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Abstract – In 1974 the U.S. Coast Guard put into 

operation its first computerized search and rescue 

planning system CASP (Computer-Assisted Search 

Planning) which used a Bayesian approach 

implemented by a particle filter to produce probability 

distributions for the location of the search object. These 

distributions were used for planning search effort.  In 

2003, the Coast Guard started development of a new 

decision support system for managing search efforts 

called Search and Rescue Optimal Planning System 

(SAROPS).  SAROPS has been operational since 

January, 2007 and is currently the only search planning 

tool that the Coast Guard uses for maritime searches.  

SAROPS represents a major advance in search 

planning technology.  This paper reviews the technology 

behind the tool. 

Keywords: search, Monte Carlo simulation, particle 

filters, optimization, Bayesian 

1 Introduction 

The U.S. Coast Guard’s Search and Rescue Optimal 

Planning System (SAROPS) is the successor to the 

Computer-Assisted Search Planning (CASP) System.  

Both programs use a Monte-Carlo based simulator 

(particle filter) for developing probability distributions 

(maps) for the location of objects missing at sea, and both 

programs aid in search planning. 

 Based on the principles in [1], CASP [2] was 

developed in the early 1970s and deployed in 1974.  Since 

CASP was developed, computer capability has improved 

dramatically which has allowed SAROPS to use more 

accurate environmental and object motion models in its 

simulation and to recommend operationally feasible 

“optimal” search plans.  SAROPS provides a greatly 

improved user interface that presents results on 

geographic maps which incorporate environmental data 

products not available when CASP was developed.  

Development on SAROPS started in October, 2003, and 

version 1.0 was deployed in early 2007. 

1.1  Basic Components of SAROPS 

There are four basic components of SAROPS:  The 

Environmental Data Server (EDS), simulator (SIM), 

search Planner, and Graphical User Interface (GUI). 

 EDS.  SAROPS requires environmental estimates in 

order to account for possible drift of the search object and 

to estimate the detectability of the object by various 

search sensors, e.g., visual and radar.  Estimates of ocean 

currents and winds are needed to account for drift and 

leeway of search objects.  Wave height, cloud cover, sun, 

and rain all affect the detectability of search objects.  

Water temperature is used to estimate survival times.  The 

EDS provides the data on appropriate spatial and temporal 

grids to cover the area and time period of interest. 

 SIM.  The simulator uses information about the time 

and last known position of the search object and 

information about its intentions, to produce probability 

distributions (maps) for the object’s location using a 

particle filter where each particle represents a possible 

path for the search object.  The particle filter takes into 

account drift using estimates of winds and currents 

provided by the EDS.  SIM includes information about the 

object’s intended path, areas where trouble is likely to 

occur, areas where searches have already occurred, and 

other considerations.  It incorporates information from 

unsuccessful searches in a Bayesian fashion.  This 

information is used to produce a probability distribution 

on the particles i.e., paths.  The collection of particles and 

their weights define the object location distributions as a 

function of time. The distribution for a selected time is 

displayed as a set of rectangular cells with the 

probabilities associated with each cell indicated by a color 

scale. 

 Planner.  In the typical cycle, SIM produces a 

probability distribution for the object’s location at the time 

of the next search.  The Planner uses this distribution 

along with a list of assigned search assets to produce 

operationally feasible search plans that maximize the 

increase in probability of detecting the object. 

 After the search takes place, and if it is unsuccessful, 

SIM will produce a posterior probability map for object 

location that accounts for the unsuccessful search and the 

possible motion of the object.  This distribution provides 

the basis for planning the next increment of search.   

 In subsequent sections, we describe SIM and the 

Planner.  The EDS and GUI are not discussed in detail in 

this paper. 



2  SIM 

The U.S. Coast Guard planning process calls for 

information about the location and movement of the 

search object to be collected into scenarios.  The 

information is often inconsistent but tends to form itself 

into sets of consistent information that we call scenarios.  

Each scenario tells a “story” about what may have 

happened to the object. 

 The simplest scenario is defined by a last known 

position (LKP) and a time which specify where and when 

the distress incident is believed to have occurred.  It is 

useful to consider this example for the discussion on 

scenarios in the rest of this section.  The next section 

discusses this and other scenarios in more detail. 

