
SPEEDES User’s Guide

The Synchronous Parallel Environment for Emulation and
Discrete-Event Simulation

30 April 2003
Document Number: S024

Revision Number: 4

Prepared by:
Metron, Inc.

512 Via De La Valle Suite 301
Solana Beach, CA 92075-2715
http://www.speedes.com

Prepared For:
The Joint National Integration Center

730 Irwin Avenue
Schriever AFB, CO 80912-7300

Copyright c
�

2001 by Metron, Inc.

ii

Contents

I Overview 1

1 Introduction 3
1.1 Purpose . 3
1.2 System Overview . 3
1.3 Document Overview . 5

1.3.1 Overview . 5
1.3.2 Simulation Objects . 5
1.3.3 Events . 6
1.3.4 Object Proxies . 6
1.3.5 External Interfaces . 7
1.3.6 Advanced Topics . 7
1.3.7 Appendix . 8

1.4 Referenced Documents . 8
1.5 Document Conventions . 9

2 Quick Start 11
2.1 Simulation Objects . 11
2.2 Simulation Object State . 18
2.3 Event Handlers . 21
2.4 The Process Model . 24

II Simulation Objects 29

3 Simulation Object Overview 31
3.1 Simulation Objects . 31
3.2 Simulation Object Managers . 34

3.2.1 Simulation Object Decomposition . 36
3.3 Simulation Object “Object Handles” . 41
3.4 Tips, Tricks, and Potholes . 43

4 Rollbackable Built-in Types 45
4.1 Rollbackable Data . 45
4.2 Basic Data Types . 46

4.2.1 Rollbackable Integers and Doubles . 46
4.2.2 Rollbackable Strings and Void Pointers . 47
4.2.3 Rollbackable Booleans . 48
4.2.4 Rollbackable Streams . 49

4.3 Container Classes . 50
4.3.1 Rollbackable Binary and Hash Trees . 51

iii

4.3.2 Rollbackable Lists . 53
4.3.3 Rollbackable Priority Trees . 54
4.3.4 Rollbackable Dynamic Pointer Arrays . 55

4.4 Independent Iterators . 55
4.4.1 Introduction . 55
4.4.2 Iterator Interface . 57
4.4.3 Finding an Iterator . 59

4.5 Guidelines for Making Data Rollbackable . 61
4.6 Tips, Tricks, and Potholes . 61

5 Utilities 65
5.1 Rollbackable Memory Management . 65
5.2 Rollbackable Random Number Generator . 66
5.3 Other Rollbackable Functions . 67

5.3.1 Rollbackable Assert . 67
5.3.2 Rollbackable Memory Copy and String Duplication 67

5.4 Creating New Rollbackable Functions or Objects . 68
5.5 Parameter File Parsing . 71

5.5.1 Parameter File Language Overview . 73
5.5.2 General Usage . 75
5.5.3 SpSet Usage . 76
5.5.4 An Example . 77

5.6 Tips, Tricks, and Potholes . 79

III Events 83

6 Point-to-Point Events 85
6.1 Time, As Represented by SPEEDES . 86
6.2 Simulation Object Events . 88
6.3 Event Cancellation . 94
6.4 Local Events . 96
6.5 Autonomous Events . 103
6.6 Choosing an Interface Style . 106
6.7 The Separate Interface Style . 108
6.8 Tips, Tricks, and Potholes . 109

7 Event Handlers 111
7.1 Standard Event Handlers . 112
7.2 Interaction Event Handlers . 117
7.3 Interface Event Handlers . 123
7.4 Tips, Tricks, and Potholes . 125

8 The Process Model 127
8.1 Process Model API . 127

8.1.1 Required Process Model Initializers . 128
8.1.2 Wait (a.k.a. Sleep) Process Model Reentry Points 129
8.1.3 Semaphore Process Model Reentry Points 132
8.1.4 Ask Process Model Reentry Points . 137

8.2 Tips, Tricks, and Potholes . 141

iv

IV Object Proxies 143

9 Using Object Proxies 145
9.1 Introduction . 145
9.2 Essential SPEEDES Object Proxy Terminology . 146
9.3 Object Proxy Usage Overview . 146
9.4 Object Proxy Usage Detailed Description . 147

9.4.1 Defining Object Classes in File Objects.par 147
9.4.2 Implementing Object Definitions Contained in Objects.par 151
9.4.3 Publishing Objects . 153
9.4.4 Subscribing to Object Classes . 154
9.4.5 Attribute Level Subscription . 157
9.4.6 Free Object Proxy . 162

9.5 Proxies in Use (Examples) . 162
9.5.1 Non-Proxy Example: Manually Pushing Attribute Updates Without Proxies . 162
9.5.2 Proxy Example: Automatically Pushing Attribute Updates With Proxies . . . 167
9.5.3 Proxy Example: Using Attribute Level Subscription 173

9.6 Tips, Tricks, and Potholes . 180

10 Proxy Attributes 181
10.1 Static Attribute Types . 181

10.1.1 Integer Numbers . 181
10.1.2 Floating Point Numbers . 182
10.1.3 Booleans . 182
10.1.4 Character Strings . 182
10.1.5 Objects as Attributes . 183
10.1.6 Lists . 190
10.1.7 Binary Buffer Data (Character Pointer to Non-String Data) 196
10.1.8 Static Positions . 197

10.2 Dynamic Attribute Types . 202
10.2.1 Basic Concepts . 203
10.2.2 Dynamic Integers, Doubles and Booleans 206
10.2.3 One Dimensional Functions . 213
10.2.4 Dynamic Position Attributes . 218

10.3 Tips, Tricks, and Potholes . 223

11 Data Distribution Management (DDM) 225
11.1 Declaration Management Simulation Example . 225
11.2 Spaces, Regions and Dimensions . 233
11.3 Built-In DDM Classes and Methods . 234
11.4 Class Type Filtering . 236

11.4.1 Attribute Level Filtering . 242
11.5 DDM Event Handlers Optimization . 243
11.6 DDM Built-In Filtering Types . 246

11.6.1 Enumerated Value Filtering . 247
11.6.2 Double Range Filtering . 250
11.6.3 Range-Based Filtering . 255

11.7 DDM Performance . 260
11.7.1 Hierarchical Grids . 262

11.8 Tips, Tricks, and Potholes . 262

v

V External Interfaces 263

12 External Modules 265
12.1 Simple External Module . 265
12.2 Sending and Receiving Messages (Non-Proxy) . 271
12.3 Local Events . 277
12.4 Record and Playback . 278
12.5 Optimizing Memory Use . 279
12.6 Tips Tricks and Potholes . 279

13 Command-Line Utilities 281
13.1 Querying Object By Names and Types . 281
13.2 Query . 282
13.3 Time . 282
13.4 Changing Lock To Wall Clock Scaler . 282
13.5 Scheduling and Canceling Events . 283
13.6 Pause and Resume . 283
13.7 Simulation Time Controller . 284
13.8 Killing Simulations . 284
13.9 Sorted Output . 285
13.10 Trace File Filtering . 285

VI Advanced Topics 287

14 Simulation Objects 289
14.1 Dynamic Objects . 289
14.2 Components . 294

14.2.1 The Component APIs . 294

15 Autonomous Events 297
15.1 Implementing Autonomous Events . 297
15.2 Event Processing Phases . 298

15.2.1 Lazy Re-evaluation . 299
15.2.2 Fast Rollbacks . 300
15.2.3 Committing Events . 301

15.3 Increasing Efficiency of Autonomous Events . 301
15.4 Autonomous Event Example . 302

16 Checkpoint/Restart: Using Persistence 305
16.1 Persistence Memory Management Description . 305
16.2 Basic Changes to Enable Checkpoint/Restart . 306

16.2.1 Rollbackable Classes and Functions . 307
16.2.2 Registering Classes to be Restored . 307
16.2.3 Attaching Pointers . 307
16.2.4 Adding and Removing Memory From Persistence 308
16.2.5 Classes with Virtual Functions . 308
16.2.6 Smart Pointers . 308

16.3 Handling Events Which Pass Pointers . 309
16.4 Printing the Database for Further Debugging . 310

vi

16.5 Tips, Tricks, and Potholes . 312

17 Diagnostic Tools 313
17.1 Global Virtual Time (GVT) Statistics . 313
17.2 Trace Files . 316
17.3 Flying Trace . 319
17.4 Event Usage Statistics . 321

17.4.1 Event Memory Usage . 321
17.4.2 Event Message Sending . 322
17.4.3 Event Data Summary . 323
17.4.4 Event Usage Statistics by Simulation Object 325
17.4.5 Automatic Lazy Re-evaluation Statistics . 326

17.5 Simulation Object Statistics . 329
17.5.1 Simulation Object Data Summary . 329
17.5.2 Object Placement Information . 330

17.6 Interval Statistics . 330
17.6.1 Event and Object Statistics . 330
17.6.2 Rollback Statistics . 331

VII Appendix 333

A Parallel Discrete-Event Simulation Technical Reference 335
A.1 What is Discrete-Event Simulation . 335
A.2 Sequential Discrete-Event Simulation (SDES) . 335
A.3 SDES and PDES Trade-Offs . 336
A.4 PDES Challenges . 337
A.5 Conservative Time Management . 338
A.6 Optimistic Time Management . 339
A.7 Time Warp and Breathing Time Buckets . 341
A.8 Breathing Time Warp and Flow Control . 344

B The Conservative Time Management Algorithm 347
B.1 Setting the Appropriate Parameters in the speedes.par File 347
B.2 Minimum Lookahead Global Functions . 348
B.3 Proxy Updates, Undirected Handlers, and DDM . 348
B.4 Special Event Plug-in Calls (Advanced Topic) . 348

C SPEEDES Parameter File Configuration 351
C.1 High Level SPEEDES Configuration (section parameters) 351
C.2 GVT Configuration (section gvt parameters) . 352
C.3 External Connections Configuration (section SpeedesServer) 353
C.4 Output Data Configuration (section statistics) . 355
C.5 Flying Trace Diagnostic Configuration (section FlyingTraceOutput) 358
C.6 Trace Diagnostic Configuration (section trace) . 358
C.7 Simulation Named Pauses (section NamedPauses) 360
C.8 Checkpoint/Restart Configuration (section Checkpoint) 360
C.9 HLA (section HLA) . 360

D Acronyms and Abbreviations 361

vii

E Index 363

viii

List of Tables

3.1 Macro DEFINE SIMOBJ API . 33
3.2 Macro PLUG IN SIMOBJ API . 34
3.3 Fort Example, Longitude vs. Kind Id . 35
3.4 Fort Example, Longitude vs. Local Id . 35
3.5 Simulation Object Manager Id API . 36
3.6 Block Decomposition . 37
3.7 Scatter Decomposition . 38
3.8 Decomposition Example . 38
3.9 Block and Scatter Object Distribution by Object Type and Kind Id 38
3.10 File Driven Placement . 41
3.11 Object Handle Global Functions . 43

