for one datum, drawing circles of that radius around both 
datums and circumscribing a rectangle around the two circles would produce a near-optimal 
result.  Second, the situation is not static.  Life rafts continue to drift during the search.  One of 
the most effective ways to deal with this issue is to orient the search legs parallel to the mean 
direction of motion (which is usually different from the leeway direction due to the presence of 
currents).  A single square circumscribed around a circle has the advantage that it can be oriented 
in any direction that is desired.  Finally, if the drift errors are as large as now believed, then 
perhaps at the end of the day the Min/Max procedure did approximately the right thing, even if it 
was for the wrong reasons, at least when dealing with life rafts where the drogue’s status 
(deployed or not deployed) was unknown. 
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Figure 5-4.  Ridge of High Probability Density Between Datummin and Datummax. 

 
5.2.3 Leeway Divergence 

Leeway divergence was first mentioned in a SAR context in Amendment 3 (1963) to the 
National SAR Manual.  A statement was made that a search object’s leeway could be “up to  
40 degrees” off the downwind direction.  The corresponding instructions directed search 
planners to continue computing leeway in the downwind direction, but to consider expanding the 
search area to the left and right of the downwind direction to account for divergence.  No explicit 
instructions for determining the dimensions of such an expanded search area were provided, 
however.  The only source of leeway rates remained the original life raft leeway graph. 
 
Amendment 8 in 1972 provided leeway rates as a percentage of the wind for objects other than 
life rafts.  The source of these values is not clear, but they were probably preliminary results 
from R&DC experiments reported by Hufford and Broida [1974].  No additional divergence 
information was provided in Amendment 8. 
 
The National SAR Manual was completely rewritten in 1973.  Amendment 2 in 1976 introduced 
a new leeway graph derived from Hufford and Broida [1974] that covered a wide range of 
objects, including life rafts.  The previous life raft leeway graph was removed.  Three maximum 
leeway divergence values were also provided:  ±35 degrees for rubber rafts, ±45 degrees for craft 
with moderate to deep keels, and ±60 degrees for craft with relatively shallow draft.  No 
information was provided about the distribution of divergence angles except to say that the 
chances for an object’s leeway diverging to the right of the downwind direction was equal to the 
chances it would diverge to the left of the downwind direction.  Generally this was interpreted to 
mean that any divergence angle between the two extremes was equally likely.  Despite this added 
information, the instructions in the National SAR Manual still called for computing leeway in the 
downwind direction only.  The manual was again rewritten in 1991.  The drift error factor had 
been increased from 0.125 (1/8) to 0.3 in 1986, but no changes related to leeway information or 
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instructions were made.  However, this was not true of the USCG Addendum to the National SAR 
Manual. 
 
Change 1 to the USCG Addendum to the National SAR Manual in 1991 provided job aids and 
instructions for computing datums.  Three types of “Min/Max” solutions were included on the 
Leeway Worksheet, and one of these was “directional uncertainty” for dealing with leeway 
divergence.  For the first drift interval, two leeway vectors were computed, one for the maximum 
leeway divergence to the left of the downwind direction and one for the maximum leeway 
divergence to the right of the downwind direction.  These leeway vectors were then used to 
compute two datums.  Probable error circles were drawn around each datum (using 0.3 times the 
distance drifted for the probable error radius) and a single large circle centered between the 
datums was drawn around them in the same fashion as for the earlier Min/Max leeway rate 
solution.  Figure 5-5 illustrates a solution for an object with a maximum leeway divergence of 
±60 degrees and a leeway rate of 5 percent of the wind speed when the wind is 240 degrees T/20 
knots and the TWC is 045 degrees T/1.0 knot. 
 
Figure 5-5 has some interesting characteristics when compared with the earlier scenarios 
involving the unknown status of a raft’s drogue.  Perhaps the most striking features are the 
distance between the two datums and the consequent very large size of the “minimax” drift error 
circle.  Recall that the maximum separation rate between rafts with and without drogues 
deployed was about 0.6 knots.  In the example just given, the “minimum” and “maximum” 
datums are separating at more than 1.73 knots.  This is why the error circles around the 
“minimum” and “maximum” datums do not overlap despite the use of a larger drift error factor 
(0.3).  Also recall that in the case of rafts with or without drogues, the “minimum” leeway rate 
was not really a minimum but the mean rate for a raft with a drogue deployed.  Similarly, the 
“maximum” leeway rate was not really a maximum but the mean rate for a raft without a drogue 
deployed.  In contrast, the values given for leeway divergence angles were represented as true 
extreme values relative to the downwind direction.  Even a cursory inspection of Figure 5-5 
reveals that use of this method implied that even larger divergences off the downwind direction 
were not only possible but would be present in a significant number of cases.  Finally, the size of 
the circle centered on datumminimax and its use in determining the recommended search area 
produces several additional illogical implications. 
 
Recall that, for search area determination purposes, the Min/Max technique treats the radius of 
the large circle, De minimax, as if it is the probable error of a circular normal distribution of possible 
search object locations.  (We will ignore incident and search craft position errors for the moment 
for simplicity.  Their inclusion would only exacerbate the problems about to be raised.)  If the 
datumminimax position is the center of the distribution, then it represents the mean drift.  In this 
example, this implies that the mean drift rate was 060 degrees T/1.5 knots and had a probable 
error of about 1.39 knots, which is about 92 percent of the mean value.  The “minimax” circle is 
so large it nearly includes the incident position.  If it does represent the 50 percent containment 
contour on a circular normal distribution, then there is a small, but still significant, probability 
that the search object drifted upwind and up current.  Since the wind and current are only mean 
values, this can be a valid implication if the uncertainties about those mean values are large 
enough.  However, the solutions for both drift trajectories assumed the effects of drift error 
amounted to only about 30 percent of the mean drift speeds, not 92 percent.   
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Figure 5-5.  Min/Max Applied to Leeway Divergence. 

(De = 0.3 × distance drifted) 
 
The large circle was merely trying to address the uncertainty about which side of the downwind 
direction the leeway was on, i.e., the uncertainty about which “tack” the search object took.  
Clearly, it took in much more area than necessary to meet this need.  The Canadian computer 
program CANSARP addresses this issue by computing datums for the maximum left and right 
divergence angles just as in Figure 5-5 but it also computes datums (with error circles for each) 
for nine intermediate divergence angle values, producing an “arc of probability” that covers a 
much smaller area.  Although CANSARP continues to compute and display a single large circle, 
in practice, search areas are often formed by circumscribing rectangles around the “arcs” formed 
by the eleven datums and their respective error circles.  This may be a more reasonable approach, 
but it is still inconsistent with the latest and best available information on leeway behavior. 
 
Before we leave our examination of Figure 5-5, two other items are worth considering.  The first 
is the ambiguity of trying to apply Min/Max to vector quantities.  Note that the datum associated 
with the “minimum” leeway direction (000°T) is farther from the incident position than the 
datum associated with the “maximum” leeway direction (120°T).  In reality, neither of these 
datums represents a “minimum” or “maximum” possible distance from the incident position.  
The second issue to consider is how to proceed with a second drift interval.  Should each of the 
datums shown in Figure 5-5 be treated as the starting point for another pair of “minimum” and 
“maximum” datums for the second drift interval?  Should the object with leeway to the left of the 
downwind direction continue to the left of the new downwind direction and similarly for the 
object with leeway to the right of the downwind direction, producing only two new datums?  Or 
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should all Min/Max computations always start from the incident position, thus producing only 
two datums?  Neither the National SAR Manual nor the USCG Addendum offered any guidance 
on how to proceed. 
 
5.3 QUESTIONS ABOUT THE LOGIC OF MIN/MAX 

Use of the Min/Max technique has generated many questions and much confusion over the years, 
almost all of which have remained unresolved.  Clearly the intent of the Min/Max technique was 
to provide search planners with guidance for situations that did not seem to be addressable by the 
classical search planning method.  Whether the guidance provided was good or poor is an issue 
worth investigating.  We have seen two applications of Min/Max, one of which may have 
produced a somewhat reasonable search area while the other clearly produced an excessively 
large search area.   
 
Although the general intent of Min/Max seems clear enough, it is difficult to state its intended 
results any quantifiable terms.  Even the National SAR Manual is inconsistent in its summary of 
Min/Max results.  Paragraph 516 C of the National SAR Manual states,  
 

“The SMC should select the variable with the greatest impact on drift and solve 
for datum using the possible extremes, such as the faster speed of an unballasted 
raft and the slower speed of a half-swamped boat.  This establishes the maximum 
and minimum drifts.  Datum minimax is half way between these points, ensuring 
that the most probable position is closest to the center of the search area.” 

 
We have just seen that these instructions and assertions are inconsistent with the actual 
implementation of the Min/Max method.   
 
The term “greatest impact” is ambiguous.  The variable with the “greatest impact” could be the 
one that makes the largest mean contribution to drift speed.  Often the wind, which causes both 
leeway and wind current, would have the “greatest impact” under this interpretation.  Another 
interpretation would be the variable that had the greatest difference between its maximum and 
minimum magnitudes.  That variable would also be a candidate.  The variable whose extreme 
values, when combined with the mean values of the other variables, produced the greatest 
difference in drift speed (or direction) could also be considered a candidate. 
 
It is impossible for a search planner to use “the possible extremes” since that information is not 
provided.  Leeway graphs, for example, give the search planner an estimate of the mean leeway 
for objects such as unballasted rafts and provide no information on half-swamped boats.   
 
Min/Max does not establish the minimum and maximum drifts.  First of all, data on “extreme” 
values is unavailable.  Second, even if they were available, combining the extremes of one 
variable with the means of all the others does not guarantee extreme results. 
 
There is also no guarantee that the point midway between the two computed datums will be the 
place where the probability density peaks.  In the example used in the first sentence of paragraph 
516 C quoted above, two such dissimilar objects would quickly become widely separated with 
no possibility of intermediate leeway rates.  This means that intermediate drift rates are unlikely 
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and that the survivors are much more likely to be found near one datum or the other than at a 
point half way between them. 
 
Finally, effort allocation depends on more than just probability density.  In the case of two 
dissimilar objects, the sweep widths are also likely to be different, making an optimal search plan 
for one sub-optimal for the other.  In the example cited, it would be better to plan separate search 
efforts around each datum since it is likely that two mutually exclusive scenarios are involved. 
 
The following list of issues demonstrate some of the serious problems with Min/Max “logic” as 
it has been applied to search planning. 
 
1. Min/Max does not live up to its name.  For example, the leeway rate provided for a life raft 

with drogue deployed is a mean value, not an extreme value.  That is one reason why a 
probable error circle is drawn around the “minimum” datum rather than using the 
“minimum” datum itself as a limiting value.  Similar logic applies to the “maximum” datum. 

2. Application of Min/Max does not produce the minimum and maximum distances the search 
object could have drifted. 

3. It is not always clear how Min/Max should be applied to several drift intervals in succession.  
Given a datummin, a datummax, and a datumminimax from the first drift interval, the search 
planner is faced with several choices for computing datums for the second interval.   

a. The search planner could compute a new “minimum” and “maximum” datum pair using 
each of the previous datums (min, max and minimax) as a starting point.  This would 
result in six datums and raise questions about where a new datumminimax should be placed 
and how the radius of a single all-encompassing circle should be computed. 

b. The search planner could also compute only two new datums—a “minimum” datum 
using the previous “minimum” datum as a starting point and a “maximum” datum using 
the previous “maximum” datum as a starting point.  Depending on how the mean wind 
and current over the second interval relate to those of the first interval, especially in terms 
of direction, the distance between the “minimum” and “maximum” datums could either 
increase or decrease.  A decrease could cause the radius of the large circle, De minimax, to 
decrease as well, the implication being that the uncertainty about the object’s location at 
the end of the second interval is less than it was at the end of the first interval.  This is 
generally an illogical result for objects adrift in the marine environment. 

c. Finally, the search planner could compute a new Min/Max solution by using the incident 
position for the starting point and the mean wind and current over both intervals for 
computing the “minimum” and “maximum” drift trajectories. 