 Uncertainties in the scenario information are 

quantified by probability distributions.  On the basis of 

these uncertainties and probabilistic models of drift, SIM 

produces a Monte Carlo set of paths for each scenario.  

Each path has a weight or probability assigned to it.  

These paths comprise a discrete sample path 

approximation to the stochastic process that represents the 

object’s position and motion over time.  Note the sample 

paths or particles move through time and space 

continuously.  It is only the space of sample paths that is 

discrete.   

 Each scenario is given a weight by the user and the 

weights add to 1.0.  The user can choose to have 2,500, 

5,000, or 10,000 particles per scenario.  The collection of 

weighted scenarios forms the prior distribution for object 

location and type.  Type is discussed later.  Information 

from unsuccessful searches is incorporated into the 

weights on the particles in a Bayesian manner as 

discussed below.  The updated weights or probabilities on 

the particles form the posterior distribution that is used by 

the Planner. 

 Probability maps are displayed in grid cells in the 

SAROPS’ GUI, but the particles and their weights form 

the actual distributions, and these are used by the Planner. 

 There are many parts to SIM, but we will 

concentrate on the notions of scenario, hazard, previous 

searches, and the effects of the currents and winds on the 

distribution of the particles. 

2.1 Scenario and Pre-Distress Motion 

SIM considers two types of motion, pre-distress and drift.  

The former models what the object did while it was in 

control and navigating, and the latter models the motion of 

the object when it has no power and simply moves 

according to the currents and winds.  SIM models both 

types of motion, as well as the transition from pre-distress 

to drift. 

 The pre-distress motion is modelled by scenarios.  

SAROPS has several templates, called scenario-types, 

which the user can choose for defining a scenario.  Each 

scenario-type has a set of parameters whose values must 

be specified. 

 In an LKP scenario, there is no pre-distress motion.  

The parameters specify the starting position and time of 

the drift.  Hence, the only parameters for an LKP scenario 

are the position, position uncertainty, time of distress, and 

the time uncertainty.  SIM uses the position and position 

uncertainty to create a bivariate normal distribution and 

random draws are made from this distribution for the 

starting position of the drift.  In addition a normal 

distribution for distress incident time is created from the 

time uncertainty parameters.  For each position draw, a 

draw is made from the time distribution.  These draws 

determine when and where a particle starts its drift. 

 A second scenario-type is the “Area Scenario,” or 

simply “Area.”  The difference between this scenario-type 

and the LKP, is that the initial position of the drift is 

drawn from a region bounded by a polygon and the 

distribution of the starting points is uniform over this 

region.  Hence, the parameters for an Area Scenario are 

identical to those of an LKP scenario, except that the 

initial position is determined by the corners of a polygon.  

Again, there is no pre-distress motion. 

 In SIM, position draws from a uniform 2-

dimensional polygon are made in the following way.  Let 

us designate the two axes as x and y. For a polygon P , 

SIM computes the cumulative marginal distribution 

function along the x-axis and the inverse of this function.  

These functions are denoted xcdf  and 1

xcdf −  respectively.  

For each x , SIM computes the cumulative distribution 

function along the y axis given x and its inverse; these are 

denoted |y xcdf  and 1

|y xcdf −  respectively. 

 In this paper, all 1-dimensional uniform random 

variables are uniform over the interval [0,1] .  Given the 

functions of the previous paragraph, and two independent 

uniform random numbers 1u  and 2u , SIM obtains the 

point 1 1( , )x y  inside P  by letting 1

1 1
( )

x
x cdf u−=  and 

1

1

1 | 2
( )

y x
y cdf u−= . 

 There are two reasons for using this method, rather 

than simply drawing a pair of uniform random variables 

from the smallest enclosing rectangle and discarding the 

resulting point it if it is not within P .  The first reason is 

that P  might be a tiny part of the enclosing rectangle.  

This would happen if P  were used to model a small strip 

of water surrounding an island.  In this case, a great many 

draws would be necessary to create a single draw within 

the polygon, and performance would suffer. 

 The second reason involves the scenario-type 

voyage, which is the next scenario-type discussed.  That 

scenario-type requires some “correlation” between two 

position draws, and the mechanism set up above allows us 

to incorporate this correlation. 