4.1 Container and Iterator Cross Reference . 58

5.1 Parameter File Description . 73

6.1 SpSimTime Constructor API . 86
6.2 Macro DEFINE SIMOBJ EVENT API . 88
6.3 Function SCHEDULE API . 90
6.4 Macro DEFINE LOCAL EVENT API . 96
6.5 Function SCHEDULE API for Local Events . 97
6.6 Macro DEFINE AUTONOMOUS EVENT API . 104
6.7 Macro DEFINE EVENT INTERFACE API . 108
6.8 Macro DEFINE SIMOBJ EVENT (Interface) API 108

7.1 Macro DEFINE HANDLER and DEFINE SIMOBJ HANDLER API 112
7.2 Handler Methods Add, Subscribe, and Remove API 113
7.3 SCHEDULE HANDLER API . 114
7.4 SCHEDULE INTERACTION API . 118
7.5 Macro DEFINE HANDLER INTERFACE with Arguments API 123
7.6 Macro DEFINE INTERFACE HANDLER API . 124
7.7 Function SCHEDULE HANDLER API . 125

8.1 Macro P LV API . 128
8.2 Macro WAIT and WAIT UNTIL API . 130
8.3 Macro WAIT FOR and WAIT FOR RESOURCE API 132
8.4 List of Semaphores . 133
8.5 Macro DEFINE ASK EVENT API . 137
8.6 Macro ASK API . 138

9.1 Subscribe By Attribute API . 158
9.2 Free Object Proxy set type API . 173

ix

10.1 Static Position Get and Set Methods . 198
10.2 Dynamic Attribute Identifiers . 206
10.3 Polynomial AddPoint Initialization Method . 214
10.4 Dynamic Positions Items . 218

11.1 DDM Space Publication and Subscription API . 235
11.2 DDM Dimension Publication and Subscription API 236
11.3 DM and DDM Built-In Event Handler . 243
11.4 DDM Summary Results . 262

12.1 External Module Sendcommand API . 272
12.2 External Module ScheduleEvent API . 272

14.1 Macro DEFINE CREATE EVENT API . 289
14.2 Function SCHEDULE API for Dynamically Created Objects 290
14.3 Macro GET DYN OBJ HANDLE API . 293

15.1 Event Processing Phases . 298

17.1 GVT Output Line Description . 314
17.2 GVT Output File Description . 316
17.3 Trace File Definitions . 319
17.4 Flying Trace File Definitions . 321
17.5 Event Memory Usage Diagnostic Output Data . 322
17.6 Event Message Sending Diagnostic Output Data . 323
17.7 Event Summary Diagnostic Output Data . 324
17.8 Object and Event Data Summary Diagnostic Output Data 325
17.9 Automatic Lazy Evaluation Statistics Part I . 327
17.10 Automatic Lazy Evaluation Statistics Part II . 327
17.11 Simulation Object Summary Diagnostic Output Data 329
17.12 Event Rollback Diagnostic Output Data . 332

A.1 SDES vs. PDES . 337
A.2 Frequent Limitations Imposed by Conservative Techniques 339

C.1 The “parameters” section of the speedes.par file . 352
C.2 The “gvt parameters” section of the speedes.par file 353
C.3 The “SpeedesServer” section of the speedes.par file 354
C.4 The “statistics” section of the speedes.par file . 358
C.5 The “trace” section of the speedes.par file . 359
C.6 The “Checkpoint” section of the speedes.par file . 360

x

List of Figures

2.1 One Node State Simulation . 20
2.2 Two node State Simulation . 20
2.3 Two node State Simulation with RB cout . 21

3.1 Manual Object Manager Input File (SimObjPlacement.par) 39
3.2 Car, Ship, Plane, and Train File Placement . 41

4.1 Rollback Variable on Stack Error Message . 46
4.2 RB int Operators . 47
4.3 RB double Operators . 47
4.4 RB SpString Operators . 48
4.5 RB voidPtr Operators . 48
4.6 RB SpBool Operators . 49
4.7 RB ostream Operators . 50
4.8 RB SpBinaryTree and RB SpHashTree Modifier Methods 51
4.9 RB SpBinaryTree and RB SpHashTree Search and Iterator Methods 52
4.10 RB SpBinaryTree and RB SpHashTree Mode Methods 53
4.11 RB List Modifier Methods . 53
4.12 RB List Iterator Methods . 54
4.13 RB SpPriorityTree Modifier Methods . 54
4.14 RB SpPriorityTree Reading Methods . 54
4.15 RB SpDynPtrArray Interface . 55
4.16 Independent Iterator Interface . 57

5.1 Random Number Generator . 66
5.2 Density Function . 67
5.3 Example Parameter File . 72
5.4 Set Accessor Methods . 76
5.5 Set Traversal Methods . 77
5.6 Parameter File submarine.par Example . 78

6.1 Simulation Time (SpSimTime) API . 88
6.2 Autonomous Event speedes.par Lazy Cancellation 106

9.1 Objects.par Example File . 148
9.2 Objects.par File (Proxy Version) . 167
9.3 Objects.par File (Attribute Subscription Version . 173

10.1 Objects.par File for OBJECT ATTRIBUTE Example 184
10.2 Objects.par File for LIST ATTRIBUTE Example 191
10.3 Objects.par File for BINARY BUFFER ATTRIBUTE and POSITION ATTRIBUTE 199
10.4 Objects.par File for Dynamic Base Type Example 208

xi

10.5 Objects.par File for Dynamic Attribute Example . 219

11.1 DM only Ship Simulation Layout . 226
11.2 DM Example Objects.par . 232
11.3 DDM Regions and Dimensions Definition . 233
11.4 DDM Space, Regions and Dimensions Definitions 234
11.5 InterestSpaces.par for Class Type Filtering . 237
11.6 Objects.par for Class Type Filtering Example . 242
11.7 InterestSpaces.par for Enumeration Filtering . 247
11.8 InterestSpaces.par for Double Range Filtering . 251
11.9 DDM Ship Simulation Layout . 261
11.10 InterestSpaces.par for Range-Based Filtering . 261

16.1 Placement of Virtual Function Table within Classes 308
16.2 Persistence Block Example . 311

17.1 GVT Statistics Output Line . 313
17.2 GVT Statistics File Output . 315
17.3 Trace File Example Output . 317
17.4 Flying Trace File Example Output . 320
17.5 File ObjectMap NODE 0 . 330
17.6 File ObjectMap NODE 1 . 330

A.1 Processing Flow of a Discrete-Event Simulation . 336
A.2 Synchronization in Optimistic PDES. 338
A.3 Stragglers only Rollback a Single Object Rather Than Whole Node 340
A.4 Rolling Back a Simulation Object . 341
A.5 The Event Horizon . 342
A.6 The Breathing Time Buckets Algorithm Processes in Event Horizon Cycles 343
A.7 The Breathing Time Warp GVT Cycle . 345

xii

List of Examples

2.1 Hello World Definition (No Events) . 12
2.2 Hello World Implementation (No Events) . 12
2.3 Hello World Main (No Events) . 13
2.4 Hello World Definition File (With Events) . 15
2.5 Hello World Implementation (With Events) . 15
2.6 Hello World Main (With Events) . 16
2.7 Hello World Definition (With Events #2) . 17
2.8 Hello World Implementation (With Events #2) . 17
2.9 Object State Simulation Definition File . 18
2.10 Object State Simulation Implementation File . 19
2.11 Object State Simulation Main . 20
2.12 English Definition File . 22
2.13 English Implementation File . 22
2.14 Klingon Definition File . 23
2.15 Klingon Implementation File . 23
2.16 Mute Definition File . 23
2.17 Mute Implementation File . 23
2.18 Scheduler Definition File . 24
2.19 Scheduler Implementation File . 24
2.20 English and Klingon main File . 24
2.21 Process Model WAIT Definition File . 25
2.22 Process Model WAIT Implementation File . 25
2.23 Process Model State Definition File . 26
2.24 Process Model State Definition File . 27
3.1 Simple Simulation Object Definition . 32
3.2 Simple Simulation Object Implementation . 33
3.3 Simple Simulation main . 34
5.1 Rollbackable Function Definition (RB WriteToDatabase) 69
5.2 Alterable Item Class Definition (SpAltTelemetry.H) . 70
5.3 Alterable Item Plug-In (SpAltTelemetry.C) . 71
5.4 Submarine Initializaton from .par File . 79
5.5 Rollbackable Class using RB memcpy . 80
6.1 Generic Simulation Object Definition . 89
6.2 Point-to-Point Event StopLight Object Definition File 90
6.3 Point-to-Point Event StopLight Object Implementation File 91
6.4 Point-to-Point Event Car Object Definition File . 92
6.5 Point-to-Point Event Car Object Implementation File 93
6.6 Car and Stop Light main . 94
6.7 Local Event Radio Object Definition . 98
6.8 Local Event Radio Object Implementation . 99

xiii

6.9 Local Event Car Object Definition File . 100
6.10 Local Event Car Object Implementation File . 103
6.11 Local Event main . 103
6.12 Autonomous Event Stop Event Definition File . 104
6.13 Autonomous Event Stop Event Implementation File . 105
6.14 Separate Interface Style . 108
6.15 Defining a Method Using the Separate Interface Method 109
6.16 Scheduling using the Separate Interface Style . 109
7.1 Standard Event Handler Stop Light Object Definition File 115
7.2 Standard Event Handler Stop Light Object Implementation File 116
7.3 Interaction Event Handler Stop Light Object Implementation File 119
7.4 Interaction Event Handler Car Object Definition File 121
7.5 Interaction Event Handler Car Object Implementation File 123
7.6 Interface Event Handler . 124
8.1 Basic Process Model Form . 129
8.2 Process Model Sleep Stop Light Object Definition File 130
8.3 Process Model Sleep Stop Light Object Implementation File 132
8.4 Semaphore Car Object Definition File . 134
8.5 Semaphore Car Object Implementation File . 136
8.6 Ask GPS Object Definition File . 138
8.7 Ask GPS Object Implementation File . 139
8.8 Ask Car Object Implementation File . 141
9.1 Entity Class Definition . 152
9.2 Fixed Entity Class Definition . 153
9.3 Free Object Proxy Implementation . 162
9.4 F-15 Definition (Manual Version) . 163
9.5 F-15 Implementation (Manual Version) . 164
9.6 Radar Definition (Manual Version) . 165
9.7 Radar Implementation (Manual Version) . 166
9.8 main Function (Manual Version) . 167
9.9 F-15 Definition (Proxy Version) . 168
9.10 F-15 Implementation (Proxy Version) . 168
9.11 F-15 Object Proxy Definition . 169
9.12 Radar Definition (Proxy Version) . 170
9.13 Radar Implementation (Proxy Version) . 170
9.14 main Function (Proxy Version) . 171
9.15 SpFreeObjProxy Implementation . 172
9.16 F-15 Definition (Attribute Subscription Version) . 174
9.17 F-15 Implementation (Attribute Subscription Version) 175
9.18 Radar Definition (Attribute Subscription Version) . 176
9.19 S Radar Implementation (Attribute Subscription Version) 179
10.1 ENGINE ATTRIBUTE Definition . 185
10.2 Engine Proxy Definition . 186
10.3 Car HLA Simulation Object Definition . 186
10.4 Car HLA Simulation Object AddObjectAttributes Method 187
10.5 Car Proxy Definition . 187
10.6 Garage HLA Simulation Object Definition . 188
10.7 Garage HLA Simulation Object Implementation . 188
10.8 Free Object Proxy Implementation for Object Attribute Example 189