4. All of the variables used in drift computations have some uncertainty associated with them.  
The amount of uncertainty can be expressed in several ways, including standard deviation 
(standard error), probable error, or as minimum and maximum values.  From time to time it 
has been suggested that datums be computed based on all possible combinations of minimum 
and maximum values for the drift variables and that a complete set of new datums be 
computed for every previously computed datum as time progresses from one drift interval to 
the next.  The apparent goal of such a scheme is to “bound the problem,” i.e., determine the 
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smallest geographic area that is guaranteed to contain the object.  This has several 
drawbacks.  First, it does not guarantee search object containment.  There may well be 
combinations of values between the “minimum” and “maximum” values of the drift variables 
that produce datums outside the area indicated.  Second, it leads to a “combinatorial 
explosion” of datum computations that would quickly overwhelm even a quite large 
computer.  Third, it would provide no information on the distribution of search object 
location probability density and would therefore provide no information on how to optimally 
allocate the available effort within the bounded area. 

5. Most of the variables used in drift computations are two-dimensional vectors with 
uncertainties (probable errors).  Vectors may be expressed as an ordered pair of orthogonal 
components or as a direction and magnitude.  This means vectors are “bivariate” and so are 
their uncertainties.  There is no logical way to define a “minimum” or “maximum” value for 
a vector like there is for a scalar quantity.  In the case of the life raft with unknown drogue 
status, this problem is avoided by holding leeway direction constant (directly downwind) and 
examining the mean minimum and mean maximum leeway rates which are scalars.  In the 
case of leeway divergence the leeway rate relative to the mean wind is held constant and the 
mean “minimum” (leftmost) and “maximum” (rightmost) leeway directions relative to the 
mean downwind direction are examined. 

 
In summary, the Min/Max technique, as implemented, seems to have been the ill-fated result of 
applying one-dimensional scalar reasoning to two-dimensional vector quantities, exacerbated by 
a lack of knowledge about the statistical and search theory basis of the classical search planning 
method. 
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CHAPTER 6. 
 

COMPARISON OF SEARCH PLANNING AND CASE 
MANAGEMENT TOOLS 

 
6.1 INTRODUCTION 

Search planning tools may be grouped into three broad categories.  These are: 
 
Manual methods 

Automated versions of manual methods 

Sophisticated stochastic computer models or simulations 

Neither automated search planning nor case management tools were provided for evaluation with 
the exception of the Coast Guard’s C2PC/AMS search planning tool.  However, another search 
planning tool was obtained for evaluation and brief demonstrations of two others were obtained.  
Brief demonstrations of two case management tools were also obtained.  One of these had 
already been evaluated by the Coast Guard’s Atlantic Area Command Center. 
 
6.2 MANUAL SEARCH PLANNING METHODS 

All manual methods may be traced back to the Classical Search Planning Method (CSPM) 
discussed earlier.  We speak of “methods” in plural because a number of significant 
modifications to the CSPM have been made over the years.  These modifications appear to have 
been “field changes” initiated, developed and implemented without the careful research that went 
into the CSPM’s initial development.  The most important of these modifications was the 
“minimax” technique discussed above. 
 
In 1992, the International Maritime Organization (IMO) and the International Civil Aviation 
Organization (ICAO) established a joint working group for the harmonization of aeronautical 
and maritime SAR.  Many of the issues were organizational.  For example, conventions of each 
organization established an international requirement for Rescue Coordination Centers (RCCs) 
and delineated areas of responsibility to cover all international waters and the airspace over 
them.  However, the areas of responsibility for maritime SAR and aeronautical SAR did not 
always coincide.  It was possible for two RCCs in two different countries to be responsible for 
SAR in the same region—one for aeronautical cases and one for maritime cases.  There was also 
a need for specific protocols and standard communications techniques to be established among 
RCCs to coordinate responses to cases near boundaries and responses to large-scale incidents 
where assets from a number of countries might be required.  Finally, there was a need to 
standardize search planning and coordination methods. 
 
After several years of deliberations, review of many SAR-related documents, and some 
additional research, the International Aeronautical and Maritime Search and Rescue (IAMSAR) 
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Manual was published in 1999.  This manual contains an updated version of the CSPM that 
explains and uses the concepts of probability of containment (POC) and probability of success 
(POS) that were hidden from the search planner’s view in the CSPM.  Instead of fixed “safety 
factors” and “mid-point compromise” techniques for allocating effort to a “point datum” 
(circular normal distribution), the IAMSAR method replaces these with continuous optimal search 
factor curves that allow the search planner to correctly match the search area size and coverage 
to the level of searching effort available.  This capability was extended to line datums and a 
“trial-and-error” approach to a generalized probability density distribution was also presented.  
Although they are too cumbersome for manual use in maritime SAR, probability maps are 
presented as an aid to understanding the optimal effort allocation process and the proper use of 
previous negative search results in allocating effort for the next search.  For problems over land, 
such as searching for a downed aircraft, probability maps can be used and kept properly updated 
by hand since search object drift and its associated uncertainties are not an issue. 
 
The IAMSAR method initially abandoned the minimax technique to avoid all the ambiguities and 
confusion of that method.  There were also preliminary indications from recent leeway 
experiment results that divergence angles were not nearly as large, on average, as the maximum 
values previously provided to search planners, making leeway divergence appear to be less of an 
issue.  As the leeway experiments progressed, however, it became apparent that although leeway 
divergence angles were smaller on average than previously thought, they were still significant.  
As a result, a method for dealing with leeway divergence based on the research of Allen and 
Plourde [1999] was developed for the IAMSAR Manual.  Unlike its minimax predecessor, this 
method uses mean, not extreme, divergence angles and is properly integrated with the remainder 
of the manual search planning process.  This includes near-optimal search effort allocation that is 
a substantial improvement over the minimax technique, leading to more efficient use of assets, 
shortened searches on average, and more lives saved.  However, it is far from being a panacea.  
The limitations imposed by keeping the method within the paper-and-pencil realm force it to 
maintain the grossly oversimplified approach of the CSPM, especially in the maritime arena.   
 
The original CSPM, of course, was developed long before significant computing power and 
automation were readily available.  It was a truly manual, pencil-and-paper, technique.  Over the 
years, some modifications were made to the CSPM, such as the minimax technique discussed in 
the last chapter and its extension to quantities such as leeway divergence.  Other modifications 
included more complex ways to compute wind current (which have since been discarded), 
improved leeway graphs that are based on significant amounts of field research and cover a 
wider variety of objects, improved sweep width tables for unaided visual search and additional 
tables for visual aids (e.g., night vision goggles (NVG)) and other sensors (e.g., forward-looking 
infrared radar (FLIR)), also based on significant amounts of field research by the USCG 
Research and Development Center.  Methods for dealing with additional environmental 
variables, such as tidal and rotary currents, were also added.  The question of how to allocate 
search effort when the available effort was significantly different from that required to complete 
a coverage 1.0 search of the recommended search area was addressed by a technique called 
“mid-point compromise.”  Finally, the amount and resolution of the available environmental data 
increased dramatically, making it necessary for search planners to compute more datums at more 
frequent intervals if they wanted to use this data to best advantage.  Each of these changes 
typically added some computational or other complexity so that by the time computer support 
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did become readily available, the computational burden placed on the search planners had 
become substantial.  This led to the next category of search planning tools. 
 
6.3 AUTOMATED MANUAL METHODS 

The primary purpose of computerized or automated versions of manual methods is to provide the 
search planner relief from much of the computational burden that had been imposed on the 
manual methods over the years.  The more modern automated tools also relieve the search 
planner of much or all of the plotting burden associated with search planning on paper charts.  
Modern Geographic Information Systems (GIS) provide a great many conveniences for the 
search planner.  For example, a search planner can accurately display a chart on the computer 
screen and simply point and click on a chart location to have the latitude and longitude of that 
location automatically entered into the appropriate form on the screen and the appropriate 
program variables in the search planning software.  Search areas are easy to specify and 
manipulate on the screen, as are the search patterns they contain.  Directions and distances 
between points may be easily found by pointing first to one point and then to a second point with 
a mouse or other pointing device.  As the cursor is moved across the screen, its position on the 
displayed chart in latitude and longitude is automatically displayed.  There are many other useful 
features as well. 
 
Automated versions of manual methods are generally easy to use, produce results quickly, and 
provide many conveniences over pencil-and-paper methods.  Needless to say, modern versions 
of these tools are very popular with search planners.  However, they have one important 
drawback.  Aside from avoiding some common sources of human error (e.g., computational 
mistakes, plotting errors, etc.), and, in some cases, making slightly better use of the 
environmental data now available, these tools do not substantially improve the quality of the 
resulting search plan over that of truly manual methods.  For example, the problem of situations 
where the initial distribution is not circular normal, if addressed at all, is handled by choosing a 
small number of incident positions and times, then solving each as an individual search problem.  
The search planner is either left to try and make sense of the several recommended search areas 
that result or the software simply circumscribes a rectangle around all of them.  Increasingly 
available high-quality, high-resolution environmental data are not used effectively.  None of the 
automated manual solution tools surveyed improved search effort allocation over the manual 
methods on which they are based.  These tools do not even attempt optimal effort allocation over 
a single-point datum, something that could be done with relative ease, and in fact has been done 
for the manual method given in the International Aeronautical and Maritime Search and Rescue 
(IAMSAR) Manual [1999]. 
 
Automating the manual methods has also provided additional opportunities to modify them.  In 
fact, automation required making some modifications.  Prior to automation, the manual method 
of choice the world over was generally a clone of the method given in the U.S. National SAR 
Manual edition current at the time.  However, the method as described there has always 
contained a number of omissions and ambiguities.  Search planners were often encouraged to 
consider certain factors when planning a search, but specific quantitative guidance (e.g., how 
much to change the location, size, shape, orientation or coverage of search areas) was not 
provided.  The question of how to compute minimax solutions subsequent to the first search was 
not addressed.  Since these and other questions had to be addressed in order to develop useful 
software tools and aids, software developers and their clients in the SAR community were left to 
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their own devices to resolve them.  Not surprisingly, several different approaches to these and 
other issues were implemented.  The sections that follow contain highlights of the different 
approaches that have been used by software developers to address certain issues. 
 
6.3.1 USCG Search and Rescue Planning (SARP) 

The first automated version of a manual search planning method was the USCG’s SARP 
program developed circa 1970.  It was part of a system of programs and data files developed to 
provide RCC Controllers with operational information for use in the prosecution of SAR cases.  
Improved Coast Guard SAR performance was the main objective and it was to be accomplished 
through: 
 
Eliminating the potential for computational errors. 

Increasing the time available for gathering and appraising specific case information, due to the 
time saved by the rapid computational ability of the computer. 