 Note that the use of inverse cumulative distribution 

functions, as outlined above, will always produce 

correctly distributed draws for positions, no matter what 

the underlying distribution is.  Here, it was used for a 



uniform polygon, but it will work for any distribution for 

which 1

x
cdf −  are 1

|y xcdf −  are available.  In fact, SIM uses 

this technique to make bivariate normal draws. 

 The voyage scenario-type is the first one for which 

there is pre-distress motion.  In the manner discussed in 

section 2.2 below, a random time is drawn for each 

particle to determine when pre-distress motion ends and 

drift begins. Drift is modelled as with the previous two 

scenarios. 

 The pre-distress motion of a particle in a voyage 

scenario is determined as follows.  A voyage is defined by 

a set of regions determined by polygons or circles as 

shown in Figure 2.1.  To draw a single path, SIM 

randomly selects points from these regions and connects 

them. 

 
Figure 2.1. Voyage Scenario 

 It is important that the draws from each of these 

regions correctly adhere to their respective distributions.  

However, these draws cannot be independent of each 

other.  If they were, there would be an unfortunate and 

unintended effect called “hour-glassing.”  To illustrate, 

consider Figure 2.2. 

 In this figure, random points are independently 

drawn from the two regions and connected.  Since roughly 

half the time the draws will cross over the middle, this 

produces an inordinately high density of “traffic” near the 

center of the path connecting the two regions.  To avoid 

this, SIM uses scdf , as discussed above.  The x  and y  in 

that discussion are perpendicular and parallel to the line 

connecting the centers of mass of the two distributions.  

This allows SIM to follow the principle “if a draw starts to 

the right, it generally stays to the right” and thus avoid 

hour-glassing.  Still, the marginal distribution of the draws 

within any particular region follows its prescribed 

distribution. 

 The critical correlation here is in the 1-dimensional 

component that is perpendicular to the line connecting the 

centers of mass of the two areas.  SIM changes 

coordinates and deals with the random variables expressed 

in those coordinates.  The correlated draws in these 

coordinates are implemented by using two uniform draws 

and the scdf  discussed above. 

 

Figure 2.2: Hour-glassing 

 A parameter within the code determines how strictly 

SIM will adhere to the “starts-to-the-right-stays-to-the-

right” concept.  This parameter can be set anywhere from 

-1 to 1.  If it is set to -1, a particle that starts to the right 

goes to the left; set to 1, it stays exactly “as far to the 

right” as it started.  The parameter is currently set to 0.7.   

 A distribution resulting from a voyage scenario is 

shown by the color coded cells in Figure 2.1 with red cells 

indicating high probability and shading down to blue cells 

indicating low probability.  Note the effect of drift on 

particles that transition to drift motion early in the 

scenario. 

 SIM has one more scenario-type, the LKP plus dead-

reckoning scenario-type which will not be discussed here.  

Other scenario-types are being considered and developed.  

In the most recent version of SIM, 1.3.0.0, there is an 

LOB (or line-of-bearing) scenario-type, which will be 

used for flare sightings as well as radio transmission 

receptions.  Models for “swimmer” and “sailboat” are 

being considered for inclusion in future versions of SIM. 

2.1.1 Scenario Weights 

Scenarios can be weighted and combined in SIM.  

Scenarios with heavier weights will contribute more to the 

final distribution; the particles within these scenarios, 

although the same in number, carry greater weight and 

cause the probability distributions to emphasize their 

positions more than those from scenarios having lighter 

weights. 

2.2 Hazards and Time of Distress 

In scenarios where there is pre-distress motion, SIM must 

determine the time at the distress occurs and the drift 

begins.  After creating a path for the pre-distress motion 

as described above, SIM computes how much time it 

would take to complete the path.  In the absence of 

hazards, a uniform draw over that time is made to place 

the time of distress.  The position along the particle’s path 

corresponding to that time is computed to obtain the 

distress incident position. 



 Another part of SIM’s model is the notion of a 

hazard.  This expresses the idea that there are times and 

places where distress is more likely to occur.  A hazard is 

defined by a region, an effective time interval, and an 

intensity.  The hazard is in effect in the region only during 

the effective time interval. 