xiv

10.9 Main Implementation for Object Attribute Example . 189
10.10 Fuse Definition . 192
10.11 Fuse Proxy Definition . 192
10.12 Car HLA Simulation Object Definition . 193
10.13 Car HLA Simulation Object AddListAttributes Method 194
10.14 Car HLA Simulation Object RemoveFuseItem Method 194
10.15 Garage HLA Simulation Object Implementation . 195
10.16 Car HLA Simulation Object Definition . 199
10.17 Car HLA Simulation Object AddPositionAttributes Method 200
10.18 Car Proxy Definition . 201
10.19 Garage HLA Simulation Object Implementation . 202
10.20 Car HLA Simulation Object Definition . 208
10.21 Car HLA Simulation Object InitDynamicBaseTypes Method 210
10.22 Car HLA Simulation Object ChangeDynamicBaseTypes Method 212
10.23 Car Proxy Definition . 213
10.24 Car HLA Simulation Object InitPolynomial method . 216
10.25 Car HLA Simulation Object Definition . 219
10.26 Car HLA Simulation Object InitPosition Method . 220
10.27 Car HLA Simulation Object InitPosition Method . 222
10.28 Garage HLA Simulation Object Implementation . 222
11.1 DM Ship Simulation Object Definition . 227
11.2 DM Ship Simulation Object Implementation . 230
11.3 DM Submarine Simulation Object Definition . 230
11.4 DM Submarine Simulation Object Implementation . 231
11.5 DM main . 232
11.6 Class Type Filter Modifications to S Ship . 239
11.7 Class Type Filter Modifications to S Submarine . 241
11.8 Class Type Filter Modifications to main . 242
11.9 Class Type Filter Modifications to S Submarine Definition 244
11.10 Class Type Filter Modifications to S Submarine Implementation 246
11.11 Function GetAffiliation . 248
11.12 Enumeration Filter Modifications to S Submarine . 250
11.13 Double Range Filter Modifications to S Submarine . 255
11.14 Range-Based Filtering Modications to S Ship . 259
11.15 Range-Based Filtering Modications to S Submarine . 260
12.1 Attack method on S Submarine . 267
12.2 CheckForDamage method on S Ship . 267
12.3 Simple External Module . 268
12.4 External Module Proxy Processing Class . 270
12.5 External Module main (Example #1) . 271
12.6 New Discover and UnDiscover Proxy Methods for the Submarine 274
12.7 External Module User-Defined Events . 274
12.8 External Module main (Example #2) . 277
12.9 External Module Local Events . 278
14.1 Dynamic Simulation Object Creation Definition . 290
14.2 Dynamic Simulation Object Creation Implementation 291
14.3 Static Simulation Object . 292
14.4 main for Dynamic Object Creation Example . 294
14.5 Basic Component Example . 295

xv

14.6 Adding a Component to a Simulation Object . 295
15.1 Generic Autonomous Event . 298
15.2 Autonomous Event Example . 303
16.1 Persistence and Pointers as Arguments to Events . 310

xvi

xvii

Part I

Overview

1

Chapter 1

Introduction

1.1 Purpose

This document provides detailed descriptions on the use of Synchronous Parallel Environment for Em-
ulation and Discrete-Event Simulation (SPEEDES). In general, each new term, function, Application
Program Interface (API), etc. is introduced with detailed follow-ups of examples in order to assist the
user in the overall understanding of SPEEDES.

1.2 System Overview

SPEEDES is a general purpose discrete-event distributed simulation framework that can be used to
simulate a wide variety of situations. SPEEDES has been successfully used for missile defense and
National Airspace simulations, as well as a number of other models. SPEEDES will support many
different hardware architectures ranging from the fastest massively parallel machines utilizing lighting-
fast shared memory, to distributed networks of fast workstations.

A discrete-event simulation differs from a time-stepped simulation in that only significant events are
simulated. If an airplane flight were simulated from takeoff to landing in a time-stepped simulation, the
position of the plane would be updated at every cycle of the simulation. In a discrete-event simulation,
there would be an event corresponding to the takeoff of the plane and an event corresponding to the
landing of the plane. In between, it is assumed the plane flew its route. This results in much lower
Central Processing Unit (CPU) use and much more efficient use of CPU resources. Of course, the
plane’s position can be queried at any point during the flight through further discrete events, and events
can be canceled if other objects affect the timeline of the plane.

SPEEDES runs discrete-event simulations in parallel by distributing the simulation objects to different
processors. Each processor is then responsible for executing all events on the simulation objects that
it was assigned. Each event may affect objects on other processors and SPEEDES will send the event
notice to that processor and add it to the queue of pending events on the appropriate simulation object.

SPEEDES provides several methods of running that include conservative schemes (guarantee no events
will be erroneously processed) and optimistic schemes (may need to undo or roll back events). These
strategies can be used to aid the modeler in taking the greatest advantage of the hardware that is available.
The optimistic strategies include a fully optimistic processing, but risk-free message sending strategy,
a strategy with maximum message sending risk, and a strategy with variable message sending risk.

3

4 CHAPTER 1. INTRODUCTION

Naturally, the conservative schemes include an optimized sequential algorithm with most of the parallel
overhead removed.

In order to support the ability to roll back an event, SPEEDES uses various incremental state saving
techniques that are extremely efficient. SPEEDES also supports the ability to roll an event forward,
if the state that the event depends upon has not changed, without requiring large amounts of memory
overhead. This is known as lazy event re-evaluation.

These techniques have been encapsulated into classes that imitate standard C++ types and function
calls. For example, the RB int behaves similar to a normal integer and the RB free function behaves
similar to the system call free, but all of the operations are done in a rollbackable fashion. What
this means is that any change to the simulation’s state that is done through a rollbackable variable or
function call will be undone if the event that caused the change is rolled back. If it turns out that the
rollbackable operations are not extensive enough, it is also a straightforward operation to extend the set
of rollbackable types and functions.

SPEEDES provides interfaces for developing external interactions and federations that can run asyn-
chronously from the SPEEDES simulation. The interface is quite powerful, resulting in the ability to
develop very intricate interactions and graphical user interfaces to the simulation over low bandwidth
and high latency situations.

These interactions allow users to query, monitor, and command simulation objects from outside the
simulation while it is running. An interactive simulation in SPEEDES can be synchronized to the wall
clock, if desired, to support real-time simulation applications. In addition to these external interac-
tions, SPEEDES also supports hybrid synchronization for external modules through the use of time
barriers that are set up internal to SPEEDES. These time barriers prevent the simulation Global Vir-
tual Time (GVT) from getting ahead of expected response times from the external modules. These
barriers are automatically removed when external modules exit the simulation (either intentionally or
unintentionally). Using the external module approach, it is possible to run geographically distributed
simulations or federations quite efficiently.

The internals of SPEEDES are highly optimized for general purpose simulations. A new data structure
for managing the list of pending events called the SPEEDES Qheap has been measured to be more
than a factor of two faster than traditional Splay trees (which are commonly thought of as being the
fastest general purpose data structures for managing event lists). SPEEDES also uses internal hashing
mechanisms for supporting event cancellation and for global name service.

SPEEDES has been designed to run independently on various computer architectures. All of the com-
munications used by the SPEEDES executable are standard architecture independent operations. The
details of how the communications are supported over various architectures are contained in separate
communications libraries. These libraries are specified when linking an application, thus reducing porta-
bility concerns.

SPEEDES is not a general purpose programming language with extensions to support simulations such
as Modular Simulation (MODSIM) II, Simscript, Simula, and other simulation programming languages.
SPEEDES is an object-oriented distributed discrete-event simulation framework written in C++. While
SPEEDES can and has been used for non-simulation applications, it really is a framework for synchro-
nizing the scheduling of events (i.e. actions) that occur in a distributed system. SPEEDES provides a rich
modeling framework allowing other simulation scripting languages to be written on top of SPEEDES.
For example, the Integrated Modeling and Persistent Object Relations Technology (IMPORT) model-
ing language has already been hosted on top of SPEEDES and takes advantage of all the parallel and
external module features of SPEEDES.

Events in SPEEDES are only allowed to act on a single simulation object (this is required for correct

1.3. DOCUMENT OVERVIEW 5

and efficient rollback support). An event may alter the state of its corresponding simulation object (i.e.
modify variables contained inside the simulation object) and may schedule future events (scheduling
events with a zero time delay is allowed) for any object in the simulation.

Under the covers, the scheduling of an event takes place by filling out an event message, sending it to
the object on which the event should be taking place, and then inserting an event of the appropriate type
on the object’s queue of events. The message contains the data for calling the method on the remote
object, as well as an optional variable length buffer for data whose size is not known ahead of time.

SPEEDES uses free lists for all fixed sized messages to improve performance and to avoid memory
fragmentation. SPEEDES automatically sends the message to the destination node at the appropriate
time, depending on the synchronization protocol selected.

When it is time to process that event, SPEEDES removes the event from the event queue and calls the
method(s) defined by that event. Users normally provide the bulk of their event processing code (i.e.
performing computations, making state changes, and scheduling other events) in this method. All state
changes here must use the rollback queue utility supported in SPEEDES, which saves the changes made
to the state of the simulation object in a generalized linked list.

SPEEDES uses events to change the state of simulation objects (i.e. simulation models). As events are
processed, simulation time advances. The advantage of SPEEDES over sequential modeling frame-
works, is that SPEEDES can distribute the model work load over several or many CPUs. If models can
be parallelized, then this will lead to more work being done in the same amount of time, or simulations
that take much less time to run.

1.3 Document Overview

This document provides an in-depth look at SPEEDES and its usage. Each chapter discusses a feature
of SPEEDES which builds on the previous chapters. As subjects are discussed, examples are always
presented along with the subject manner so that users can “see” how to use the different features of
SPEEDES. This document is broken up into seven parts described below in Sections 1.3.1 through 1.3.7.
Each addresses different areas of the SPEEDES framework.

1.3.1 Overview

1.3.1.1 Introduction

Chapter 1 gives an overview of the document including, its purpose, a system overview of SPEEDES,
document conventions, and a document overview.

1.3.1.2 Quick Start

Chapter 2 provides several examples that demonstrate the basics of how to create a SPEEDES based
simulation. These examples can be used to get a small simulation up and running quickly.

1.3.2 Simulation Objects

6 CHAPTER 1. INTRODUCTION

1.3.2.1 Simulation Object Overview

Chapter 3 describes simulation objects in-depth, including their construction, decomposition onto nodes,
and handles for finding simulation objects.