The function of the SARP program was to develop a solution to the search planning problem 
based on the doctrine specified in the National Search and Rescue Manual and the search 
planning methodology taught at the National Search and Rescue School. 
 
SARP was designed to require only four inputs:   
 
Incident date and time. 

Last known position of the distressed craft. 

Probable position error of the distressed craft. 

Probable position error of the search craft. 

SARP was also designed to accept a number of optional inputs to improve its flexibility and the 
accuracy of the computed solution.  SARP’s features included: 
 
Sweep width computation based on search object length, percent cloud cover, meteorological 

visibility, and search craft altitude input by the user. 

Local wind current calculation, based on the graph given in James [1966].  The wind current 
could be fetch-limited, duration-limited, or fully developed based on the user’s inputs. 

Leeway calculation based on formulas and parameters developed from U.S. Coast Guard 
Research and Development Center leeway experiments. 

Use of surface wind data that could be input by the user or taken from the on-line data files that 
were updated twice daily with analysis and forecast data received from Fleet Numerical 
Weather Center (now Fleet Numerical Meteorology and Oceanography Center), Monterey, 
CA.  Wind data input by the user included direction, speed, and time of the “observation.” 
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Use of average sea currents that could be input by the user or obtained from on-line data files 
based on climatology.  The on-line files included most of the northern hemisphere on a one-
degree grid and several regional higher-resolution files near the U. S. Atlantic coast.  One of 
these, the Gulf Stream file, was updated on a weekly basis by oceanographers at the 
International Ice Patrol interpreting a NOAA thermal imagery product.  Sea current data 
input by the user included the position of the “observation,” direction, speed, and whether the 
data was based on DMB observations (in which case it was taken to be total water current 
data and other sources of current were not used). 

Use of winds aloft data input by the user to compute parachute drift for cases involving bailouts. 

Computing a DR position for the distress incident time from the distress craft’s last known 
position, the time of that position, and the distressed craft’s estimated course and speed. 

SARP was accessed from USCG RCCs via the SARLANT and SARPAC polled teletype 
networks.  RCC personnel would complete paper forms by hand and give them to their servicing 
communications center.  The radioman on watch would then produce a teletype “service” 
message containing the data on the forms in the prescribed format and transmit it to the central 
computer at the Transportation Computer Center in Washington, DC.  The computer output 
would then be transmitted back to the requesting RCC via its servicing communications center.  
By the standards of the day, SARP was a very fast program and within a very few minutes the 
RCC would have the computer’s response in hand. 
 
SARP computed drift trajectories on a one-hour time step.  At the beginning of each hour of 
“simulated” drift, both wind data and sea current data were accessed using “nearest data point” 
logic with respect to the last computed search object position.  For user-supplied wind data, the 
“nearest data point” was computed with respect to the simulated time.  For user-supplied sea 
current, the “nearest data point” was computed with respect to the search object’s computed 
position.  For gridded data from the on-line files, the nearest data point in both space and time 
was used.  User-supplied data did not have to be provided at either fixed or uniform intervals of 
time for wind or at fixed or uniform spatial intervals for current. 
 
A SARP-generated solution contained some intermediate drift positions at regular intervals.  The 
exact frequency of intermediate positions shown depended on the length of the total drift 
interval.  The datum position(s) were also displayed (in two columns for minimax solutions) for 
either the time at which the computer received the request or as of the time requested by the user.  
The computed total probable error of position was provided.  The standard search radius based 
on the search number (first, second, third, etc.) and corresponding “safety factor” was also 
computed and provided.  The size of the corresponding square search area in square nautical 
miles was displayed along with the latitudes and longitudes of its boundaries, based on assuming 
it was oriented so parallels and meridians formed the sides.  If the necessary data had been 
provided, the computed sweep width was also displayed, along with the times of sunrise and 
sunset at the datum position.  Finally, the average drift vectors over the period and over the last 
hour were displayed.  Figure 6-1 shows a SARP solution as received via teletype. 
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CF CA DE CD 
TEST CASE PACAREA 
BT 
UNCLAS 
USCG COMPUTERIZED SAR PLANNING SYSTEM 
PROGRAM SARP EXECUTED AT 211500Z JUL 75 
 INCIDENT TIME AND LAST KNOWN POSITION DATA 
INCIDENT DTG 201300Z JUL 75 
LADT KNOW POS 37-30.0N 123-00.0W 
SEARCH NUMBER 3 DATUM DTG 221440Z JUL 75 FIRST LIGHT 
 DISTRESS CRAFT AND LEEWAY DATA 
INITIAL POSITION ERROR (X) 15 SEARCH CRAFT ERROR (Y)  5 
TARGET LENGTH, CLOUD COVER, VISIBILITY, SEARCH ALT   2  40  15  1000 
LEEWAY CONFIGURATION IS F 60 0.07 1.0  
 SURFACE WINDS — MONTEREY 
NUMBER OF WINDS IS  10 
NO DIR/SPD DTG FETCH  NO DIR/SPD DTG FETCH 
 1 180/10  180600Z JUL 75  999  6 150/17  201800Z JUL 75  999 
 2 190/15  181800Z JUL 75  999  7 150/13  210600Z JUL 75  999 
 3 220/20  190600Z JUL 75  999  8 150/13  211800Z JUL 75  999 
 4 210/20  191800Z JUL 75  999  9 150/13  220600Z JUL 75  999 
 5 160/15  200600Z JUL 75  999 10 150/13  221800Z JUL 75  999 
........................................................................ 
INTERMEDIATE DRIFT POSITIONS 
HOUR POSITIONS ASC POSITIONS ASC 
 0 37-30.0N 123-00.0W 
 12 37-37.1N 123-11.3W NAVO 37-43.3N 122-59.8W NAVO 
 24 37-44.2N 123-22.6W NAVO 37-56.6N 122-59.6W NAVO 
 36 37-51.2N 123-33.9W NAVO 38-09.9N 122-59.4W NAVO 
 48 37-58.3N 123-45.1W NAVO 38-23.2N 122-59.2W NAVO 
DATUM 38-12.2N 123-22.1W   AT  221440Z JUL 75  49.67 HRS DRIFT 
 
COMPUTED TOTAL PROBABLE ERROR OF POSITION (E)  30.6 MILES 
STANDARD 3RD SEARCH RADIUS  61.2 MILES 
SEARCH AREA 14973 SQ MI 
 ....39-13.4N.... 
124-39.2W 122-05.0W 
 ....37-11.0N.... 
 
SWEEPWIDTH  2.6 MILES 
SUNRISE AT DATUM 1440Z   SUNSET 0115Z 
 
 DRIFT VECTORS IN KNOTS 
 AVERAGE OVER PERIOD LAST HOUR 
WINCUR 352/0.29 351/0.28 
AVG SEA 147/0.20 MIN 156/0.13 MAX  147/0.20 MIN 198/0.06 MAX 
LEEWAY 300/0.94 MIN 000/0.94 MAX  300/0.91 MIN 000/0.91 MAX 
MINIMAX TOTAL 337/0.92 335/0.88 
PROBLEM COMPLETE 
BT 

Figure 6-1:  SARP Drift Solution. 
 
Although SARP did not relieve the search planner of the plotting burden, it did relieve the search 
planner of much of the computational burden associated with determining the location and size 
of the overall search area.   
 
Another program in the computerized SAR system of which SARP was a part provided some 
additional search planning assistance.  This program was called PLAN.  The search planner 
could input the center, length, width, and orientation of the overall search area and two altitude-
sweep width pairs.  Then, the search planner could enter up to fifty pairs of SRU speed and on-
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scene endurance values.  Program PLAN would then subdivide the search area into smaller 
rectangles in such a way that uniform coverage was achieved throughout the search area as a 
whole.  The PLAN output included the center point, length, width, orientation, track spacing and 
altitude for each sub-area, ensuring that in “Mode 1” (all sub-areas with same orientation) 
altitudes were alternated to ensure positive altitude separation in adjacent sub-areas. 
 
Yet another program in this system was EPRB, used to estimate the position and the 
corresponding probable position error of an Emergency Position Indicating Radio Beacon 
(EPIRB) or Emergency Locator Transmitter (ELT) based on signals acquired by passing aircraft.  
Inputs included the time of each report, the flight level of the observing aircraft, and the positions 
where the signal was first acquired, was strongest and was last heard. 
 
Considering the early date, SARP and the several associated ancillary programs were quite 
sophisticated.  SARP’s primary limitations were the primitive and occasionally unreliable 
teletype input/output interface and the coarseness of the environmental data available at the time, 
except in certain areas like the Florida Straits where the sea current data had an average spatial 
resolution of about six minutes of latitude and longitude on a monthly basis.  A shortcoming of 
most of the available sea current data was that it was based on climatology on a one-degree 
spatial scale and either a monthly or seasonal time scale.  Exceptions were the Gulf Stream file 
and the Long Island Sound tidal current files.  All of the programs suffered from being 
implemented on a CDC 3300 mainframe computer that was already obsolete at the time. 
 
Throughout its lifespan of more than 10 years, SARP was maintained and continuously improved 
by the Operations Analysis Branch of the Information Systems Division of the staff of 
Commander, Atlantic Area Coast Guard, then located on Governors Island, NY.  The program 
itself proved to be very reliable and it was frequently used until circa 1982 when it was taken out 
of service with the demise of the CDC 3300 computer on which it was hosted.  SARP was not 
ported to the new PRIME minicomputers located on Governors Island because it was considered 
obsolete.  The Computer Assisted Search Planning (CASP) system, a sophisticated stochastic 
Monte Carlo-based simulation, had been in operation since about 1974.  In 1982, the SAR 
Program elected to rewrite CASP and implement the new version on the PRIME computers and 
make it the sole computer-based search planning aid for U.S. Coast Guard search planning.  This 
decision was based in large part on CASP having demonstrated the limitations of manual and 
automated manual methods. 
 
6.3.2 CANSARP 

CANSARP is a direct descendent of the U.S. Coast Guard’s original SARP program, at least in 
concept.  However, the current version could not be evaluated directly.  Some relatively old 
CANSARP documentation was reviewed and a few electronic mail messages were exchanged 
with the Canadian Coast Guard.  A demonstration of a new version of CANSARP was seen at 
the SARSCENE 99 conference in St. John’s, Newfoundland, in October 1999.  However, 
answers to many questions about its internal operations were not available.  CANSARP runs on 
Sun Microsystems hardware in a UNIX environment. 
 
CANSARP uses gridded environmental data obtained from Canada’s national environmental 
agency on a near-real-time and forecast basis in a manner similar to the way the USCG CASP 
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system obtains data from the U.S. Navy’s Fleet Numerical Meteorology and Oceanography 
Center in Monterey, California.  CANSARP computes eleven datums from a single initial 
position.  Initially, all use the same wind and current data, the only difference being the leeway 
divergence angle that is chosen.  The leeway divergence angles used are the leftmost, rightmost 
and nine equal divisions in between.  Because this number is odd, one trajectory is always 
directly downwind.  As the datums separate, they may encounter differing environmental data 
over space and time, which means that the eleven datums will form a rough arc, as shown in 
Figure 6-2 below.  The reason the large circle is not tangent to the two “outboard” small circles 
was one of many unanswered questions.  Although not shown in Figure 6-2, CANSARP is 
supported by a fully capable GIS similar to those of SARMAP, SARIS and C2PC/AMS 
discussed below. 
 

 
Figure 6-2.  CANSARP Drift Solution. 