 The intensity determines how likely it is that a 

particle going through the hazard during the effective time 

interval will go into distress,  Currently, there are four 

intensities available in SAROPS; 1, 3, 5, and 10.  The 

greater the intensity, the greater the chance that the 

particle will go into distress while in the hazard. 

 SIM determines when a particle goes into distress as 

follows.  Consider a hazard defined by a region H  with 

hazard intensity κ .  Assume that a path T  starts at 

0 0t = , and that 1t  is the time that the path enters H , 2t is 

the time that the path leaves H , 3t  is the time of the end 

of the path, and that 1 2[ , ]t t  is contained in the effective 

time interval for the hazard.  The time of the distress is 

obtained as a draw from the distribution with the density 

function 

 

1 2 3

1 2

for [0, ] [ , ]

( ) for ( , )

0 otherwise

κ

⎧ ∈ ∪⎪⎪⎪⎪= ∈⎨⎪⎪⎪⎪⎩

a t t t t

f t a t t t  

where a  is chosen so that f  integrates to 1. 

 Note that 1κ=  is equivalent to no hazard.  

Furthermore, intensities are multiplicative. If 1H is a 

hazard with intensity 1κ  and 2H  is a hazard with intensity 

2κ , and 1 2  H H H= ∩ , then H  acts as a hazard with 

intensity 1 2κ κ .  

2.3 Post-Distress Object-Type 

When a particle goes into distress, it will have an object-

type associated with it.  This will determine both the 

effect that the winds and currents have on it, and the 

impact that previous searches have on the probability 

distribution for object location. 

 As an example, suppose a person is involved in a 

distress incident but it is not known whether the person is 

floating in the water or was lucky enough to get into a life 

raft.  In the former case, the currents will have the most 

influence on the position of the object at a later time and 

the winds will have relatively little influence.  But if the 

person is in a raft, and there are strong winds, the winds 

will have a substantial effect on the person’s position. 

 Similarly, a search, even under excellent conditions, 

can easily overlook a person floating in the water.  

However, a search over an area with good visibility that 

fails to detect a raft substantially reduces the chances that 

there is a raft in that area.  Hence an unsuccessful search 

will affect the probability distribution far more in the case 

of a raft than it will in the case of a person in the water 

because rafts are much easier to detect than persons in the 

water. 

 SIM allows the user to specify a probability 

distribution on the object type that results from a distress 

incident.  These probabilities are scenario-dependent.  

SIM treats the random variables that determine the time of 

distress and the object type that results from the distress, 

as independent.  For example, the probability of a particle 

transitioning to a raft type is the same whether the distress 

occurs early or late, in a hazard or out of a hazard. 

2.4 Effects of Unsuccessful Search 

As mentioned in the discussion on Scenarios, SIM assigns 

probabilities to the particles; particles that have high 

probability influence the probability distribution more 

than those with low probabilities.  After an unsuccessful 

search, the posterior particle probabilities are computed 

using Bayes’ rule.  Particles that lie in regions that have 

been well searched, will tend to have lower posterior 

probabilities than ones that do not. 

 To perform the Bayesian update for unsuccessful 

search, SIM needs to know the path of the Search and 

Rescue Unit (SRU) performing the search, and the 

probability that the SRU can detect the object.  The latter 

is determined from a Lateral Range Curve (LRC). Each 

SRU has an LRC for each object type.  The LRC also 

depends on environmental conditions such as sea state. 

 The LRC is the function λ  that gives the probability 

of detection as a function of the closest point of approach 

of the SRU to the search object on a “long” straight search 

leg.  A discussion of the form of the lateral range curve in 

use by SAROPS can be found in [3].  The SRU’s route is 

divided into legs, where each leg is the part of the route 

between consecutive waypoints.  The closest point of 

approach (or CPA) of a particle to the leg of an SRU’s is 

the smallest distance that the particle and the SRU are 

apart from each other during that leg.  Computing this 

distance is a fairly simple geometry problem.   

 Consider a particle p  and a search by an SRU 

consisting of K  straight line legs.  Let kd  be the distance 

at the closet point of approach of the SRU to p  on leg k .  