1.3.2.2 Rollbackable Built-in Types

Chapter 4 provides additional details on building simulation objects in an optimistic Parallel Discrete-
Event Simulation (PDES) environment. It presents many rollbackable classes that can be used along
with general guidelines that should be followed.

1.3.2.3 Utilities

Chapter 5 addresses additional features that are useful in simulation object construction. These include
other rollbackable functions, how to create new rollbackable functions or objects, as well as parameter
file parsing for simulation object configuration.

1.3.3 Events

1.3.3.1 Point-to-Point Events

Chapter 6 discusses point-to-point events. This is the most basic form of an event, which is used by
simulation objects that need to cause an action to occur on one other simulation object.

1.3.3.2 Event Handlers

Chapter 7 describes standard event handlers, interactions, and interface event handlers. Handler events
allow for run-time configuration of responses and also allow for one-to-many events, rather than the
one-to-one feature of point-to-point events.

1.3.3.3 The Process Model

Chapter 8 describes the process model. Standard point-to-point events do not allow time to pass, but the
process model allows for reentrant events. That is, the event can go to sleep and then wake up either
through a timeout or through an interrupt.

1.3.4 Object Proxies

1.3.4.1 Using Object Proxies

Chapter 9 provides the basic introduction into object proxies, including some simple examples. This
chapter should be read in its entirety, as many inter-related topics are presented.

1.3. DOCUMENT OVERVIEW 7

1.3.4.2 Proxy Attributes

Chapter 10 describes all the possible attributes that can be distributed through the object proxy interface.
These include static types as well as dynamic types whose value is determined through a time-based
function.

1.3.4.3 Data Distribution Management (DDM)

Chapter 11 discusses the Data Distribution Management (DDM) capabilities available in the SPEEDES
framework. Object proxies work well for distributing the information that is published, but when sim-
ulations get large, filters are needed. DDM allows users to filter this information so that only what is
needed is delivered to subscribers.

1.3.5 External Interfaces

1.3.5.1 External Modules

Chapter 12 provides a communication path for entities external to the SPEEDES simulation. This allows
external programs to inject or extract data into a SPEEDES simulation without adversely affecting the
SPEEDES application.

1.3.5.2 Command-Line Utilities

Chapter 13 discusses built-in SPEEDES utilites that provide users with some rudimentary interactions
with the simulation.

1.3.6 Advanced Topics

1.3.6.1 Simulation Objects

Chapter 14 discusses two advanced topics on simulation objects. The first is dynamic object creation
and the second is components.

1.3.6.2 Autonomous Events

Chapter 15 describes to how take full advantage of the SPEEDES event processing framework. The
SPEEDES unified API hides the internal event mechanisms from the user. Autonomous events allow
users access to the internal event mechanisms, giving users greater control over their events.

1.3.6.3 Checkpoint/Restart: Using Persistence

Chapter 16 discusses the SPEEDES checkpoint/restart capability.

8 CHAPTER 1. INTRODUCTION

1.3.6.4 Diagnostic Tools

Chapter 17 describes how to examine the framework and the simulation’s performance. This can help
the user diagnose correct or incorrect behavior of a discrete-event simulation.

1.3.7 Appendix

1.3.7.1 Parallel Discrete-Event Simulation Technical Reference

Appendix A discusses PDES operation and additional information on how the SPEEDES framework
implements these ideas.

1.3.7.2 SPEEDES Parameter File Configuration

Appendix C discusses the file speedes.par, which is responsible for SPEEDES framework configu-
ration.

1.3.7.3 Acronyms and Abbreviations

Appendix D provides a list of acronyms and abbreviations used within this document.

1.4 Referenced Documents

The following documents, although not necessarily referenced herein, guided preparation of this docu-
ment and its contents. Unless otherwise specified, the current revision shall apply.

Government
None.

Prime Contractor
12146H601S METRON SOW for Wargame 2000

Contractor
S025 SPEEDES API Reference Manual

Other
14882 ANSI standard for C++

Subcontractor Data Requirement List (SDRL) and other documenation can be found at:

Metron Incorporated
514 Via De La Valle, Suite 306
Solana Beach, CA 92075-2715

1.5. DOCUMENT CONVENTIONS 9

1.5 Document Conventions

This document often uses Courier font in order to highlight certain ideas or concepts. In general,
Courier is used whenever a SPEEDES class, C++ name, or a UNIX name is used. However, we
avoid using constant SPEEDES lingo when an English term would suffice. This helps to explain how to
use SPEEDES without overly using SPEEDES classes as English terms.

For example, when decomposition is discussed, and the actual parameters used as input to the macros
are expressed, then these arguments (BLOCK or SCATTER) are placed in Courier. However, when we
are discussing decomposition types and how they worked then we used block or scatter in the standard
font.

As another example, consider proxy attributes. If we are discussing how to get a POLY 1 MOTION item
from the SpFreeDynAttributes class and adding it to the attribute DYNAMIC POSITION AT-
TRIBUTE, then we used Courier. However, if we are discussing pulling dynamic items off of the
dynamic free list and adding the item to the dynamic position attribute, then we do not use Courier.

Also, we did not use Courier in most tables, headings or captions. For example, instead of using
INT ATTRIBUTE we use Integer Attribute which should lead to easier readibility of this document.

Finally, as you read the document you will notice that some examples have are surrounded by a box
while others ar not. Any code that is part of a larger example (i.e. several .C and .H files) is enclosed
in a box with a caption. This is the way most examples are presented. Occasionally, only short code
segments are presented. In these cases if the code starts to approach a half a page in length, then these
are also enclosed in a box with an appropriate caption.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Quick Start

2.1 Simulation Objects

The SPEEDES framework is a collection of C++ classes and an API, which allows users to build a
simulation and run that simulation on one or more processors. The SPEEDES API is a series of built-in
C++ macros and functions (some of the functions are automatically generated by calls to macros), which
allow users to use the full functionality of SPEEDES. This chapter will lead you through a few simple
examples to show you the basic principles of SPEEDES. The examples will also show you how to write,
compile, and execute a SPEEDES application.

The fundamental building block of a SPEEDES simulation is a simulation object, which represents an
object in your simulation on which events are to be scheduled. A simulation object may be a moving
physical object, such as a battleship in a war game simulation, or a less obvious object, such as a bus
schedule in a traffic simulation. In any case, the important distinguishing characteristic of a simulation
object is that events are scheduled on it. In the case of a battleship, a typical event may be the event of
firing one of its guns, or the event of assessing damage sustained after being affected by a “fire” event
from an enemy submarine object. In the case of a bus schedule, an event may be a departure or the
institution of a delay program.

This section explains some simple concepts of SPEEDES, including an introduction to simulation ob-
jects and different types of events. Let us proceed with a simple Hello World application.

In order to simulate a computer printing “Hello World” to its screen (in this trivial case we will be
doing, not merely simulating), we are faced with decisions. Do we want a single simulation object and
an event on it which does the printing? Perhaps we would rather define two types of simulation objects,
one containing an event which prints “Hello” and schedules an event on the second object, which prints
“World”. Or perhaps a third choice would be a single type of object, on which two event types are
defined. We will explore each case individually.

The first step in building our Hello World example is to create our simulation object. All SPEEDES
simulation objects inherit from the base class, SpSimObj. This class contains a virtual method called
Init, which SPEEDES calls once all simulation objects are created. In general, this class should
be used to initialize all simulation objects. The easiest Hello World implementation is to have the
simulation object’s Init method print out the string “Hello World”. This method can be implemented
without creating any events. Let us take this path and define a single type of simulation object, called
S HelloWorld (by SPEEDES convention, the names of simulation objects start with “S ”), which
contains no events.

11

12 CHAPTER 2. QUICK START

Examples 2.1 and 2.2 show the definition and implementation files, for a simple Hello World program.
The simulation object is defined by calling the built-in SPEEDES macro, DEFINE SIMOBJ, which
tells SPEEDES how many simulation objects of type, S HelloWorld, to create and how they are to
be distributed across the different nodes. Notice that method, Init, is printing out “Hello World”.

// S_HelloWorld.H
#ifndef S_HelloWorld_H
#define S_HelloWorld_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"

/***
* The S_HelloWorld simulation object is represented by a C++ class
* of the same name. Here, the only two methods are the constructor
* and the virtual method Init. Note that the class inherits from
* the SPEEDES class SpSimObj.
***/

class S_HelloWorld : public SpSimObj {
public:
S_HelloWorld() {}
virtual void Init();

};

/***
* Define the simulation object S_HelloWorld using the
* DEFINE_SIMOBJ macro, whose arguments are (in order):
* 1. The name of the simulation object (identical to the class
* name)
* 2. The number of objects of this type to be created
* 3. The decomposition algorithm (SCATTER or BLOCK)
* The DEFINE_SIMOBJ macro is defined in the SPEEDES header file
* SpDefineSimObj.H, included above.
***/

DEFINE_SIMOBJ(S_HelloWorld, 1, SCATTER);
#endif

Example 2.1: Hello World Definition (No Events)

// S_HelloWorld.C
#include "S_HelloWorld.H"

/***
* A simulation is typically set in motion by the Init function for
* one or more of the simulation objects.
***/

void S_HelloWorld::Init() {
cout << "Hello World" << endl;

}
Example 2.2: Hello World Implementation (No Events)

The last item necessary to make the simulation complete is to create main. Built-in macros are used to
“plug in” simulation objects and their respective events into the SPEEDES framework. Since there are
no events, only the simulation object needs to be plugged in using macro, PLUG IN SIMOBJ, as shown
in Example 2.3. The last item in main is always the call to the built-in function, ExecuteSpeedes.

2.1. SIMULATION OBJECTS 13

// Main.C
/**
* The PLUG_IN_SIMOBJ macro, called from main, is defined in the
* header file, SpMainPlugIn.H.
**/

#include "SpMainPlugIn.H"
#include "S_HelloWorld.H"

/***
* The main calling program calls the SPEEDES built-in macro,
* PLUG_IN_SIMOBJ, once for each simulation object type, to inform
* the simulation of the existence of each of the simulation
* objects. This macro is defined in the SPEEDES header file,
* SpMainPlugIn.H, included above. The call to the built-in
* function, ExecuteSpeedes, starts the simulation.
***/

int main (int argc, char** argv) {
PLUG_IN_SIMOBJ(S_HelloWorld);
ExecuteSpeedes(argc, argv);

}
Example 2.3: Hello World Main (No Events)

In addition to the mentioned files, you can create a file named speedes.par, in which various run-
time parameters are set. In the absence of such a file, these parameters default to reasonable values. One
such parameter the user might find useful is tend, which indicates the simulation end time in seconds.
The speedes.par file should be placed in the current working directory. Appendix C discusses this
file in detail.

Here are explicit instructions for compiling and running the simulation using the GNU’s Not Unix
(GNU) g++ compiler under Linux.

1. Install SPEEDES. Installation instructions are provided in the file, README, which is included in
the SPEEDES distribution. All of SPEEDES should reside under a directory called, for example,
$HOME/speedes.