 
CANSARP re-computes the eleven trajectories from the initial position for all drift intervals.  
That is, datums used to plan the first day’s search are not used as starting points for the second 
day’s drift update.  Instead, the entire problem is re-computed from the initial position and time 
to plan the second day’s search.  This avoids many of the logical anomalies found in other 
minimax solutions.  CANSARP computes intermediate datums on a one-hour time step.  Figure 
6-2 shows a 24-hour drift interval with the intermediate datums plotted every hour.  This allows 
CANSARP to make better utilization of gridded data.  However, this still does not address the 
issue of initial position uncertainties that cover several cells of the environmental data grid.  The 
initial data used for computing drift will come from only the cell containing the estimated initial 
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position, even though there may be a non-trivial probability of the actual initial position being in 
another cell.  Only as a result of the separation of datums over time due to leeway divergence 
will the number of data cells in use at any one time increase from one to a larger number.  
Almost all of the data that might affect where the search object drifts, by virtue of different data 
cells being within the uncertainty region around the datum(s), remains unused. 
 
6.3.3 ASA SARMAP/ARCVIEW® 

Applied Science Associates, Inc. (ASA) of Narragansett, Rhode Island has developed an 
automated manual solution that may be packaged with their OILMAP/ARCVIEW® and/or 
Incident Command System (ICS) software.  The purpose of their OILMAP product is to predict 
oil spill trajectories and perform analyses to assess risks if an oil spill occurs in or near a specific 
area of interest.  Interestingly, this software uses a Monte Carlo approach for estimating the 
probable distribution of drifting oil over time that is very similar to the way CASP estimates the 
probable distribution of search object locations over time.  However, when ASA tried to market 
this approach for SAR, their foreign clients were not interested because the solution did not 
appear to match their officially adopted manual methods.  As a result, ASA was forced to 
automate a manual method in order to meet client demands.  ASA’s typical method for providing 
software support for oil spill trajectory modeling is to first obtain or develop detailed 
environmental data for the client’s locale.  Since these are in coastal regions, the time and spatial 
scales need to be quite fine to resolve tides, river outflows, other hydrography, bathymetry and 
coastal features of interest.  These detailed environmental databases are then used as input to 
their stochastic model of oil spill movement and dispersion.  In strategic mode, the model can 
help planners assess the impacts of various types and sizes of oil spills under a variety of 
circumstances, including location, date and time, weather conditions, etc.  Included in the 
package is the ability to define an environmental data grid by specifying only a few data points. 
 
SARMAP has many GUI/GIS features that are useful for search planners.  As the full name of 
the software package implies, SARMAP uses the open-architecture ARCVIEW® product as its 
GIS.  Like the Canadian and U.K. tools, SARMAP has access to quite detailed current databases.  
Wind data are input by the user in increments of as little as one hour without any spatial 
dependencies.  It is easy to input wind data that is constant over larger blocks of time without 
entering a value for each hour.  The software simply fills in the number of one-hour blocks 
specified by the user from one entry of the wind data.  Figure 6-3 shows a SARMAP drift 
solution. 
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Figure 6-3:  SARMAP Drift Solution. 

 
SARMAP computes three datums based on leftmost, rightmost and zero (downwind) leeway 
divergence, as shown in Figure 6-3 above.  The user can vary the time-step between intermediate 
datums in increments of as little as one minute.  The default time-step is one hour but it may be 
reduced to as little as one minute.  When computing drift updates, short time-steps allow it to 
discern quite small variations in the currents over space and time.  Wind data are accessed based 
on time and is not averaged over the drift interval as in the UK CG3 and USCG C2PC/AMS 
methods.  Unlike the usual minimax methods, SARMAP does not compute a single large 
minimax circle but circumscribes a single rectangle around the three individual datum search 
circles.  The radii of these circles consist of the total probable error of position computed in the 
usual manner times the appropriate “safety factor.”  A rectangle is then circumscribed around the 
three circles to form the recommended search area. 
 
Of all the tools examined, SARMAP has by far the richest set of search object choices for 
determining leeway.  There are nearly 60 choices presented.  These are apparently taken from the 
leeway taxonomy provided by Allen and Plourde [1999]. 
 
SARMAP can also handle both leeway rate and leeway divergence “minimax” solutions 
simultaneously.  Entering two different leeway rate categories or formulas will cause six datums 
to be produced and the resulting search area will be a rectangle circumscribed around all six 
search circles.  It is assumed that the same leeway divergence applies to both leeway rates, so 
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this capability is less than completely general.  However, SARMAP was the only automated 
manual solution of those evaluated that could handle this situation at all. 
 
A “stress test” of SARMAP was run using zero currents and reversing winds.  Wind data of 
270T/30 knots for six hours was input followed by 090T/30 knots for the next six hours.  An 
object with ±35 degrees leeway divergence was used for the test.  Animated output showing the 
computed search object motion was provided, but it moved too fast for viewing on the 
evaluator’s computer.  This can no doubt be adjusted in the software.  However, a mode was also 
available to step through the intermediate computed positions one at a time. 
 
During the first six hours, the three datums diverged in an easterly direction as expected and the 
recommended search area was an increasingly large rectangle with a north-south orientation.  
During the second six hours, the three datums exactly reversed direction and converged back to 
the original starting position.  This is consistent with the assumption that an object that drifts to 
the left of the downwind direction will always drift to the left of the downwind direction and 
similarly for objects that drift to the right of the downwind direction.  The search area did not 
shrink but remained constant in size.  However, it changed shape, becoming more and more 
nearly square until it was exactly square after the datums converged to a single point. 
 
SARMAP takes as much advantage of the detailed gridded environmental data as possible in an 
automated version of a manual method, primarily by using a short time-step.  SARMAP works 
well, within the basic limitations imposed by the manual technique, and does not seem to suffer 
from the quirks found in some other systems.  ASA’s implementation uses the datums from one 
drift interval as starting points for the next interval.  The “left” trajectory for leeway divergence 
always stays to the left of the downwind direction, and similarly for the “right” trajectory.  As a 
result, datums are more likely to converge under conditions of veering, backing, or reversal of 
wind vectors.  ASA’s method for counteracting the possible decrease in search area size due to 
converging minimax datums as a result of wind/current shifts is to never let the search area 
decrease in size from one time-step to the next.  That is, the search area size will always be the 
larger of the previous and currently computed search area sizes.  While this is not a “perfect” 
solution, it is certainly better than producing an unrealistically small search area. 
 
ASA now has detailed current data for most of the U. S. Coast and could be easily adapted to use 
current data from other sources, such as the offshore products from ocean circulation models.  
For any maritime search planning tool to work well, especially in coastal areas, accurate and 
detailed environmental data are essential for both winds and currents. 
 
6.3.4 Search and Rescue Information System (SARIS) with UK CG3 Method 

A demonstration of the Search and Rescue Information System (SARIS) developed by BMT 
Marine Information Systems Limited of Southampton, U.K., was obtained through the kind 
efforts of HM Maritime and Coastguard Agency Training Centre and BMT.  This demonstration 
consisted of “canned” programs on compact discs designed to show the capabilities of the 
current operational version (SARIS I) and its soon-to-be-released replacement (SARIS II).  
There was also a “live” demonstration and a brief opportunity to exercise the SARIS software 
itself during an informal visit to the Training Centre.    In both cases, the search planning 
methodology implemented in these versions of SARIS was a computerized version of the UK 
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CG3 manual method.  Like ASA, BMT also produces oil spill trajectory models using Monte 
Carlo techniques.  However, BMT was prevented from taking this approach for either SARIS I or 
SARIS II due to HM Coastguard requirements to use the UK CG3 manual method’s technique 
for computing mean drift trajectories and recommended search areas.  Figure 6-4 shows a UK 
CG3 drift solution as computed and displayed by SARIS. 
 

 
Figure 6-4:  UK CG3 Drift Solution in SARIS. 

 
SARIS has many GUI/GIS features that are useful for search planners.  In addition to detailed 
vector shoreline data, SARIS also has detailed vector bathymetry data showing bottom contours.  
Like the Canadian and ASA tool, SARIS has access to quite detailed current databases.  These are 
on a nominal 12-kilometer grid with interpolation algorithms to compute currents for 
intermediate points.  Even finer resolution base data are being considered for areas very near 
shore and in the smaller bays and estuaries.  Wind data are input by the user in 6-hour increments 
without any spatial dependencies, although an automated source of gridded wind data are being 
considered as a future enhancement.   
 
The UK CG3 search planning method computes three datums based on leftmost, rightmost and 
zero (downwind) leeway divergence.  SARIS implements this method with a very short 5-minute 
time-step between intermediate datums when computing drift updates, allowing it to discern 
quite small variations in the currents over space and time.  Unlike some other minimax methods, 
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the UK CG3 method does not compute a single large minimax circle but circumscribes a single 
rectangle around the three individual datum “probable error” circles.  “Probable error” is in 
quotes because the U.K. has modified the way these radii are computed.  Instead of computing 
the square root of the sum of the squared probable errors, the U.K. method simply adds the 
probable errors for the incident position and the drift.  This is tantamount to treating probable 
errors as if they were maximum possible errors.  The result is not total probable error in the 
statistical sense and it should not be referenced by that name. 
 
The U.K. has made some other modifications to the original CSPM methodology as well.  No 
“safety factor” is applied to the radii used to plan the first search rectangle.  However, the CSPM 
“safety factors” are applied for the second and subsequent searches.  Another change is that the 
search craft’s probable position error is not used in the usual fashion.  Instead of combining it 
with the other probable errors, the U.K. method treats search craft position error as a maximum, 
not probable, error.  Assigned search areas are enlarged from the desired search areas by a 
margin large enough to guarantee that the search craft will cover the desired search area if its 
actual positioning error is less than its maximum positioning error.  Usually this results in 
overlapping search areas when multiple search craft are involved, something most search 
planners strive to avoid for safety reasons. 
 
In the U.K. documentation, the stated reason for not using a “safety factor” on the first search 
was that it caused an excessive (21%) increase in the size of the search area.  However, the U. K. 
method effectively treats all probable errors as maximum errors, and adds them in an apparent 
attempt to obtain a 100 percent probability of containment.  This can easily increase the first 
search area’s size by an even greater amount than that obtained by using a correctly computed 
total probable error multiplied by the first search “safety factor.”  Furthermore, if the position 
and drift error values being used really are maximum, and not probable, errors, then “safety 
factors” should never be used for planning any search.  If the probability of containment is 
already 100 percent, any expansion of the search area will simply waste effort and potentially 
increase the mean time to find search objects.  In practice, UK CG3 solutions are often run for 
every search in a series as if each were a “first” search, thus effectively removing the use of 
“safety factors” altogether. 
 
Although the “live” demonstrations were brief and the exercise of the software with inputs 
specifically chosen to “stress” it even briefer, some problems were observed.   
 
During the “live” demonstration of the UK CG3 method in SARIS II, a POD of 99 percent was 
computed for a coverage of 1.33.  The correct POD for this coverage, according to the POD vs. 
Coverage curve based on Koopman’s inverse cube model of visual detection and parallel track 
search patterns (the curve that has been in use for many years), a coverage of 1.33 should 
produce a POD closer to 90 percent. 
 