Then 1 ( )λ− kd  is the probability the SRU fails to detect 

the particle on the thk  leg.  Different legs are considered 

to have independent detection opportunities so the 

probability of the SRU not detecting p  is 

 ( ) ( )
1

, 1 ( )λ
=

= −∏K

kk
pfail p sru d . (1) 

If there are multiple SRUs, then the pfail of the particle is 

computed by multiplying the failure probabilities for all 

SRUs to obtain 

 ( )( ) ,=∏sru
pfail p pfail p sru . (2) 

The prior probability of the particle p  is multiplied by 

( )pfail p  and normalized in the usual Bayesian fashion to 

produce the posterior probability for p . 



2.5 Environmental Effects on Drift 

Once a particle enters a state of distress and has an object 

type associated with it, it moves as the currents and winds 

move it.  At this point, all particles move the same way, 

regardless of their scenario-type.  In this section, we 

describe how SIM simulates that movement. 

 There are two forces acting on a drifting particle; 

currents and winds.  The effect of currents is more 

straightforward.  Once a value for the velocity of the 

current is obtained, the particle’s velocity due to the 

current is the equal the velocity of the current. 

 The data is received in the form of a grid of values in 

space and time.  Each grid point has values for speed 

towards the east (called the u-speed) and the speed 

towards the north (called v-speed).  These values are given 

for a set of times which are the same for all grid points. 

 If SIM needs to know the u-speed and the v-speed at 

one of these times, SIM takes the three closest grid points 

and uses a weighted average of the three values, where the 

weights are the inverses of the distances to the chosen grid 

points. 

 Usually SIM will need the u-speed and v-speed for 

times different than those given in the EDS data.  To get 

the speeds in this case, SIM obtains the speeds for two 

closest times from the EDS and interpolates between these 

values. 

 SIM inserts a random effect on the resulting u-speed 

and v-speed.  For every time step in the simulation, and 

every particle, SIM computes the u-speed and the v-speed, 

and perturbs them by using a random draw from a normal 

distribution.  However, within a particle, these draws are 

not independent.  In other words, the random draws for 

the u-speed of a particular particle p  at one time-step, 

and the random draw for the u-speed for p  at the next 

time step, are correlated.  Specifically, if tΔ  is the 

difference in time, measured in minutes, between the two 

time steps, then the correlation, )tρ(Δ , is given by 

 ( ) α τρ τ − ΔΔ = e  

where α  is chosen so that 60 1/ 2e α− = . 

 The second force acting on a particle is the wind, 

and this effect is more complicated.  The same statements 

about interpolation and correlation hold, but the effect of 

the u-speed and v-speed on the particle are more 

complicated. 

 The effect that the wind has on an object is called the 

leeway.  While it is reasonable to expect that a current of 

3 knots will push an object at a speed of 3 knots, the same 

is not true for wind due to the balance of forces between 

those of the wind acting on the exposed surfaces of the 

object and the drag of the water acting on the submerged 

surfaces of the object. 

 The wind doesn’t push an object at the wind’s speed 

and it often doesn’t push an object exactly in the 

downwind direction.  SAROPS’ model for the effect of 

wind is based on Appendix H of [4].  It involves the two 

component forces, downwind and crosswind.  The 

downwind component is, of course, in the direction 

toward which the wind is blowing.  The crosswind 

component is perpendicular to the downwind component, 

but that statement leaves two possible directions.  SIM 

switches between these two directions, and the time 

between the switches is exponentially distributed.  It 

remains to state how the magnitudes of the downwind and 

crosswind components are computed. 

 Let ψ  be the wind speed obtained from the EDS.  

The downwind slope ν  is a scale factor that, when 

multiplied by ψ , gives the speed of the downwind 

component: downwind speed νψ= .  The value of ν  is 

different for each particle and is determined by parameters 

specific to the type of object and a Gaussian draw.  The 

parameters for the slope calculation are the nominal speed 

q , the slope m  at speed q , and the standard deviation 

σ .  There are two ways of computing the downwind 

slope for an individual particle. 

 The first method is the standard method.  Let 

~ (0,1)z N  be a random draw for this particle (this is a 

constant and is set once for each particle, not once for 

each time step).  The effective downwind slope for this 

particle is given by /ν σ= −m z q . 