2. Set environment variables, SPEEDES INCLUDES to $HOME/speedes/include and
SPEEDES LIBS to $HOME/speedes/lib/ArchitectureDirs/Linux i686. This as-
sumes that SPEEDES has been installed in directory $HOME/speedes.

3. In any convenient directory, create files S HelloWorld.H,S HelloWorld.C, and Main.C.
The examples described within the guide can be downloaded from http://www.speedes.com.

4. Compile, link, and execute the example by typing:

% g++ -o HelloWorld -I$SPEEDES_INCLUDES S_HelloWorld.C Main.C \
$SPEEDES_LIBS/libSpEngine.so \
$SPEEDES_LIBS/libSpShMemTCP.so \
$SPEEDES_LIBS/libSpUtil.so

% ./HelloWorld

The Hello World simulation should print several statistics to the screen and finally print “Hello World”.

A powerful feature of SPEEDES is its ability to distribute the processing of simulation objects onto
several CPUs, or even several computers, possibly separated by large distances and connected by the

14 CHAPTER 2. QUICK START

Internet. SPEEDES accomplishes this by forking off the user-specified number of processes for which
the simulation is to execute on. Each process is called a node. When processing on one node, SPEEDES
automatically runs in sequential mode and eliminates parallel-processing overhead, since no parallelism
is involved. The Hello World example contains one object running on one node. Let us change our
example to run on multiple nodes with multiple objects.

Edit file S HelloWorld.H and change the line, DEFINE SIMOBJ(S HelloWorld, 1, SCAT-
TER) to DEFINE SIMOBJ(S HelloWorld, 2, SCATTER). After recompilation, the program
can be restarted using � as a command line argument (this specifies that the program is to execute on
two nodes). The result of the simulation will be two occurrences of the string “Hello World” being
output to the terminal.

You should now understand how the virtual method Init works. It executes after all the simulation
objects have been constructed. Let us rewrite the Hello World program such that the string “Hello
World” is printed out by an event on the S HelloWorld simulation object. The S HelloWorld
simulation object will contain an event called HelloWorldEvent, implemented as a method on the
S HelloWorld class. The choice of event name is any valid string name. This event is scheduled to
execute at at time, ��������� , by the Init method and its only purpose is to print “Hello World”.

The code shown in Examples 2.4 and 2.5 show the definition and implementation files for a simple
event-driven Hello World simulation.

// S_HelloWorld.H
#ifndef S_HelloWorld_H
#define S_HelloWorld_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

/***
* Here, a method is declared to represent an event called
* HelloWorldEvent.
***/

class S_HelloWorld : public SpSimObj {
public:
S_HelloWorld() {}
virtual void Init();
void HelloWorldEvent();

};

DEFINE_SIMOBJ(S_HelloWorld, 1, SCATTER);

/***
* A HelloWorldEvent event, which takes no arguments, is defined on
* the S_HelloWorld simulation object, and must be declared using
* the DEFINE_SIMOBJ_EVENT_0_ARG macro (the "0" indicates that
* the event, represented by a method, takes no arguments). The
* arguments to DEFINE_SIMOBJ_EVENT_0_ARG are (in order):
* 1. The name of the event.
* 2. The name of the simulation object on which the event is
* defined.
* 3. The name of the method which defines the action of the event.
* The macro, DEFINE_SIMOBJ_EVENT_0_ARG, is defined in
* SpDefineEvent.H and creates the global function,

2.1. SIMULATION OBJECTS 15

* SCHEDULE_HelloWorldEvent.
***/

DEFINE_SIMOBJ_EVENT_0_ARG(HelloWorldEvent, S_HelloWorld,
HelloWorldEvent);

#endif
Example 2.4: Hello World Definition File (With Events)

// S_HelloWorld.C
#include "S_HelloWorld.H"

/***
* A call to the function, SpGetObjHandle, with no arguments
* instructs SPEEDES to retrieve the object handle, which is a
* unique identifier, of the current simulation object. A call to
* the built-in function, SpGetSimObjKindId, returns SimObjKindId, an
* integer, indicating which of the two S_HelloWorld objects is
* currently being initialized (0 for the 1st, 1 for the 2nd).
***/

void S_HelloWorld::Init() {
if (SpGetSimObjKindId() == 0) {
SCHEDULE_HelloWorldEvent(0.0, SpGetObjHandle());

}
}

void S_HelloWorld::HelloWorldEvent() {
cout << "Hello World" << endl;

}
Example 2.5: Hello World Implementation (With Events)

Note the lines:

DEFINE_SIMOBJ_EVENT_0_ARG(HelloWorldEvent, S_HelloWorld,
HelloWorldEvent)

This macro turns method, HelloWorldEvent, into a SPEEDES event called HelloWorldEvent
and creates global function, SCHEDULE HelloWorldEvent, used to schedule this event. The event
is implemented by writing the zero argument method, HelloWorldEvent, on the S HelloWorld
class.

Function, SCHEDULE HelloWorldEvent, is used to schedule event, HelloWorldEvent, at time,
��� ����� , on the current S HelloWorld object. The global function, SpGetObjHandle, called with
no arguments, returns the object handle of the current object.

Example 2.6 shows the code necessary to create the main for this Hello World program. This main
is identical the previous main shown in Example 2.3, except that macro, PLUG IN EVENT(Hello-
WorldEvent), has been added. This macro plugs the event into the SPEEDES framework.

// Main.C
#include "SpMainPlugIn.H"
#include "S_HelloWorld.H"

/***
* The built-in macro, PLUG_IN_EVENT, informs SPEEDES as to the
* existence of an event on a simulation object. Its only argument

16 CHAPTER 2. QUICK START

* is the name of the event. The macro is defined in the SPEEDES
* header file, SpMainPlugIn.H, included above.
***/

int main (int argc, char** argv) {
PLUG_IN_SIMOBJ(S_HelloWorld);
PLUG_IN_EVENT(HelloWorldEvent);
ExecuteSpeedes(argc, argv);

}
Example 2.6: Hello World Main (With Events)

As a variation of the last version on the Hello World program, we could instantiate two S HelloWorld
objects, making the first object’s virtual method Init schedule a HelloWorldEvent event on itself
at time, � � ����� , and the second object’s Init method do nothing. The HelloWorldEvent event
does the following:

1. If scheduled on the first object, it prints “Hello” and schedules a HelloWorldEvent event on
the second object for time, � � � ��� .

2. If scheduled on the second object, it simply prints “World”.

Examples 2.7 and 2.8 show the code necessary to implement this enhancement to the Hello World
simulation.

// S_HelloWorld.H
#ifndef S_HelloWorld_H
#define S_HelloWorld_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

/***
* Here, a method is declared to represent an event called
* HelloWorldEvent.
***/

class S_HelloWorld : public SpSimObj {
public:
S_HelloWorld() {}
virtual void Init();
void HelloWorldEvent();

};

/***
* The following call to the macro, DEFINE_SIMOBJ, instructs
* SPEEDES to define two S_HelloWorld simulation objects, and
* Scatter (card deal) them to available nodes (CPUs or computers).
***/

DEFINE_SIMOBJ(S_HelloWorld, 2, SCATTER);

/***
* A HelloWorldEvent event, which takes no arguments, is defined on
* the S_HelloWorld simulation object, and must be declared using the
* DEFINE_SIMOBJ_EVENT_0_ARG macro (the "0" indicates that the event,
* represented by a method, takes no arguments). The arguments to

2.1. SIMULATION OBJECTS 17

* DEFINE_SIMOBJ_EVENT_0_ARG are (in order):
* 1. The name of the event
* 2. The name of the simulation object on which the event is defined
* 3. The name of the method which defines the action of the event.
* The macro, DEFINE_SIMOBJ_EVENT_0_ARG, is defined in
* SpDefineEvent.H and creates the global function,
* SCHEDULE_HelloWorldEvent.
***/

DEFINE_SIMOBJ_EVENT_0_ARG(HelloWorldEvent, S_HelloWorld,
HelloWorldEvent);

#endif
Example 2.7: Hello World Definition (With Events #2)

// S_HelloWorld.C
#include "S_HelloWorld.H"

/***
* A call to the function, SpGetObjHandle, with no arguments
* instructs SPEEDES to retrieve the object handle of the current
* simulation object.
***/

void S_HelloWorld::Init() {
if (SpGetSimObjKindId() == 0) {
SCHEDULE_HelloWorldEvent(0.0, SpGetObjHandle());

}
}

void S_HelloWorld::HelloWorldEvent() {
if (SpGetSimObjKindId() == 0) {
cout << "Hello ";
SCHEDULE_HelloWorldEvent(1.0,

SpGetObjHandle("S_HelloWorld_MGR", 1));
}
if (SpGetSimObjKindId() == 1) {
cout << "World" << endl;

}
}

Example 2.8: Hello World Implementation (With Events #2)

The main needed to complete this program is the same as the previous main (Example 2.6).

There are many other possible scenerios which could be used in our Hello World example, three of
which are mentioned below:

1. One S Hello simulation object containing no events, and one S World simulation object con-
taining a WorldEvent event. Method, Init, in S Hello prints “Hello” and schedules event
WorldEvent on S World at � � � ��� , which prints “World”.

2. One S Hello simulation object and one S World simulation object. The S Hello simulation
object contains a HelloEvent event, which prints “Hello” and schedules WorldEvent event
on S World simulation object for one time unit later. The WorldEvent event prints “World”.
The process is started by S Hello simulation object’s Init scheduling a HelloEvent event
at time, � � ����� .

18 CHAPTER 2. QUICK START

3. Two instances of a S HelloWorld object, which contains a HelloEvent and a WorldE-
vent event. The Initmethod on the first S HelloWorld simulation object schedules a Hel-
loEvent at � � ����� . When this event is executed, the string “Hello” is printed to the display
and event, WorldEvent, is scheduled for 1 second later on the second simulation object. When
event WorldEvent executes, the string “World” is printed to the display.

2.2 Simulation Object State

State refers to the value of the attributes of a simulation object. A principal difficulty inherent in parallel
processing is time management. If simulation objects are distributed onto several nodes, one would like
to take advantage of potential parallelism by allowing the processing on a node to run ahead without
being hindered by the workload on another node. The case may occur, however, whereby a slow node
schedules an event, called a straggler event, on a second node which has run ahead into the future,
relative to the first node. If the straggler event is scheduled for a time in the faster node’s past, then the
state of the faster node must be rolled back to the point in time when the event is scheduled. SPEEDES
provides a simple mechanism for accomplishing such a feat, transparent to the user, provided the user
declares the state variable to be rollbackable (e.g. by using the built-in class RB int instead of the
usual C++ type int).

The code shown in Examples 2.9 through 2.11 will illustrate this. The simulation contains two counter
objects, one running on a fast node, and the other on a slow node. The slow node can be made “slow”
by including a call to the C library function, sleep. Each object contains a state variable, which it
increments by 2 every two time units. At time, � ��� ��� , the event, IncrementEvent, on the slow
node schedules event, StragglerEvent, on the fast node for time, � ��� ��� . The result of this event
is to roll the fast node back to � ��� ��� , add

� � � � to Counter, and continue on.