During the “exercise,” the currents were made zero everywhere and two opposing wind vectors 
of equal magnitudes and durations were input to the UK CG3 method in SARIS I.  The initial 
wind values were 270T/30 knots for six hours followed by 090T/30 knots for another six hours.  
The search object was chosen to be a life raft without a drogue.  According to the present U.K. 
“operational” SAR manuals, the leeway rate for such objects is given by the formula 
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 04.007.0 +×= SpeedWindLeeway  
 
and the leeway divergence is ±35 degrees off the downwind direction.  The purpose of this test 
was to isolate the leeway computations, stress the system, and see how the UK CG3 method as 
implemented in SARIS dealt with the potential problem of converging datums after the wind 
reversal. 
 
The result was a computed “downwind” leeway in the direction of 270T, or directly upwind, and 
leeway vectors 35 degrees to the right and left of this direction.  A “compass rose” style of 
display on the right side of the SARIS screen showed the wind as coming from 270T.  After six 
hours of simulated time, this display reversed and showed the wind coming from 090T.  
However, the computed leeway did not change but continued in a westerly direction that was 
then appropriate. 
 
The problem was re-run with a wind of 000T/30 knots followed by a wind of 180T/30 knots.  
This time the computed “downwind” leeway was in the direction of 090T, or at right angles to 
both of the input wind vectors, with leeway vectors 35 degrees to the right and left of this 
direction.  Again the leeway did not change when the wind data reversed. 
 
These tests indicate that the UK CG3 method implemented in SARIS computes and uses a single 
average wind vector over the entire drift interval.  Since the magnitude of this “average” wind 
was apparently unaltered in these tests, it appears an incorrect averaging technique is being used, 
possibly the one that appeared in the U. S. National SAR Manual after a major rewrite in 1973.  
That edition recommended averaging wind vector data by computing the arithmetic mean of the 
directions in degrees and using the result as the mean direction.  The arithmetic mean of the 
magnitudes was then computed and used as the mean magnitude.  This is an incorrect and 
ambiguous method for averaging vectors, as the following brief counter-example demonstrates.  
Assume there are two wind vectors of equal magnitude, one from 350T and the other from 010T.  
The arithmetic mean of these two values is (350 + 010)/2 = 180T or exactly opposite to the 
expected mean direction of 000T, assuming the wind veered or backed through 20 degrees and 
not 340 degrees.  This could explain the second result in the preceding paragraph.  The first 
result (upwind leeway) remains inexplicable. 
 
Another question for which there seemed to be no satisfactory answer was why SARIS would 
average 6-hour wind data over the entire drift interval when the drift computations were being 
done on a 5-minute time step to take advantage of the detailed current data.  It would seem more 
logical to use the wind vectors “as is” during their respective 6-hour intervals. 
 
Despite not passing the reversing wind “stress test,” the UK CG3 method as implemented in 
SARIS probably computes very good drift trajectories and search areas over the short time 
intervals typical of most UK SAR cases.  As long as wind directions and speeds do not vary too 
much, and do not pass through 000T, even the suspected incorrect vector averaging technique 
will not introduce too much error.  The main strength of the computerized version of the UK 
CG3 method clearly lies in the very detailed current data SARIS makes available to it. 
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Both the Maritime and Coastguard Agency representatives and the BMT representative present at 
the “live” demonstrations agreed that a stochastic Monte Carlo modeling approach would be a 
far superior tool as compared to the UK CG3 method as implemented in either SARIS version. 
 
6.3.5 USCG C2PC Automated Manual Solution (AMS) 

When this software was initially evaluated, a number of quirks and anomalies were discovered.  
These fell into four categories: 
 
The logical flaws inherent in the minimax technique, especially when applied to more than one 

drift interval, that were not dealt with effectively, 

Lack of documentation about the paradigm on which the software was based, leading to the 
evaluator entering inappropriate combinations of inputs (which were, nevertheless, accepted 
by the program and used to produce results that seemed to make no sense), 

Inappropriate computational techniques, and 

Programming errors. 

All problems were reported and documented via a number of electronic mail messages that 
resulted in corrective action.  Not all problems were solved, however.  The software will still 
accept combinations of inputs that are inappropriate to its paradigm and, as a result, will produce 
nonsense outputs in some cases.  Students at the U.S. Coast Guard National SAR School are 
taught “business rules” for using C2PC/AMS to avoid this shortcoming. 
 
C2PC/AMS is essentially a direct port of the earlier GDOC/AMM (Geographic Display 
Operations Computer/Automated Manual Method) from the GDOC environment to the C2PC 
environment.  The AMM was developed primarily as a proof-of concept prototype 
demonstration of the benefits GDOC’s GUI/GIS environment could provide search planners.  It 
was not intended to improve upon the manual method in any way in terms of improved drift 
estimates, improved use of the available data, or improved search plans. 
 
AMS has many GUI/GIS features that are useful for search planners.  In addition to detailed 
vector shoreline data, AMS can also display digitized nautical charts.  Unlike the Canadian, ASA, 
and U.K. tools, AMS does not have access to any detailed gridded current databases, although 
mean tidal current over the drift interval can be obtained from a commercial tidal data product 
packaged with AMS.  The user must enter either a single total water current, or a single tidal 
current and average sea current for the drift interval and possibly a single “other” current.  
Currents are assumed to be invariant over space and time.  Wind data are input by the user in six-
hour increments without any spatial dependencies.  A single average surface wind vector is 
computed from this data for the drift interval.  The wind data are used to compute an Ekman 
local wind current using the Mooney method described in the U. S. National SAR Manual 
[1991].  The mean local wind current for the drift interval is then computed and used.  Unlike the 
other automated versions of the manual method, AMS uses only one time-step – from the 
beginning of the drift interval to the end – when computing drift updates.  It does this by 
computing and using single mean values for each vector in the problem.  Thus AMS presumes a 
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perfectly homogeneous environment exists everywhere during the drift interval.  Therefore, the 
AMS drift solution will work well only where there are no significant variations in currents or 
wind within a large radius of the initial position during the drift interval. 
 
The U.S. Cost Guard’s Automated Manual Solution (AMS) allows the user to select several 
variables to which minimax may be applied.  Only one minimax variable at a time should be 
selected.  The minimax variable most commonly used is leeway divergence.  AMS computes two 
datums, two probable error circles, one large minimax circle and a circumscribed square search 
area just as in the manual extension to the CSPM discussed earlier.  The environmental data for 
an initial position is used for the first drift interval.  Data for the “min” and “max” datums can be 
input separately for subsequent drift intervals when the “min” and “max” datums are in separate 
locations.  Such data can also be input for the first drift interval where the “min” and “max” 
datums are initially at the same location.  However, this makes no sense in terms of the 
software’s logic and inappropriate computations result.  In fact, it is difficult to make sense of the 
“min” and “max” labels, especially in the case of leeway divergence and even more especially in 
drift intervals subsequent to the first.  This is because the labels do not actually denote the “min” 
or “max” of anything.  They are simply the names associated with the two datums and their 
respective drift trajectories.  Figure 6-5 shows a C2PC/AMS drift solution. 
 

 
Figure 6-5:  C2PC/AMS Drift Solution. 
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When subjected to the “stress test” of zero current and reversing winds, AMS computed a correct 
vector average magnitude for the wind of zero.  Depending on the orientation of the opposing 
wind vectors, the associated “direction” was either 000T or 180T.  Using the formula for the 
leeway of a life raft without a drogue, a leeway of 0.04 knots is computed.  (SARMAP also did 
this when the entered wind data was zero.)  Hence there was a small southerly displacement 
when the “direction” of the zero wind vector was 000T and a small northerly displacement when 
the zero wind “direction” was 180T.  Unlike SARMAP, the search area computed by AMS was 
very, very small since it computed a drift rate of virtually zero for the entire 12-hour period.  
This is one of the serious drawbacks of using average values over long distances and/or time 
periods when drift error is computed as a fraction of the distance drifted. 
 
In the above “stress test,” AMS could have been used to compute datums for the end of the first 
six-hour interval, and then these positions could have been re-entered as initial positions for the 
second six-hour interval.  In this case a quite sizable and more reasonable search area results.  
When used in this way, AMS addresses the potential problem of decreasing search area size due 
to the datums turning back toward the initial position as time passes in two ways.  First, the 
probable drift error for the second interval is simply added to the probable drift error of the first 
interval rather than using the standard formula from statistics.  (This technique was already in 
use in the U.S. manual method prior to AMS.)  Second, the software actually computes four 
datums for the second interval, two for the “min” datum (“Min_min” and “Min_max”) from the 
first interval and two for the “max” datum (“Max_min and “Max_max”).  One member of each 
pair is chosen based on maximizing the distance between the “min” and “max” datums at the end 
of the second interval.  This also means that at the end of the second interval, there is only one 
“min” datum and one “max” datum.  Therefore the same logic may be used again for the third 
and subsequent intervals.  Basically, once the datums have separated in the first drift interval, 
two minimax solutions are computed in parallel, each with its own environmental data set, and 
the most widely separated pair at the end of the interval (provided one is chosen from each 
“column” to prevent both from having the same origin), is then used to determine the next search 
area and chosen as the “min” and “max” starting points for the next drift interval. 
 
When AMS is used with shorter drift intervals in this fashion, the two simulated search objects 
may appear to jibe or tack downwind depending on which datums are chosen as “min” and 
“max” at the end of the interval.  Actual jibing behavior has been observed only rarely, if at all, 
in the leeway experiments done to date.  However, the experiments and methods of data analysis 
may have been biased against revealing instances of jibing.  Therefore, the actual frequency of 
jibing incidents for drifting search objects is presently unknown.  Recent simulations conducted 
at the U.S. Coast Guard R&D Center have revealed that jibing frequency is a critical element in 
determining the probability density distribution with respect to the downwind direction.  A high 
frequency will lead to a concentration of probability in the downwind direction while even a low 
frequency of jibing will significantly raise the probability in the downwind direction over what it 
would be if no jibing occurred.  It should be noted that jibing behavior, if it exists, will place 
search object leeway vectors on the line between the “left” and “right” datums and not beyond 
that line as simply applying the full leeway rate in the downwind direction would imply and as 
the CANSARP, SARMAP and UK_CG3 tools all presently compute.  However, dealing with 
jibing frequency and many other issues is completely beyond the capabilities of automated 
versions of manual methods. 
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Although breaking the desired drift interval into pieces to accommodate a large wind shift 
produced a more reasonable answer from AMS, it is still disturbing to have the same software 
give two such vastly different answers to the same problem.  This would not happen with 
SARMAP, for example. 
 
The AMS software basically has no “memory” when it comes to tracking the “min” and “max” 
datums from one interval to the next.  The user must copy the “min” datum position and time 
back into the “min” column of the initial position data sheet and likewise for the “max” datum 
position.  It would be relatively easy for the user to mistakenly reverse these and end up with a 
mismatch between the datum and the environmental data for that datum.  That is, the “min” 
datum could end up using the “max” datum’s environmental data and vice versa.  There are a 
number of other external “business rules” for using AMS that search planners must be taught and 
must remember in order to use the software correctly.  This indicates the software is poorly 
designed in terms of ergonomics and is therefore prone to incorrect usage. 
 
In coastal regions, a commercial program for computing tidal currents is included as part of the 
C2PC SAR Tools package.  This program uses the standard NOAA models, stations and 
correction factors.  C2PC can import tidal current information from this program and compute 
the mean net tidal current for the drift interval just as it is done by hand using the worksheets in 
the USCG Addendum to the National SAR Manual. 
 