 The second method is the Rayleigh method.  In the 

Rayleigh method, the downwind slope is given as follows.  

Let R  be a draw from a Rayleigh distribution with 

density function  

 ( )21

2
( ) exp= −f x x x  for 0≥x . 

Set the downwind slope to be 2 π=r m R .  Note that 

( )E r m= , and that 0r≥ . 

 SIM uses the Rayleigh method for object types that 

have a very low values of m .  For such object types, the 

standard method can lead to downwind slopes that are 

negative, and using the Rayleigh method avoids this. 

 The crosswind slope is computed using the standard 

method with different values for standard deviation and 

average slope.  The nominal speed is the same as for the 

downwind slope. 

3 Planner 

The Planner is responsible for providing suggestions for 

where search effort should be expended.  Information 

about the availability and capability of the searching units 

or SRUs is combined with the particle distribution to 

produce a suggested assignment of the SRUs to 

rectangles.  The availability of the SRUs determines 

which units are to be used and when they can arrive on 

scene for the search.  The capabilities of the units 

determine the speed and endurance (time on station) of 

each SRU.  Using detection models that depend on the 

search platform, sensor, object type, and environmental 

conditions, SAROPS determines the detection capability 



of each SRU in terms of lateral range functions.  From this 

information, it recommends a search plan for each SRU 

and provides an estimate of success (detection of the 

search object) for the overall search effort.  It attempts to 

do this in a manner that maximizes the increase in success 

probability for this increment of search 

 There are two aspects to our discussion about 

Planner: the description of the problem that planner 

addresses, and the heuristic algorithms that Planner uses. 

 Planner uses the particles along with their 

probabilities as produced by SIM as an input.  In addition, 

planner is given a collection of SRUs.  Typically, these 

are helicopters or fixed wing aircraft or vessels that can 

search for the missing object.   

 The Probability of Success (or POS) for a search is 

computed as follows.  Let ( )w p  be the probability of 

particle p .  Suppose we have specified the search paths 

for the SRUs. Then we calculate the probability ( )POS p  

of at least one of the SRUs detecting the particle p  using 

the method in section  2.4.  In particular using (1) and (2) 

we compute 

 ( )( ) 1 ,
sru

POS p pfail p sru= −∏ . (3) 

To obtain POS  we compute 

 ( ) ( )=∑ p
POS w p POS p . 

Planner attempts to maximize POS by placing the SRUs 

in rectangles and following the constraints given in Table 

3.1 below.  The following sections describe how Planner 

obtains its solution which is a local maximum. 

3.1 Solution Approach by Planner 

The term “configuration” for an SRU means the rectangle 

and its induced path.  The induced path has parallel 

segments called search legs, connected by segments that 

are at right angles to the search legs.  These connecting 

segments are all the same length and are called cross legs.  

The length of the search legs is called the search leg 

length and the length of the cross legs is called the track-

spacing. 

1. Inside its rectangle an SRU must search in a 

pattern of equally spaced parallel paths. 

2. The total length of the pattern must equal the 

available path length of the SRU, minus one 

track-spacing. 

3. Rectangles that correspond to different aircraft 

must not overlap.  Similarly, rectangles that 

correspond to different surface ships must not 

overlap. 

4. Each SRU has a minimum track-spacing and the 

track-spacing must be at most the search leg 

length. 

Table 3.1. Statement of Planner Problem 

 Planner creates a solution by trying many 

combinations of rectangles for the SRUs.  Planner 

continues to try combinations until a pre-determined 

period of time has elapsed or the user has terminated the 

optimization.  When planner quits, it computes statistics 

(including POS) about its best solution, and reports the 

solution and these statistics. 

 Planner does not randomly choose combinations of 

configurations as potential solutions.  Rather, it has a 

heuristic for placing the SRUs one at a time, and then an 

algorithm that refines these configurations until it stops 

improving the solution.  It then makes a “big jump” of one 

of the SRUs, and refines that solution. 

 In Table 3.2, we list the steps in Planner’s algorithm.  

Violations of the constraint in item 4 of Table 3.1 

contribute to a measure called the Track Spacing 

Violation (TSV). 