// S_Object.H
#ifndef S_Object_H
#define S_Object_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Object : public SpSimObj {
public:
S_Object() {}
virtual void Init();
void IncrementEvent();
void StragglerEvent();

private:
RB_int Counter;
char* Indent;

};

DEFINE_SIMOBJ(S_Object, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(IncrementEvent, S_Object, IncrementEvent);
DEFINE_SIMOBJ_EVENT_0_ARG(StragglerEvent, S_Object, StragglerEvent);
#endif

Example 2.9: Object State Simulation Definition File

2.2. SIMULATION OBJECT STATE 19

// S_Object.C
#include <unistd.h>

#include "S_Object.H"
#include "SpGlobalFunctions.H"

void S_Object::Init() {
Counter = 0;
SCHEDULE_IncrementEvent(0.0, SpGetObjHandle());
if (SpGetSimObjKindId() == 0) {
Indent = "";

}
else {
Indent = " ";

}
}

void S_Object::IncrementEvent() {

cout << "t=" << SpGetTime().GetTime()
<< ": " << Indent << "Obj" << SpGetSimObjKindId()
<< "’s Counter = " << Counter;

Counter = Counter + 2;
cout << ", Incrementing it to " << Counter << endl;
SCHEDULE_IncrementEvent(SpGetTime() + 2.0, SpGetObjHandle());

if (SpGetSimObjKindId() == 0) {
sleep(1);
if (Counter == 6) {

SCHEDULE_StragglerEvent(SpGetTime() + 1.0,
SpGetObjHandle("S_Object_MGR", 1));

cout << " "
<< "Scheduling StragglerEvent for time = "
<< SpGetTime() + 1.0 << endl;

}
}

}

void S_Object::StragglerEvent() {
cout << "t=" << SpGetTime().GetTime()

<< ": " << Indent << "Obj" << SpGetSimObjKindId()
<< "’s Counter = " << Counter;

Counter = Counter + 1000;
cout << ", Incrementing it to " << Counter

<< " (Straggler)" << endl;
}

Example 2.10: Object State Simulation Implementation File

// Main.C
#include "SpMainPlugIn.H"
#include "S_Object.H"

int main (int argc, char** argv) {
PLUG_IN_SIMOBJ(S_Object);

20 CHAPTER 2. QUICK START

PLUG_IN_EVENT(IncrementEvent);
PLUG_IN_EVENT(StragglerEvent);
ExecuteSpeedes(argc, argv);

}
Example 2.11: Object State Simulation Main

Figure 2.1 shows the output of the simulation for a 10 second run when run on one node.

t=0: Obj0’s Counter = 0, Incrementing it to 2
t=0: Obj1’s Counter = 0, Incrementing it to 2
t=2: Obj0’s Counter = 2, Incrementing it to 4
t=2: Obj1’s Counter = 2, Incrementing it to 4
t=4: Obj0’s Counter = 4, Incrementing it to 6

Scheduling StragglerEvent for time = 5
t=4: Obj1’s Counter = 4, Incrementing it to 6
t=5: Obj1’s Counter = 6, Incrementing it to 1006 (Straggler)
t=6: Obj0’s Counter = 6, Incrementing it to 8
t=6: Obj1’s Counter = 1006, Incrementing it to 1008
t=8: Obj0’s Counter = 8, Incrementing it to 10
t=8: Obj1’s Counter = 1008, Incrementing it to 1010
t=10: Obj0’s Counter = 10, Incrementing it to 12
t=10: Obj1’s Counter = 1010, Incrementing it to 1012

Figure 2.1: One Node State Simulation

All of the timestamps in the output are in sequential order. This is due to the fact that, when simulations
run on one node, rollbacks do not occur. Next, Figure 2.2 shows output for the same program when
executed on two nodes.

t=0: Obj0’s Counter = 0, Incrementing it to 2
t=0: Obj1’s Counter = 0, Incrementing it to 2
t=2: Obj1’s Counter = 2, Incrementing it to 4
t=4: Obj1’s Counter = 4, Incrementing it to 6
t=6: Obj1’s Counter = 6, Incrementing it to 8
t=8: Obj1’s Counter = 8, Incrementing it to 10
t=10: Obj1’s Counter = 10, Incrementing it to 12
t=2: Obj0’s Counter = 2, Incrementing it to 4
t=4: Obj0’s Counter = 4, Incrementing it to 6

Scheduling StragglerEvent for time = 5
t=5: Obj1’s Counter = 6, Incrementing it to 1006 (Straggler)
t=6: Obj0’s Counter = 6, Incrementing it to 8
t=6: Obj1’s Counter = 1006, Incrementing it to 1008
t=8: Obj1’s Counter = 1008, Incrementing it to 1010
t=10: Obj1’s Counter = 1010, Incrementing it to 1012
t=8: Obj0’s Counter = 8, Incrementing it to 10
t=10: Obj0’s Counter = 10, Incrementing it to 12

Figure 2.2: Two node State Simulation

The output shown in Figure 2.2 is useful for explaining rollbacks. Notice that Obj1 races forward to 10
seconds while Obj0 remains at 0. This is due to the fact that the node Obj0 is executing on (i.e. node 0)
is currently sleeping for one second. After node 0 continues execution, it will eventually schedule event,
StragglerEvent, at � � � on simulation object, S State, on node 1. This causes the simulation
object, S State, on node 1 to rollback to � � � . At this time, 1000 is added to Counter, which was
6 at � � � . Therefore, when event, IncrementEvent, is reprocessed forward, the new value at � � �

for Obj1 is 1006 on event entry.

2.3. EVENT HANDLERS 21

If the RB int type for attribute, Counter, is replaced with an int and the test is rerun, then the
results will be different from the original. Node 1 once again races forward to 10 and Counter is set to
12. However, now when node 1 is rolled back, the Counter value is not 6, but retains its non-state safe
value of 12. Hence, the new value of Counter is 1012. This shows that Counter is not rollbackable
in this example.

In a simulation, users may not not want to have erroneous data values displayed (e.g. Counter). This
problem can be remedied by replacing the stream output variable, cout, with its SPEEDES built-in
rollbackable counterpart, RB cout. Figure 2.3 shows the output of this program when executed on two
nodes. Notice that the output is in time order.

t=0: Obj0’s Counter = 0, Incrementing it to 2
t=0: Obj1’s Counter = 0, Incrementing it to 2
t=2: Obj0’s Counter = 2, Incrementing it to 4
t=2: Obj1’s Counter = 2, Incrementing it to 4
t=4: Obj1’s Counter = 4, Incrementing it to 6
t=4: Obj0’s Counter = 4, Incrementing it to 6

Scheduling StragglerEvent for time= 5
t=5: Obj1’s Counter = 6, Incrementing it to 1006 (Straggler)
t=6: Obj0’s Counter = 6, Incrementing it to 8
t=6: Obj1’s Counter = 1006, Incrementing it to 1008
t=8: Obj0’s Counter = 8, Incrementing it to 10
t=8: Obj1’s Counter = 1008, Incrementing it to 1010
t=10: Obj0’s Counter = 10, Incrementing it to 12
t=10: Obj1’s Counter = 1010, Incrementing it to 1012

Figure 2.3: Two node State Simulation with RB cout

2.3 Event Handlers

SPEEDES provides a mechanism to dynamically add, subscribe, and remove a type of event called
event handlers during simulation execution. With traditional point-to-point events, the caller must have
knowledge about the event being called, along with what object the event resides on. However, with
event handlers this information is unnecessary.

Event handlers have two basic forms, directed and undirected. Directed handlers are handlers for
which the scheduler schedules the handler on a specific simulation object via a simulation object han-
dle (i.e. SpObjHandle). A scheduler can schedule an undirected event handler by not specifing a
simulation object handle. Usually, undirected event handlers are associated with a trigger string.

Examples 2.12 through 2.20 show examples of how to use undirected event handlers. The scheduling
simulation object (S Scheduler) does not know which entity receives the handler event, nor which
event handlers are active. The receiving entities are made active by subscribing to a particular handler,
and may respond differently to the handler event.

The code shown in Examples 2.12 through 2.15 shows how the English and Klingons will respond
to a greeting. In both simulation objects, method, Greet, has been turned into an event handler by
DEFINE SIMOBJ HANDLER. During run-time, these event handlers are subscribed to in the Init
method with a trigger string of “Voice”. The effect of this is that any object that schedules an undirected
event handler with a trigger of “Voice” will cause the method, Greet, to be executed on these two
simulation objects.

22 CHAPTER 2. QUICK START

The code shown in Examples 2.16 and 2.17 shows the Mute simulation object subscribing to an event
handler with a trigger string of “Silent”. Therefore, this object will respond to trigger strings of “Silent”
but not “Voice”.

Finally, the code shown in Examples 2.18 and 2.19 shows how to schedule an undirected event handler
with the trigger of “Voice”. This causes the English and Klingon handlers to execute, while the event
handler registered to object S Mute remains silent.

// S_English.H
#ifndef S_English_H
#define S_English_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineHandler.H"

class S_English : public SpSimObj {
public:
S_English() {}
virtual void Init();
void Greet();

};

DEFINE_SIMOBJ(S_English, 1, SCATTER);
DEFINE_SIMOBJ_HANDLER(GreetInEnglish, S_English, Greet);
#endif

Example 2.12: English Definition File

// S_English.C
#include "S_English.H"

void S_English::Init() {
SubscribeHandler(GreetInEnglish_HDR_ID(), "Voice");

}

void S_English::Greet() {
cout << "Hello" << endl;

}
Example 2.13: English Implementation File

// S_Klingon.H
#ifndef S_Klingon_H
#define S_Klingon_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineHandler.H"

class S_Klingon : public SpSimObj {
public:
S_Klingon() {}
virtual void Init();
void Greet();

2.3. EVENT HANDLERS 23

};

DEFINE_SIMOBJ(S_Klingon, 1, SCATTER);
DEFINE_SIMOBJ_HANDLER(GreetInKlingon, S_Klingon, Greet);
#endif

Example 2.14: Klingon Definition File

// S_Klingon.C
#include "S_Klingon.H"

void S_Klingon::Init() {
SubscribeHandler(GreetInKlingon_HDR_ID(), "Voice");

}

void S_Klingon::Greet() {
//See http://www.kli.org/tlh/phrases.html

cout << "nuqneH" << endl;
}

Example 2.15: Klingon Implementation File

// S_Mute.H
#ifndef S_Mute_H
#define S_Mute_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineHandler.H"

class S_Mute : public SpSimObj {
public:
S_Mute() {}
virtual void Init();
void Greet();

};

DEFINE_SIMOBJ(S_Mute, 1, SCATTER);
DEFINE_SIMOBJ_HANDLER(GreetWithANod, S_Mute, Greet);
#endif