Of all the automated manual methods examined, C2PC/AMS has to be rated as the poorest 
among them by a substantial margin.  It is the most literal, faithful, translation of the manual 
method into computer software, and therefore suffers all the limitations of late 1950’s pencil-
and-paper technology.  In terms of the computed drift trajectories, datums and resulting search 
area recommendations, it is significantly less capable in many important respects than the U.S. 
Coast Guard’s original search and rescue planning (SARP) program developed circa 1970 and 
abandoned in favor of CASP circa 1982.  Although SARP was basically an automated version of 
the manual method, even then it added some of the more obvious enhancements that a computer 
makes possible.  SARP permitted users to enter wind and current values with times for wind and 
positions for currents.  Intermediate datums were computed every hour and the environmental 
data values used for the next hour were taken from the data points nearest the intermediate datum 
time/position.  SARP also had access to environmental databases of gridded wind and current 
data.   
 
In contrast, AMS does not compute intermediate datums, not even for the synoptic wind intervals 
or tidal cycles.  Instead, it computes average values for the initial position over the time adrift 
and uses these to estimate where the object will go during that time.  Variations in the winds and 
currents over time and space as the drifting object moves along are ignored for up to 48 hours 
(the maximum AMS drift interval).  Early experience with both SARP and CASP showed that 
the shorter the time step and the higher the spatial and temporal resolution of the environmental 
data, the better the solution when compared to actual drift trajectories.  AMS has no provision for 
obtaining or using environmental data from automated sources or databases.  (Although this 
capability is planned for oceanic sea current climatology, it is difficult to see how AMS can use 
such data effectively given its current drift update algorithm.)  The user must enter all wind and 
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non-tidal current values by hand.  The AMS implementation of minimax from one drift interval 
to the next is clearly biased toward making the recommended search area as large as possible.  
This cannot help but waste large amounts of search effort.  When this is combined with the 
primitive computational method for drift updates, two successive drift intervals of 24 hours each 
do not necessarily produce the same result as one drift interval of 48 hours.  Four successive drift 
intervals of 12 hours each could produce yet another result in terms of the recommended search 
area.   
 
The problems just described raise an important issue.  Prior to the availability of computer-based 
search planning tools, the manual method given in the National SAR Manual was not a perfectly 
precise procedure to be followed blindly.  Instead, it provided guidance about what data the 
search planner needed to consider and instructions on specific mathematical procedures such as 
how to add and average vectors.  In some areas, the method was deliberately left somewhat 
vague or ambiguous to allow the search planner to use his/her experience, judgment, local 
knowledge, etc.  Environmental data was often taken from atlases and charts (e.g., pilot charts) 
where the search planner could see the approximate structure of currents (and prevailing winds) 
and how they varied from one place to another in the search object’s general vicinity.  Thus it 
was reasonably obvious when a single drift vector based on average values over a long interval 
was adequate and when it was not.  In the latter case, the search planner was allowed, and 
expected to exercise, the option of using several short drift intervals to account for changing 
currents and winds as the drift progressed.  Such atlases and charts have been largely replaced 
with digital products that are both less revealing (without an appropriate graphical computer-
screen display) and unavailable to C2PC/AMS.  This leaves search planners in a difficult 
position and makes the exercise of their judgment in deciding what data to use and how to use it 
considerably more difficult.  There is the very real possibility that a search planning solution 
from C2PC/AMS will not be as good as the earlier truly manual solutions were. 
 
In summary, C2PC/AMS does no more than literally automate an imprecise pencil-and-paper 
methodology.  Because software has no judgment capability, the ambiguities of the manual 
method were replaced with fixed, inflexible interpretations.   C2PC/AMS adds little or no value 
beyond that supplied by the GUI/GIS environment in which it operates.  It is just a fast and 
flashy way to get a solution no better, and quite possibly poorer, than that obtained by truly 
manual means. 
 
6.3.6 Summary of Automated Manual Solutions 

Although all of the automated versions of manual methods provide the search planner with some 
advantages, none can completely overcome the significant limitations of the pencil-and-paper 
techniques on which they are ultimately based.  Due to their short time steps and improved 
environmental data, CANSARP, SARMAP, and SARIS/UK_CG3 all generally provide increased 
accuracy in drift trajectory projections over manual methods when the initial position is 
accurately known, whereas C2PC/AMS does not.  Given the constraint of a single starting 
position and a very limited number of drift trajectories, it appears that CANSARP and SARMAP 
make the best use of the available environmental data and produce the most accurate drift 
trajectories and best search areas.  (SARIS provides very good current data to the UK_CG3 
method but that method’s use of the supplied wind data are suspect.)  In all cases, it is the 
GUI/GIS environments that support the automated manual solutions, rather than the automated 
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solutions themselves, that provide the greatest level of support to the search planner over and 
above the earlier pencil-and-paper methods.  It is important to avoid confusing the quality and 
sophistication of the solution with the quality and sophistication of the packaging it comes in. 
 
6.4 STOCHASTIC COMPUTER SIMULATION 

The CSPM and all of its derivatives, including the automated manual solutions, use an analytic 
approach to the search planning problem.  The basic technique in use is one where the mean 
(average, expected) location of the search object is estimated for the time of the next search, the 
probable error of that position is also estimated, and the probability density distribution of 
possible search object locations represented by these two values is assumed to be circular 
normal.  In other words, only two values are computed and used to define the search object 
location probability density distribution.  As we have already discussed, this technique is only 
valid under the simplest of circumstances.  Rarely do the circumstances of actual SAR cases 
meet the simplicity requirements of this technique. 
 
A much more sophisticated and flexible method is to simulate search object motion (both pre- 
and post-distress), search facility motion, detection, etc. as stochastic processes.  A stochastic 
process is one that contains some random variation.  Stochastic processes generally involve 
variables whose values are not precisely known or situations where the relationships among 
variables are not precisely known.  For example, search object drift is best modeled as a 
stochastic process because the values of the environmental forces causing the drift are not 
precisely known at any given moment and can vary in both predictable and unpredictable ways 
over space and time, giving a large number of possible combinations.  In addition, the object’s 
behavior in response to the environment, e.g., the relationship between leeway and wind, is only 
approximately understood and cannot be assigned a particular value with absolute certainty.  
These characteristics of reality lead to a large number of possible drift trajectories.  In human 
terms, simulating stochastic processes requires massive amounts of computations, putting this 
technique out of reach for manual use.  However, today’s relatively inexpensive desktop and 
even laptop computers possess sufficient computing and storage capacity to run quite 
sophisticated stochastic simulations in reasonable lengths of time, even for the SAR mission with 
its tight response-time constraints. 
 
The purpose of any simulation or simulator (e.g., a flight simulator) is to artificially mimic 
reality to the greatest degree of accuracy possible with the available technology and within the 
time constraints required to make the simulation results useful.  Trying to imitate almost any 
significant aspect of the real world involves a large number of interrelated variables.  A 
simulation uses the known interrelationships among the variables of a problem to build an 
imitative computer program.  In addition, random errors and variations in the values of the 
variables and the interrelationships among them are also included in the programming since 
random error and variation are facts of life.   
 
Once programmed, simulations can be used for a variety of purposes.  One purpose is predicting 
the future.  Models used to predict the weather are probably the most well known simulations of 
this type.  Simulations can also be used to evaluate different possibilities.  In recent years, global 
climate models have been used to evaluate and predict the effects of different predictions about 
future levels of “greenhouse gasses” and other variables on global warming.  Simulations also 



 

 
6-21

allow ideas and designs to be evaluated in a computer without actually building and testing a 
complex structure or machine.  Simulations are also extensible.  Since they are already designed 
to deal with large numbers of variables and interrelationships, adding another variable and set of 
relationships to the mix, while not a trivial undertaking, does fit the general paradigm.  This is 
generally not true of simple analytic approximations that deal with few variables.  For example, 
adding jibing frequency to the leeway computations would be a relatively easy enhancement to a 
stochastic simulation model like CASP, but it would be a very difficult proposition for any 
analytic model.  Attempts to extend the CSPM to deal with additional variables or even just a 
different distribution of possible values of an existing variable (e.g., leeway rate or leeway 
divergence) has proven very difficult due to the logical and computational problems with 
extending the CSPM paradigm to distributions other than circular normal.  From the perspective 
of logical consistency, making such changes to a computer simulation would be trivial in 
comparison to attempting similar modifications of analytic methods.  In short, while simple 
analytic methods are adequate for simple problems, when solutions or predictions are needed for 
situations of any significant complexity, the tool of choice is very often computer simulation.  
Since maritime search planning is often a very complex problem, it is not always amenable to 
simple solutions.  Computer simulation techniques are much more appropriate. 
 
6.4.1 Monte Carlo Modeling (CASP 1.x) 

One of the most common and easily explained methods for simulating stochastic processes is the 
Monte Carlo method.  It derives its name from the city of Monaco that is famous for its casino 
where games of chance are played.  A Monte Carlo simulation works by sampling randomly 
from each individual variable’s distribution of possible values and randomly varying the 
relationships among the variables within known limits.  Although it is not an exact analogy, we 
could say that a variable’s exact value within the possible range is based upon a roll of the dice.  
All samples are independent of one another.  The sample values are then combined in an 
appropriate fashion to generate a sample outcome.  If the numbers of samples are large enough, 
then the distribution of sample outcomes is representative of the real-world distribution of 
possible outcomes. 
 
Figure 6-6 below shows how a random sample sea current is determined in a Monte Carlo model 
when the mean sea current and its probable error are known.  In Figure 6-6 a mean sea current 
vector of 030T/1.0 knot is shown with a circular normal distribution of 500 points centered on 
the “head” of the vector.  The probable error of this distribution is 0.3 knots. 
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Figure 6-6.  Obtaining a Sample Sea Current Vector. 

 
 
 
Each point’s x- and y-coordinates were chosen independently and at random using a 
computerized pseudo-random number generator that produces a normal distribution of values.  
Each dot represents where the “head” of a randomly selected error vector would fall in this 
particular run of the simulation.  We have shown one such error vector.  When this error vector is 
added to the mean sea current vector, the resultant is a sample sea current vector that will be used 
to compute a sample drift velocity.  A sample drift velocity is found by drawing independent 
samples from the wind, wind current, other currents (if present), and leeway in the same basic 
fashion and then adding these sample vectors in the usual manner to obtain a sample drift rate 
and direction.  This sample drift velocity is then multiplied by the appropriate amount of time to 
obtain a sample drift distance from which a sample drift position may be computed.  A large 
number of sample positions computed for a specific point in time will provide a good 
approximation of the probability density distribution of possible search object locations. 
 
Note:  Wind current and leeway have two sources of error.  One source is the uncertainty about 
the exact value of the wind vector used to compute them.  The other source is the uncertainty 
about the relationships between the wind and the leeway and wind current.  A sample wind is 
drawn in exactly the same way as illustrated for sea current in Figure 6-6.  Then this sample 
wind is used to generate wind current and leeway vectors.  In each case, an additional error 
vector is drawn at random from the uncertainties about the relationships between the wind and 
the leeway and wind current vectors that would still exist even if the wind’s exact value were 
known.  The respective error vectors are then added to the leeway and wind current values 
computed from the sample wind to get sample leeway and wind current vectors. 
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The U.S. Coast Guard’s Computer Assisted Search Planning (CASP) system uses a Monte Carlo 
technique for simulating search object drift as a stochastic process.  CASP initially distributes 
simulated search objects, called “replications” or “reps” for short, according to parameters 
entered by the search planner.  Three basic distribution types are available and may be used 
alone or in combination: 
 
Distributions about a point (circular normal, just as in the CSPM), 

Distributions along a track line (uniform along the track, normally distributed to either side of 
track), and 

Distributions contained within a specified polygonal area (uniformly distributed throughout the 
area). 