1. Get an initial solution. 

2. Refine this solution to eliminate overlap and 

TSV. 

3. Improve POS, introducing as little overlap as 

possible while not introducing any TSV. 

4. Go to Step 2 if it is reasonable to do so. 

5. Otherwise, create another initial solution, and 

then go to Step 2. 

Table 3.2. Steps in Planner Algorithm 

 The following sections describe the mathematical 

framework, how planner gets its initial configurations 

(Step 1), the “refinement” processes of Steps 2 and 3, how 

planner decides whether or not it is reasonable to go back 

to Step 2 (in Step 4), and how it creates another initial 

solution (Step 5). 

3.2 Mathematical Framework 

Note, rectangles are used only for determining the three 

items listed in Table 3.3.  

1. The SRU path is derived from the rectangle. 

a. This path determines POS for each 

particle, and hence POS. 

2. From the induced track-spacing and search leg 

length, the TSV is computed. 

3. Overlap is computed from the rectangles. 

Table 3.3: Use of Rectangles 

 Put another way, the constraints are in terms of the 

rectangles; the rectangles induce the paths; and these paths 

are used to compute POS.  Still, the optimization problem 

is most easily stated by considering the variables that 

specify the rectangles. 

 It takes five variables to specify a single rectangle; 

its center (two variables), the length and width of the 

rectangle (two more variables, called ell and w) and the 

orientation ( θ ).  But these five variables are not quite 

enough to specify the path, since they do not specify 



which corner to start the path from, and whether the first 

turn is left or right.  Both of these considerations can be 

“encoded” by adopting some conventions and allowing 

the width of the rectangle to be negative; this requires 

some explanation. 

 Planner uses the convention that the first leg runs in 

the direction of θ , and the rectangle is oriented so that the 

side of length ell is parallel to the first leg.  This leaves 

two possibilities for a path; first turn is left or first turn is 

right.  Another planner convention is that a positive value 

for w indicates that the first turn is right, and a negative 

value indicates that it is left (see Figures 3.1 and 3.2).  

Hence, the path (and rectangle) are specified by the five 

variables, where w is allowed to be negative.  By contrast, 

ell must always be positive. 

 
Figure 3.1: First-turn Right 

 
Figure 3.2: First-turn Left 

 There are actually very few (ell,w) combinations that 

are admissible.  To state what they are, some notation is 

necessary.  We denote the track-spacing by s , and the 

search leg length by t .  We take the effective path length 

(L) of an SRU to be 85% of its speed times time-on-scene.  

85% is a Coast Guard factor to allow time for 

investigating sightings and general maneuvering.  Finally, 

we are given a constant γ  that is the minimum allowable 

value for track spacing.  We have the following 

constraints on s and t : 

/ ( ) is an integer   

s t

L t s

γ ≤ ≤
+

 

Table 3.4: Constraints on s  and t . 

 These are constraints on s  and t , but they induce 

constraints on ell and w since s  and t are derived from ell 

and w.  To describe this derivation, assume that θ = 0 , w 

is positive, and the lower-left hand corner of the rectangle 

is at the origin.  The general case is obtained by a simple 

change of coordinates.  The Coast Guard convention for 

putting a path inside of a rectangle assumes the following: 

1. The path starts at ( / 2, / 2)s s  

2. Set ell = t s+  

3. Use all but s  of the effective path length L. 

Table 3.5: Construction of the Induced Path 

Given these requirements, it is not hard to show that 

/ ( )w Ls t s= + . 

 There is one more constraint in the optimization 

problem that Planner solves; the overlap constraint.  This 

constraint requires that the SRUs corresponding to aircraft 

must not have overlapping rectangles, and the SRUs that 

correspond to surface ships must not have overlapping 

rectangles.  The mathematical statement of Planner’s 

problem is to maximize POS subject to the constraints 

listed in Table 3.4, and these “overlap constraints.” 

3.3 Steps 1 – 5 of the Algorithm 

This section describes how steps 1 – 5 of table 3.2 are 

performed. 