Example 2.16: Mute Definition File

// S_Mute.C
#include "S_Mute.H"

void S_Mute::Init() {
SubscribeHandler(GreetWithANod_HDR_ID(), "Silent");

}

void S_Mute::Greet() {
cout << "ERROR: S_Mute is mute" << endl;

}
Example 2.17: Mute Implementation File

24 CHAPTER 2. QUICK START

// S_Scheduler.H
#ifndef S_Scheduler_H
#define S_Scheduler_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"

class S_Scheduler : public SpSimObj {
public:
S_Scheduler() {}
virtual void Init();

};

DEFINE_SIMOBJ(S_Scheduler, 1, SCATTER);
#endif

Example 2.18: Scheduler Definition File

// S_Scheduler.C
#include "S_Scheduler.H"
#include "SpSchedule.H"

void S_Scheduler::Init() {
SCHEDULE_HANDLER(0.0, "Voice");

}
Example 2.19: Scheduler Implementation File

// Main.C
#include "SpMainPlugIn.H"
#include "S_English.H"
#include "S_Klingon.H"
#include "S_Mute.H"
#include "S_Scheduler.H"

int main (int argc, char** argv) {
PLUG_IN_SIMOBJ(S_English);
PLUG_IN_SIMOBJ(S_Klingon);
PLUG_IN_SIMOBJ(S_Mute);
PLUG_IN_SIMOBJ(S_Scheduler);
ExecuteSpeedes(argc, argv);

}
Example 2.20: English and Klingon main File

2.4 The Process Model

An event on a simulation object occurs at a particular instance in time. In contrast, a process in
SPEEDES refers to a reentrant event, which can take place over a finite interval of time. A process
is reentrant in the sense that, when the simulation exits a process, then reenters, it can remember the
values of local state variables inside the process. For example, an event could use the macro, WAIT,
which instructs SPEEDES to exit the process, save the local state variables, and then reenter the process
after the specified time interval has expired. The interval of time is specified by an argument to WAIT.

For example, the previous State example incremented a simulation object state variable, Counter,
in an event. This event then schedules itself so that the counter can be subsequently incremented.

2.4. THE PROCESS MODEL 25

Examples 2.21 and 2.22 show how to increment the counter using the process model. Function main
is not shown here, but is similar to those which have been previously presented (i.e. main plugs the
simulation object and events into the SPEEDES framework and then calls ExecuteSpeedes).

// S_Object.H
#ifndef S_Object_H
#define S_Object_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Object : public SpSimObj {
public:
S_Object() {}
virtual void Init();
void IncrementProcess();

};

DEFINE_SIMOBJ(S_Object, 1, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(IncrementProcess, S_Object,

IncrementProcess);
#endif

Example 2.21: Process Model WAIT Definition File

// S_Object.C
#include "S_Object.H"
#include "SpGlobalFunctions.H"
#include "SpProc.H"
#include "RB_ostream.H"

void S_Object::Init() {
SCHEDULE_IncrementProcess(0.0, SpGetObjHandle());

}

void S_Object::IncrementProcess() {
P_VAR;
P_LV(int, counter);
P_BEGIN(1);
counter = 0;
while(1) {
RB_cout << "t=" << SpGetTime().GetTime()

<< ": " << "counter = " << counter;
counter = counter + 2;
RB_cout << ", Incrementing it to " << counter << endl;
WAIT(1, 2.0);

}
P_END;

}
Example 2.22: Process Model WAIT Implementation File

To use the process model, you must first write a method on an object and use one the SPEEDES de-
fine event macros on this method. The event can be turned into a process model event by using the
process model macros. There are several macros used to create a process model. The method, Incre-
mentProcess, in our example, shows some of these process model constructs. The macro, P VAR,

26 CHAPTER 2. QUICK START

starts the process model off. The user declares local state variables after this declaration (i.e. variables
whose values need to be saved should the process model exit and then be reentered). The macro, P LV,
is used to declare variable, counter, as a local process model state variable. This causes the value
for counter to be saved when method, IncrementProcess, is exited via process model normal
processing. The macro call, P BEGIN(1), indicates where the process model user code starts (i.e. sim-
ulation model code). The integer argument to P BEGIN specifies the number of subsequent process
model macros used (e.g. WAIT, WAIT FOR, ASK, etc.), which is 1 in this example. In the while
loop, the call, WAIT(1, 2.0), sets that particular reentry point to have a label of 1. When this code
is executed the first time, the code up to the WAIT is executed, then, at the WAIT construct, the process
model state variables are saved off and this event is exited. The second argument in the construct, WAIT,
specifies the amount of time which must pass (as measured by GVT) before processing can continue. In
this example, the time would be 2 seconds. The process code ends with the call to P END. Although use
of the process model constructs may seem difficult, there are many occasions when use of the process
model can greatly simplify the code for your simulation models.

As a second example, consider the previous State example which will be modifed to show rollbacks.
Examples 2.23 and 2.24 show a process model implementation for this rollback example. Event, In-
crementProcess, has been modified to use the process model. Notice that the process model local
state variable, counter, has been moved back to the header file so that event, StragglerEvent,
can access the variable.

// S_Object.H
#ifndef S_Object_H
#define S_Object_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Object : public SpSimObj {
public:
S_Object() {}
virtual void Init();
void IncrementProcess();
void StragglerEvent();

private:
RB_int Counter;
char* Indent;

};

DEFINE_SIMOBJ(S_Object, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(IncrementProcess, S_Object,

IncrementProcess);
DEFINE_SIMOBJ_EVENT_0_ARG(StragglerEvent, S_Object, StragglerEvent);
#endif

Example 2.23: Process Model State Definition File

// S_Object.C
#include <unistd.h>

#include "S_Object.H"
#include "SpGlobalFunctions.H"

2.4. THE PROCESS MODEL 27

#include "SpProc.H"

void S_Object::Init() {
SCHEDULE_IncrementProcess(0.0,SpGetObjHandle());
if (SpGetSimObjKindId() == 0) {
Indent = "";

}
else {
Indent = " ";

}
}

void S_Object::IncrementProcess() {
P_VAR;
P_BEGIN(1);
while(1) {
cout << "t=" << SpGetTime().GetTime()

<< ": " << "Obj" << SpGetSimObjKindId()
<< "’s Counter = " << Counter;

Counter = Counter + 2;
cout << ", Incrementing it to " << Counter << endl;

if (SpGetSimObjKindId() == 0) {
sleep(1);
if (Counter == 6) {

cout << " "
<< "Scheduling StragglerEvent for time="
<< SpGetTime() + 1.0 << endl;

SCHEDULE_StragglerEvent(SpGetTime() + 1.0,
SpGetObjHandle("S_Object_MGR", 1));

}
}
WAIT(1, 2.0);

}
P_END;

}

void S_Object::StragglerEvent() {
cout << "t=" << SpGetTime().GetTime()

<< ": " << Indent << "Obj" << SpGetSimObjKindId()
<< "’s Counter = " << Counter;

Counter = Counter + 1000;
cout << ", Incrementing it to " << Counter

<< " (StragglerEvent)" << endl;
}

Example 2.24: Process Model State Definition File

28 CHAPTER 2. QUICK START

Part II

Simulation Objects

29

Chapter 3

Simulation Object Overview

The simulation object represents the most basic concept in SPEEDES. All data representing the state
of the object will be contained inside or referenced by an object descending from a simulation object.
The fundamental building block for simulation objects is class SpSimObj or its child, S SpHLA. All
simulation objects must inherit from SpSimObj or one of its child classes.

Simulation objects, like other C++ classes, contain a collection of attributes whose types are primitive
base types or other classes. If a simulation object’s attributes are not state sensitive, then rollbackable
types are not necessary. If a simulation object’s attribute must maintain its state, then a rollbackable
class must be used for the attribute. Section 2.2 shows an example of the use of non-rollbackable and
rollbackable attributes in a simulation object. SPEEDES contains many built-in rollbackable classes
which users can use to build their simulation objects. These built-in rollbackable classes are discussed
in Chapter 4. If the built-in rollbackable classes are not sufficient to meet your needs, then you can
always build your own rollbackable types and classes for use with the SPEEDES framework, as shown
in Section 5.4.

This chapter will primarily focus on class SpSimObj. Class S SpHLA will be discussed when Object
Proxies are introduced in Chapter 9.

3.1 Simulation Objects

Class SpSimObj provides the most basic level of functionality for all simulation objects, such as the
ability to schedule events, process event handlers, and respond to a special type of event handler, called
interactions. In order to create the simulation object, users must write a class which inherits from
SpSimObj. A simulation object is just like a normal C++ class in that it contains attributes and methods
which define the behavior of the simulation object.

Let us walk though an example which shows the different aspects of a simulation object. Our example
will print out the string “Hello from object #”, where # is the integer id for that simulation object. The
string will be printed out by an event which is executed at

� � � � seconds into the simulation. Example 3.1
shows the code for the simulation object definition file.

// S_MySimObj.H
#ifndef MySimObj_H
#define MySimObj_H

31

32 CHAPTER 3. SIMULATION OBJECT OVERVIEW

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_MySimObj : public SpSimObj {
public:
S_MySimObj();
virtual ˜S_MySimObj();
virtual void Init();
virtual void Terminate(double simTime);
static int GetNumObjs() {return 5;}
void MyFirstMethod();

private:
char* StringOutput;

};

DEFINE_SIMOBJ(S_MySimObj, S_MySimObj::GetNumObjs(), SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(MyMethod, S_MySimObj, MyFirstMethod);
#endif

Example 3.1: Simple Simulation Object Definition

Notice that this class inherits from SpSimObj as required to create a SPEEDES simulation object.
This example also shows the typical C++ constructor and destructor along with two virtual methods
Init and Terminate. While traditional C++ objects perform their initializations and cleanup in
their constructors and destructors, respectively, it is highly recommended that SPEEDES simulation
objects do this in the methods Init and Terminate. If there are tasks which must be initialized in
the constructor, then these initializations should be added between the following if statement. This is
due to the persistence framework, which may create or delete objects at unexpected times.

if (SpPoDataBase::DoNotAllocateMemoryInConstructor == 0) {
/*
* Initializations that occur in the constructor are discouraged.
* Object initializations should occur in the Init Method.
*/

}

Next, notice the macros DEFINE SIMOBJ and DEFINE SIMOBJ EVENT 0 ARG near the end of Ex-
ample 3.1. Macro DEFINE SIMOBJ EVENT 0 ARG will be discussed in further detail in Chapter 6.
For now, let it suffice to say that this macro is used to create an event called MyMethod, which,
when called, will cause method MyFirstMethod to execute. Macro, DEFINE SIMOBJ, is used
to create a simulation object manager for the simulation object (i.e. creates a simulation object man-
ager for S MySimObj). During simulation initialization, object managers create (i.e. new) the user-
specified number of simulation objects and call each object’s Init method. The API for macro DE-
FINE SIMOBJ is:

DEFINE_SIMOBJ(className,
numObjects,
decompMethod)

3.1. SIMULATION OBJECTS 33

Parameter Description
className The name of the simulation object class.
numObjects The number of objects to be created. This argument can be a function call as shown

in Example 3.1.
decompMethod The type of decomposition algorithm desired. Currently, SPEEDES contains four

built-in types of decomposition algorithms, BLOCK, SCATTER, FILE SCATTER,
and FILE BLOCK.