 
Each replication is “tagged” with the following information: 
 
Present position (latitude, longitude, time of position), 

P-fail (probability of non-detection to date), 

Last position that was based on analysis (“actual”) environmental data vice forecast data and the 
P-fail value at that time, 

Status (drifting, temporarily aground, aground, underway) and 

Target ID (type of search object it represents), Location ID (the location data set used to specify 
one of the above types of initial distributions), and Situation ID (identifies the combination of 
search object and location used to generate the rep). 

 
Note:  Temporarily aground means a drifting replication encountered land based 
on a drift trajectory that used forecast environmental data.  All drifting and 
temporarily aground replications have their drift trajectories since the time of the 
last analysis position re-computed when forecast data are replaced by analysis 
data. 

 
Replications are stored sequentially in files in the order that they were initially generated.  In 
outline form, the CASP drift update sequence is: 
 
1. Read the next rep from the input file. 

2. Based on the rep’s position in space and time, obtain the appropriate environmental data. 

3. Draw an independent random sample from each pertinent environmental parameter. 

4. Compute wind current and leeway from the sample wind. 
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5. Draw sample leeway and wind current errors, and compute sample wind current and leeway 
vectors. 

6. Compute the vector sum of the sample leeway and all sample current vectors to obtain a 
sample drift velocity for this rep. 

7. Using this sample drift velocity, compute a new position for this rep for the next whole hour 
in simulated time, or the desired simulated time for producing a probability map, whichever 
is earlier. 

8. Update the rep’s current position tag (latitude, longitude, and time) and, if appropriate, its last 
analysis position tag. 

9. Until the desired simulated time is reached, return to step 1 and repeat this sequence. 
 
Figure 6-7 shows a CASP 1.x drift solution displayed with the aid of the C2PC/CASP interface 
and GIS.  Note that the variation in current speeds from west to east across the Gulf Stream is 
clearly visible due to the level of detail in CASP’s on-line data files.  Also note that the 
distribution does not even remotely resemble a circular normal probability density distribution. 
 

 
Figure 6-7.  CASP 1.x Drift Solution. 
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The “hotter” colors in Figure 6-7 represent cells with higher probability densities while cooler 
colors represent cells with lower probability densities.  From highest to lowest probability 
density, the colors are bright red, dark red, orange, yellow, green, blue and gray.  The computed 
probabilities of containment for each of the cells may also be displayed numerically.  The ranks 
of the cells may also be displayed, with cell number one (1) being the one with the highest 
probability density.  Most of the search planning information contained in the CASP 1.x 
probability map shown in Figure 6-7 would be missing from all of the automated manual 
solutions.  Furthermore, their recommended search areas would almost certainly fail to include 
some high probability cells while at the same time including some areas with little or even no 
probability of containing the search object.  The result would be wasted search effort and a 
significantly increased risk of not locating the search object. 
 
When searching has been done, then the distribution is updated for drift as of the mid-search 
times for each search sub-area, and all the P-fail values of reps that are inside the search sub-area 
at that instant are adjusted according to the POD computed for that search sub-area. 
 
The power of the Monte Carlo method lies in the large numbers of replications it uses.  The 
present version of CASP can accommodate up to 20,000 replications per situation, and a single 
case can have multiple situations to represent different interpretations of the available data.  
These situations can also be weighted according to the search planner’s assessment of which are 
more likely to represent the true situation and which are less likely, but still possible.  These 
weights will be reflected on probability maps that display the results of combining the situations 
to assess where a search object is most likely to be found.  The quality of the simulation can 
always be improved by the simple expedient of adding more replications, until the required 
computing time becomes excessive. 
 
There are also other advantages.  Because of the large numbers of replications, CASP is able to 
take full advantage of high-resolution gridded environmental data.  The CSPM-based methods 
can, at best, draw environmental data from only one or two (in the case of minimax) locations at 
one time and in those instances it is restricted to using only the mean value.  Automated versions 
of manual methods can do only slightly better.  CANSARP, for example, computes eleven 
“datums” based on a uniform distribution of leeway divergence angles, so it is possible for 
CANSARP to use mean values from at most eleven different locations.  In all manual and 
automated manual methods that compute multiple datums from a single starting point, 
environmental values from different locations will be drawn only after enough time has elapsed 
for the datums to separate.  No matter how much uncertainty there is in an initial position or how 
much area the initial distribution covers, or how the environmental data may vary from place to 
place within that area, only mean values for the initial datum can be used initially.  CASP, on the 
other hand, initially distributes tens of thousands of replications in the region of space and time 
where the incident could have occurred.  Each replication draws data from its own individual 
location in space and time right from the start and continues to do so throughout the simulation. 
 
Another advantage to simulation techniques is flexibility.  For example, adding “survivability” to 
CASP would only require adding another tag to the replications, adding any necessary 
environmental data (e.g., mean water temperature and its probable error) to the environmental 
files, and adding the necessary logic to utilize that data (e.g., survivability vs. water temperature 
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curves).  This would also allow CASP to recommend optimal survivor search plans that 
maximize the probability of finding survivors alive.  It is also possible to add the modeling of 
transitions from one type of search object to another.  For example, survivors might stay with a 
vessel for some time following the distress incident, then abandon ship into a life raft, and then 
be thrown from the raft into the water by rough seas.  This is the multi-state search problem 
described in Chapter 2.  Search craft motion could be added to the CASP model along with more 
detailed modeling of detection probabilities to show the true effects of the relative motion 
between search objects and search craft.  This would help determine whether a particular subset 
of the possible drift trajectories was ineffectively covered by a given search.  The search planner, 
once alerted to such a problem, could then plan effective countermeasures if significant amounts 
of probability were involved.  Algorithms that produce optimal search plans for stochastically 
moving objects (like search objects adrift) are now available and could be added to CASP as an 
improvement to the current static “snapshot” method of optimization.  All of these capabilities 
are quite beyond those that are possible for any manual or automated manual method. 
 
Taking the flexibility issue a step further, a CASP or CASP-like tool could be modified and 
improved to support certain non-SAR mission areas of the Coast Guard.  For example, some 
parts of the Coast Guard already have the ASA OILMAP/ARCVIEW® as a backup for NOAA 
software in support of the Marine Environmental Protection (MEP) mission area.  The 
similarities between ASA’s (and NOAA’s) approach to oil spill trajectory modeling and CASP’s 
modeling of search object trajectories are striking.  The very same framework and concepts 
support both and there is good reason for combining them.  The changes needed to make CASP 
usable in this realm would amount to adding motion models for oil and hazardous chemicals 
(including appropriate dispersion modeling) and a few MEP-specific inputs.  Where “landed” 
replications are basically discarded for SAR purposes, they would be of primary interest to MEP 
as they would be used to compute the probabilities of an oil or hazardous chemical spill coming 
ashore, where, and in what concentrations.  SAR would benefit by making CASP usable in the 
near-shore environment.  The Coast Guard as a whole would benefit from a reduced training 
burden and increased standardization as about 90 percent of the user interface would be the same 
for both applications.  A similar argument can be made for CASP support of law enforcement 
search and surveillance missions and patrols.  (In fact, CASP 1.x does have a “law enforcement” 
module but it seems to be used only rarely, if at all.  Probably its existence is not widely known.)  
In all cases, a CASP-like tool could be used as both a tactical decision aid to deal with on-going 
situations and as a strategic aid to plan and evaluate different strategies and evaluate specific 
tactical responses to various kinds of situations.  In particular, an enhanced CASP-like tool could 
be used to evaluate different search and surveillance patterns, patrol routes, etc. 
 
6.4.2 CASP 2.0 

CASP 2.0 could not be evaluated because it was never completed and no functioning version 
exists.  However, Soza & Company, Ltd., performed an evaluation of those CASP 2.0 software 
modules delivered to the Coast Guard in 1996 [SOZA 1996].  The evaluation showed that 
CASP 2.0 addressed many of the limitations and shortcomings of CASP 1.x.  It also 
implemented new or extended capabilities.  For example, Brown’s algorithm for planning 
optimal searches for moving search objects was implemented.  It appeared that the relative 
motion between search craft and search objects was correctly simulated and that the effects on 
search effectiveness and post-search probability density distributions were correctly computed. 
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Unfortunately, CASP 2.0 also had some serious problems of its own.  These problems were 
primarily related to the way the software was developed and the way the project was managed.  
The greatest difficulty was that the software consisted of modules from an ASW application the 
developer had already completed.  These were modified and cobbled together in ways that made 
reliable future enhancement and maintenance of the software almost impossible.  From a 
software engineering perspective, CASP 2.0 was a complete “kludge” of poorly matched 
elements originally intended for other purposes.  Nevertheless, the partially completed CASP 2.0 
work was a successful proof-of-concept for many needed CASP 1.x improvements.  Although 
CASP 2.0 was never completed, many valuable lessons were learned that will be useful in future 
development of search planning decision support tools. 
 
6.4.3 Other Simulation Techniques 

The Monte Carlo method is not the only technique that may be used in SAR and other 
applications involving stochastic processes.  Another technique uses Markov chains where the 
transition probabilities for an object in one cell in a grid to move to each of the eight surrounding 
cells are computed and used to modify probability maps.  The Ocean Prediction System, 
primarily designed to assimilate environmental data from a variety of sources into a single 
coherent picture, uses objective analysis and an adaptation of the Fokker-Planck equation to 
predict wind and current statistics from the assimilated data.  There are other techniques as well 
that can be adapted to the search planning and other problems just cited.  However, these are 
generally more esoteric and require more knowledge of higher mathematics to implement and 
maintain than a Monte Carlo method does.  Much of a Monte Carlo simulation is simply 
repeated applications of a relatively simple model based on a large sampling from the statistics 
of the various model parameters.  For example, anyone familiar with the CSPM would find the 
CASP 1.x drift update computations for any single drift trajectory quite recognizable. 
 
6.4.4 Matrix Summary of Search Planning Tools 

The results of the search planning tool evaluations are summarized in the matrix below.  The 
ratings shown again make it very clear that simulation techniques have many substantial 
advantages over analytic approaches. 
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Capability  

Tool => CASP 1.x C2PC/AMS CANSARP SARMAP SARIS 

Modeling Technique Monte Carlo Analytic Analytic Analytic Analytic 
Datum Types Point, Track Line, 

Area, Combination
Point Point Point Point, Points on a 

Track Line 
Representation of 
Initial Situation 

Tens of thousands 
of simulated 
search objects 
distributed in 
space and time 

Two simulated 
search objects at 
one position and 
time, one with 
“left” leeway 
divergence, the 
other with “right” 
leeway divergence 

Eleven simulated 
search objects at 
one position and 
time with uniformly 
distributed leeway 
divergence angles 
between “left” and 
“right” values 

Three or six 
simulated search 
objects at one 
position and time, 
with one each for 
“left,” zero, and 
“right” leeway 
divergence and up 
to two leeway rates 

Three simulated 
search objects at 
one position and 
time, with one each 
for “left,” zero, and 
“right” leeway 
divergence 

Drift Updates Tens of thousands 
of independent 
drift trajectories 
based on sampling 
from uncertainties, 
one-hour time-step 

Two mean drift 
trajectories, single 
time-step equals 
length of the drift 
interval 

Eleven mean drift 
trajectories, one-
hour time-step 

Three or six mean 
drift trajectories, 
variable time-step 
down to one minute 

Three mean drift 
trajectories, five-
minute time-step 

Use of 2nd-Order 
Statistics 

Excellent Poor Poor Poor Poor 

Use of High-
Resolution 
Environmental Data 

Excellent None Good Good Moderate 

Land Recognition Yes No Yes Yes Yes 
Post-Drift Probability 
Distributions on 
Search Object 
Location  

Computed 
generalized 
distribution based 
on search object 
type(s) and the 
distributions of 
environmental data 
uncertainties. 