 Step 1.  For each SRU, a sweep width is calculated 

from the lateral range function.  This is multiplied by the 

search speed and the effective search time on station of 

the SRU to obtain swept area.  Each time the planner 

considers a rectangle for placement of the SRU, it 

computes the ratio of swept area to the area of the 

rectangle and enters this ratio into the exponential 

detection function [1] to compute probability of detection 

(POD) given the target is in the rectangle.  POD is 

multiplied by the probability of containment in the 

rectangle (POC) to obtain POS.  Starting with a one cell 

rectangle located at the highest probability cell, planner 

performs an accordion search to determine the best size 

and location of the rectangle. 

 An accordion search proceeds by adding or 

subtracting one row or column of cells from the rectangle 

and re-computing the POS.  If an improvement is made 

this becomes the new rectangle. When no further 

improvement in POS is obtained, the search stops.  If 

there is more than one SRU, the next rectangle is started 

in the cell with the highest probability given failure of the 

search by the previously located rectangles.  Again 

Planner proceeds to determine this rectangle by an 

accordion search.  This is continued until initial rectangles 

are determined for all SRUs.  During this process checks 

ell

w1 

θ 

ell

w2 

θ 



are made to see that the rectangles chosen do not overlap 

“too much” with previous rectangles. 

 Steps 2 - 4.  The “refinement” steps 2 and 3 of the 

algorithm in Table 3.2 are the core of the optimization 

algorithm.  In these steps, SAROPS perturbs each box 

individually and checks whether an improvement is made.  

There are 12 types of perturbations called moves.   

 If SAROPS finds a move that improves both POS 

and overlap, SAROPS immediately makes that move.  

(Note, for steps 2 and 3 POS is computed using the 

method described below as apposed to the simple method 

for initial placement described above.)  Otherwise, if it is 

eliminating overlap (Step 2), SAROPS will use a move 

that reduces overlap while minimizing the decrease in 

POS (over all the moves that reduce overlap).  To 

eliminate overlap, SAROPS first computes the area that is 

contained in the intersection of pairs of rectangles.  It then 

finds a move that decreases that area but restricts itself to 

moves that do not change the shape or size of a rectangle. 

 If SAROPS is improving POS (Step 3), it will use 

the move that improves POS but increases overlap as little 

as possible.  For both Steps 2 and 3, the refinement quits 

when there is no move that improves the current objective.  

If SAROPS quits while improving overlap, and it hasn’t 

eliminated the overlap, it jumps to Step 5.  If SAROPS 

eliminates overlap (Step 2) and has not improved POS 

over the last time that it completed Step 2, then it jumps to 

Step 5. 

 Step 5.  Planner chooses a rectangle at random to 

move.  It initially moves this rectangle to the cell with 

highest posterior probability given failure to detect by all 

the rectangles.  It then performs an accordion search 

starting with this cell using the posterior given failure by 

all rectangles except the one moved to determine the 

parameters of the moved rectangle. 

 Computing POS for Steps 2 and 3.  The 

computation of POS for a given collection of SRU 

configurations can be very time-consuming, and Planner 

must compute POS for many configurations.  Therefore, 

Planner estimates POS in the following manner and 

maximizes that estimate. 

 SAROPS estimates POS by drawing 1500 particles 

with replacement from the full distribution of particles and 

computing POS  over this sample.  SAROPS computes 

the variance of this estimate and increases the number of 

samples if the standard deviation is more than 5% of the 

estimated POS value.  Typically, this approach reduces 

the number of particles used in the estimation by a factor 

of ten compared to using the full distribution of particles. 

 There is a cost to this approach however.  The 

maximization method employed requires that the same 

number be obtained each time the payoff function is 

evaluated at the same input.  Thus SAROPS keeps the 

same sample for all evaluations.  This tends to bias the 

estimates on the high side because the system is 

optimizing on a fixed subset of the particles.  In practice, 

this is not an issue because the final set of boxes is 

evaluated with respect to all the particles, and the 

intermediate computations of the optimization are not 

reported. 

 Figure 3.3 shows an example of the graphical output 

of the planner.  The rectangles are ones computed by the 

planner.  The thin paths and the dashed paths show the 

induced search paths produced from the rectangle as 

described in Table 3.5.  The heavy lines show the search 

path followed during the interval between the two times in 

the upper left-hand corner of the figure. 

 
Figure 3.3 Planner Output 
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