Assumed circular 
normal.  Locations 
of centers based on 
mean 
environmental data 
values.  Probable 
error based on 
distance drifted. 

Assumed circular 
normal.  Locations 
of centers based on 
mean 
environmental data 
values.  Probable 
errors based on 
distance drifted. 

Assumed circular 
normal.  Locations 
of centers based on 
mean 
environmental data 
values.  Probable 
error based on 
distance drifted. 

Assumed circular 
normal.  Locations 
of centers based on 
mean 
environmental data 
values.  Probable 
error based on 
distance drifted. 
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Capability  

Tool => CASP 1.x C2PC CANSARP ASA SARIS 

Probability Maps Yes No No No No 
Optimal Search Plans Yes (Static) No No No No 
Computed POS of 
Search Plan (Search 
Effectiveness) 

Yes No No No No 

Computed Cumulative 
POS (Effectiveness of 
all Searching to Date) 

Yes No No No No 

Proper Use of 
Previous Search 
Results to Plan Future 
Searches 

Yes No No No No 

Accounts for Effects 
of Relative Motion on 
Search Effectiveness 

No No No No No 

Multiple Weighted 
Scenarios/Situations 

Yes No No No No 

Adaptability to Non-
SAR USCG Missions 

Optimal tactical 
and strategic 
search and 
surveillance plans 
for law 
enforcement,  
hazardous 
chemical spill 
trajectory 
prediction, and 
risk analysis. 

No significant 
potential benefit to 
other USCG 
missions 

No significant 
potential benefit to 
other USCG 
missions 

No significant 
potential benefit to 
other USCG 
missions 

No significant 
potential benefit to 
other USCG 
missions 
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6.5 OTHER SEARCH PLANNING DECISION SUPPORT TOOLS 

Other tools mentioned in the statement of work were the Ocean Prediction System (OPS) and the 
Search Master/Case Master system under development in Canada.  These tools were not 
evaluated because neither currently has a search planning module.   
 
The primary purpose of OPS is to assimilate environmental data from a variety of sources to 
create a meaningful, accurate, and comprehensive environmental picture for search planning and 
other tools to use.  While some of its techniques could be adapted to search planning, a detailed 
analysis of how this might best be done was beyond the scope of this project. 
 
The Search Master/Case Master tool was viewed at Canada’s SARSCENE 99 conference in St. 
John’s, Newfoundland at the developer’s vendor booth during the conference.  There it was 
learned that no search planning modules were yet in place.  However, it was planned to interface 
CANSARP with Search Master/Case Master as the search planning module.  The possibility of 
similar interfaces to other search planning tools, based on client desires, was left open. 
 
6.6 CASE MANAGEMENT TOOLS 

No case management tools were provided for evaluation, but brief demonstrations of two such 
tools were obtained.  Both were adaptations of COTS software packages.  One of the tools, 
Search Master/Case Master, had already been evaluated by the U.S. Coast Guard Atlantic Area 
Command Center. 
 
There is no doubt that Command Centers/RCCs and the U.S. Coast Guard as a whole could 
benefit greatly from having a standard electronic case management system in place.  Maximum 
benefit would be obtained by using it for all types of “cases,” not just SAR.  The Atlantic Area 
evaluation of Case Master was very positive.  Their concurrent evaluation of the C2PC/AMS 
software was clearly negative, mainly because of its poorly designed user interface and its 
complete lack of case management capabilities.  Because Case Master is already set up to aid in 
SAR case management, reporting and data collection, the modifications needed to adapt it for 
USCG SAR and other mission area case management needs are minimal. 
 
The other case management tool investigated is under development by DoD’s Joint Personnel 
Recovery Agency.  It is based on the GEM® product from Electronic Information Systems, Inc.  
This COTS software is being tailored to meet specific DoD needs in connection with recovering 
personnel under hostile conditions, i.e., combat SAR.  It is being designed to work with DoD 
databases, some of which may be classified, that contain information pertinent to recovery 
operations.  Specifically, it is touted as an information management system for personnel 
recovery.  It helps the mission coordinator collect, organize, filter and distribute information.  At 
present, it is geared primarily toward recovery of aircrews shot down behind enemy lines, 
particularly fighter pilots.  Types of information include identifying features of the downed pilot, 
the pilot’s evasion plan of action (a completed form left on file), management of isolated 
personnel reports (ISOPREPs), authentication data (e.g., question, answer sequences to ensure 
the person recovered is not an enemy in the missing person’s clothes), etc.  Although the basic 
GEM software could be adapted to meet U.S. Coast Guard needs, the DoD personnel recovery 
management version is not suitable for U.S. Coast Guard use. 
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CHAPTER 7. 
 

CONCLUSIONS AND RECOMMENDATIONS 

 
This report describes the developments in the field of search theory from its origins during 
World War II to the present day. The principles of search theory were first applied to SAR 
planning when an unclassified version was published around 1957.  To apply search theory to 
practical SAR planning problems, since computers were not then widely available, compromises 
and simplifications to search theory had to be made to develop a method feasible for hand 
calculations.  This became known as the “classical search planning method” (CSPM), and it 
remains the basis for search planning support tools today.  The Search and Rescue Planning 
(SARP) system, the first implementation of search planning support on computers, occurred 
around 1970, well before the microcomputer age.  SARP was basically a computerized version 
of the then current version of the modified CSPM with somewhat improved use of environmental 
data and drift computations over purely manual techniques.  A few years later SARP was joined 
by the Computer Assisted Search Planning (CASP) system that took a computer simulation 
approach to the search planning and evaluation problem.  
 
Unfortunately, Coast Guard SAR search planning support tools have not kept up with 
technological advances in three important respects.  First, they have not kept up with advances 
made in search theory and algorithm development that are relevant to the practical application of 
search theory using computer simulation.  Substantial advances in search theory applicable to 
SAR and other U.S. Coast Guard missions have been made in the 25 years since CASP’s initial 
implementation, but little has been put into practice.  Advances include Brown’s algorithm for 
moving search objects and Stone’s Generalized Search Optimization (GSO) technique that can 
also accommodate changes in the state of the search object.  The oversimplified nature of manual 
and automated manual methods does not permit any significant advances or benefits to be 
realized in this area. 
 
Second, modifications made to the CSPM over time to make it applicable to typical, complex 
search scenarios are inconsistent with the basic theory.  The original CSPM was a scientifically 
based, carefully designed, and well-integrated analytic method that was appropriate for the 
technology and data available at the time of its implementation in 1957.  However, due to the 
technological limitations of the time, it could adequately address only the simplest of SAR 
incident scenarios.  A few restrictions to keep the problem simple include a known incident 
position and time in an area of constant wind and current with a specific level of search effort 
applied in a perfect pattern relative to the drifting survivors.  Later, attempts were made to extend 
the methodology to more typical, and more complex, situations.  Unfortunately, the connection 
between the basic methodology and the principles of search theory seems to have been lost 
sometime after 1963.  As a result, a number of sub-optimal “field modifications” were made that 
are inconsistent with the underlying theory.  The most notorious of these modifications is the 
Min/Max technique, which violates some of the basic underlying assumptions of the CSPM and 
the scientific principles on which it was based.  Partial attempts to rectify this situation, like the 
mid-point compromise, were not always improvements.  
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Third, and most importantly, the tools have generally not kept pace with the significant increases 
in the amount, level of detail, or accuracy of environmental data products or with new 
knowledge about drift behavior (particularly leeway) or detection.  Manual methods and their 
automated versions are poorly matched to the large amounts, high quality and detailed resolution 
of environmental, detection, leeway behavior and other data now readily available.  While CASP 
is reasonably up-to-date with respect to offshore environmental data products, it has never had 
access to the data it needs in the coastal environment where most SAR cases occur.  Likewise, 
CASP does not contain the latest leeway parameters nor does it make best use of the detection 
information obtained in the Coast Guard’s sweep width experiments.   
 
These shortcomings are evident in the four current computerized SAR planning support tools 
(U.S., Canadian, British) based on the manual method.  All suffer from the limitations of the 
CSPM and its subsequent modifications in terms of the search plans they can provide.  The Coast 
Guard’s C2PC/SAR Tools Automated Manual Solution suffers the most in this regard because it 
is the most faithful to the manual technique.  The other three similar tools provide considerable 
improvement in the availability and use of environmental data for drift computations.  Despite 
this, none of these manual-based tools can make reasonably complete use of today’s detailed 
environmental data products when compared to computer simulation techniques such as the 
Monte Carlo method employed by CASP.  
 
CASP 1.x is the most capable search planning tool available in the world today, but only because 
it is the only one that even attempts to use simulation techniques.  The basic framework of 
CASP’s design is more than 25 years old and even then, it was severely limited by the obsolete 
computing environment in which CASP was forced to operate.  As a result, many of the benefits 
of simulation technology have not been realized.  In short, CASP 1.x is a simulation, but it is a 
primitive implementation of a sophisticated methodology and many key elements are still 
missing.  
 
In more recent years, the greatly increased availability of inexpensive but powerful 
microcomputers with high-resolution color geographic information systems has made 
sophisticated near-real-time computing support both a reality and a normal expectation.  Merely, 
programming powerful workstations to emulate the hand calculations of the manual method—a 
technique developed to get around the lack of computing capability in the 1950’s—is 
unconscionable. Nevertheless, the Coast Guard currently uses more sophisticated techniques to 
predict oil spill trajectories and perform risk analyses than for matters of life and death.  
 
The chances of a survivor’s continued survival decrease rapidly with time while the risk to 
searchers and the cost of the search increase with time.  Therefore, the primary objective of any 
search plan is to maximize the chances for finding the survivors sooner rather than later with the 
available search resources.  An optimal search plan is one that produces the maximum 
probability of success in the minimum amount of time. Based partly on CASP’s success, the 
U. S. Navy eventually developed a program to support search and surveillance operations to 
monitor Soviet submarine activity that incorporated later developments in search theory and 
related algorithms.  Analysis of the results obtained from using this program showed a 
remarkable doubling of search effectiveness as compared with previous methods using exactly 
the same search platforms, sensors, and crews.  That is, using a search theory approach to their 
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tactical deployment and use made the same resources twice as effective.  This kind of result 
shows the importance of maintaining a scientifically sound approach to search planning. By 
continuing to use a search method that contains the above mentioned errors and inaccuracies, the 
Coast Guard has decreased effectiveness while increasing costs.  
 
It is recommended that the Coast Guard’s SAR planning theory be corrected and that stochastic 
analysis be the primary method for executing search plans. The U. S. Coast Guard needs and 
deserves a new computer simulation-based search planning support tool that takes full advantage 
of the advances in these areas to ensure efficient, effective use of expensive search resources. 
Those awaiting rescue deserve the time advantage such a planning support tool can offer. 
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