Table 3.1: Macro DEFINE SIMOBJ API

Examples 3.2 and 3.3 shows the code for the implementation of the simulation object and main.

// S_MySimObj.C
#include "SpGlobalFunctions.H"
#include "RB_ostream.H" // needed for RB_cout
#include "S_MySimObj.H"

S_MySimObj::S_MySimObj() {
if (SpPoDataBase::DoNotAllocateMemoryInConstructor == 0) {
/*
* Initializations that occur in the constructor are discouraged.
* Object initializations should occur in the Init Method.
*/

}
}

S_MySimObj::˜S_MySimObj() {
/*
* Simulation object cleanup should be done in the Terminate method.
*/

}

/*
* Initialize simulation objects here.
*/

void S_MySimObj::Init() {
StringOutput = new char[strlen("Hello from object ") + 5];
sprintf(StringOutput, "Hello from object %d", SpGetSimObjKindId());
SetName(StringOutput);
SCHEDULE_MyMethod(1000.0, SpGetObjHandle());

}

/*
* Cleanup simulation objects here.
*/

void S_MySimObj::Terminate(double simTime) {
cout << "S_MySimObj::Terminate at " << simTime << endl;
delete [] StringOutput;

}

void S_MySimObj::MyFirstMethod() {
RB_cout << StringOutput << endl;

}
Example 3.2: Simple Simulation Object Implementation

34 CHAPTER 3. SIMULATION OBJECT OVERVIEW

// Main.C
#include "SpMainPlugIn.H"
#include "S_MySimObj.H"

int main(int argc, char** argv)
{

PLUG_IN_SIMOBJ(S_MySimObj);
PLUG_IN_EVENT(MyMethod);
ExecuteSpeedes(argc, argv);

}
Example 3.3: Simple Simulation main

Example 3.2 shows the implementation for the constructor, destructor, and the two virtual methods
Init and Terminate. Notice that the constructor and destructor are not performing any tasks.
Method Init allocates memory and assigns attribute StringOutput its initial value. It also sched-
ules event MyMethod at time, � � � � � � . In general, method Init is used for simulation ob-
ject attribute initialization, scheduling initial events, and configuring event handlers and interactions.
Method Terminate cleans up the simulation object on exit by deleting the memory allocated for
StringOutput.

This example also shows the usage of method SetName. By default, SPEEDES names each simu-
lation object by appending the string “ MGR #” to the class name used in macro DEFINE SIMOBJ,
where # is the object’s kind id (see Section 3.2 for a description of kind id). For example, if method
SetName had not been used, then the first S MySimObj simulation object name would have been
“S MySimObj MGR 0”. The name of the object can be important when users need to look up simu-
lation object handles (see Section 3.3). If method SetName is used to override the default name, then
the new name must be used when looking up object handles.

The last item required to complete this simulation is to “Plug In” the SPEEDES simulation objects and
their respective events into the SPEEDES framework. This is shown in Example 3.3. Two macros
are provided with the SPEEDES framework which are used for plugging in simulation objects and
events called PLUG IN SIMOBJ and PLUG IN EVENT, respectively. Macro PLUG IN EVENT will
be discussed in Chapter 6. The API for macro PLUG IN SIMOBJ is:

PLUG_IN_SIMOBJ(className)

Parameter Description
className The name of the simulation object class.

Table 3.2: Macro PLUG IN SIMOBJ API

3.2 Simulation Object Managers

Simulation objects (i.e. objects that inherit from SpSimObj) are managed by simulation object man-
agers. When a simulation is started, one simulation object manager for each simulation object type is
created on each UNIX process, or node. For example, A simulation might contain 20 aircraft and 10
ships executing on 2 nodes. Each node will have one aircraft and one ship simulation manager objects
and the 20 aircraft and 10 ships will be created on the two nodes by the simulation manager objects.
Users can determine which node an object is located on by its node id, which is returned by global func-
tion SpGetNodeId (also, the number of nodes the simulation is executing on is accessable by global
function SpGetNumNodes).

3.2. SIMULATION OBJECT MANAGERS 35

Simulation object managers are responsible for such items as:

� Initial simulation object creation on their respective nodes.

� Simulation initialization and cleanup processes.

� Dynamic simulation object creation.

� Managing subscriptions to interactions and event handlers.

� Managing external module subscriptions to simulation object data.

As the simulation object manager is creating and initializing simulation objects, several integer ideniti-
fiers are assigned to each simulation object instance, including:

� Kind Id: As simulation objects are created by the SPEEDES framework, each simulation object
instance (by type) is assigned a unique id starting at 0. The function SpGetSimObjKindId
returns the kind id for the current simulation object. As an example, consider a simulation com-
posed of 10 aircraft, 3 airports, and 7 radars. This example contains 3 simulation object types.
Within each object type, their kind id would be allocated as ��� �

, ��� � , and ��� �
for each

instance of aircraft, airport, and radar, respectively. Therefore, in the more general case, kind id
for each simulation object will go from � to ��� �

where � is the number of simulation objects of
that type. The quantity of each simulation object is specified in the macro DEFINE SIMOBJ as
described in Table 3.1.

As another example, suppose that a simulation contained 10 forts whose positions are fixed along
a straight line from the equator to the north pole. When creating the forts, each fort needs to have
its latitude and longitude initialized. Assume that all of the forts are on ��� latitude and that each
fort lies at longitudes of � �	� � � �
� � � ���� � �	� � � � , up to

� � � . The kind id can be used to help avoid
having two different nodes initializing one of their forts with identical longitudes. Simply write
the code to set the longitude to 10 times kind id. Since SPEEDES assigns unique kind ids to the
forts, each longitude will be unique as well. Table 3.3 shows the results of this allocation.

Longitude 0 10 20 30 40 50 60 70 80 90
Kind Id 0 1 2 3 4 5 6 7 8 9

Table 3.3: Fort Example, Longitude vs. Kind Id

� Local Id: This is a sequential list of numbers for each simulation object on the current node.
The function SpGetSimObjLocalId returns the local id for the current simulation object. As
an example, Table 3.4 shows what the local id could be for the simulation executing on 2 nodes.
(Note: Decomposition algorithm can change the allocation of simulation objects, hence local ids).

Node 0 Node 1
Longitude 0 10 20 30 40 50 60 70 80 90
Kind Id 0 1 2 3 4 5 6 7 8 9
Local Id 0 1 2 3 4 0 1 2 3 4

Table 3.4: Fort Example, Longitude vs. Local Id

� Global Id: This is a sequential list of numbers which are unique throughout the entire simulation.
Given the previous fort example, the forts would be assigned global ids ��� �

. Suppose the

36 CHAPTER 3. SIMULATION OBJECT OVERVIEW

simulation also contain 10 tanks. The tanks would then be assigned global ids of
� � � � �

(their
kind ids would be � � � and local ids would be � � � [per node]). Simulation objects may not have
the same global ids from run to run if the simulation is executed on a different number of nodes.
Function SpGetSimObjGlobalId returns the global id for the current simulation object.

Not only are simulation objects assigned identifying numbers, but simulation object managers are as
well (each is unique). The identifiers for each simulation object manager are printed to the terminal
during simulation initialization. Function SpGetSimObjMgrId returns the simulation object man-
ager id for the current imulation object. This id can be looked up for any simulation object manager by
using the following function:

int SpGetSimObjMgrId(char *name)

Parameter Description
name The name of the simulation object manager. This is the first parameter used in DE-

FINE SIMOBJ (i.e. class name) appended with string “ MGR”.

Table 3.5: Simulation Object Manager Id API

The creation of this simulation object manager is transparent to users. One of the byproducts of the
macro DEFINE SIMOBJ is the creation of the simulation object manager class. This class handles all
of the simulation object manager duties. At times, users may need the simulation object manager id or
its name for inputs into other functions when looking up objects. The most frequently used function
will be SpGetObjHandle, which will be used when looking up object handles for simulation objects.
Object handles are discussed in Section 3.3.

3.2.1 Simulation Object Decomposition

Object decomposition is the act of assigning simulation objects to nodes or UNIX processes. Ideally,
each simulation node is allocated to its own processor on a high performance computer in order to
maximize simulation run-time performance. For example, suppose our simulation consisted of 100
aircraft and 10 ships. For a 2 node simulation, how should the objects be distributed? Some distribution
examples could be that all aircraft are placed on node 0 and ships on node 1, half the aircraft and ships
on nodes 0 with the remaining aircraft and ships on node 1, or perhaps, 75 aircraft on node 0 and the
remaining aircraft and ships on node 1. The placement of the aircraft and ships, or in the more general
case, simulation objects, is left up to the user.

Obviously, the placement of the simulation objects onto their respective nodes can have a huge impact
on processor or node load balancing. If all 100 airplanes with high computational expensive models
were placed on one node and 10 ships with very simple models were placed on the other node, then
the simulation would have very poor run-time performance. Hence, objects which require high CPU
usage should be distributed across available CPUs to achieve a balanced CPU load and better run-time
performance.

The placement of these objects onto nodes is called object decomposition. SPEEDES provides two
built-in automatic object decomposition methods, called block and scatter, which will be discussed in
more detail below.

3.2. SIMULATION OBJECT MANAGERS 37

3.2.1.1 Block and Scatter Decomposition (Automatic Object Placement)

SPEEDES provides two automatic decomposition methods called block and scatter. When used, the
simulation objects are distributed across available nodes based on the method specified. Block decom-
position distributes the simulation objects to nodes evenly. However, as many objects as possible with
adjacent kind ids will be placed on the same node. Scatter decomposition distributes the simulation ob-
jects such that simulation objects with consecutive kind ids are located on different consecutive nodes.
This method is similar to a card dealer dealing out playing cards, hence scatter is often referred to as the
card deal method of distribution.

The block decomposition algorithm starts off by calculating the number of simulation objects that can
be placed on each node evenly. This is simply taking the integer result of the number of simulation
objects divided by the number of nodes. For example, if we have 8 simulation objects and 3 nodes, then
each node will receive 2 objects with 2 objects still needing distribution. The algorithm then takes any
simulation objects not distributed and assigns them to nodes starting on the node after the node where
the last simulation object was deposited. If, in our example, the last simulation object was placed on
node 0, then our current 8 simulation objects would be distributed as follows: 3 simulation objects with
kind ids of � � � would be placed on node 1, the next 3 simulation objects with kind ids of � � � would
be placed on node 2 and the remaining simulation objects with kind ids of 6 and 7 would be placed on
node 0.

The scatter decomposition algorithm uses a simple card deal method for simulation object distribution.
The distribution always starts at the node following where the last simulation object was placed. There-
fore, the current simulation object whose kind id is 0 is placed on the next available node, followed
by the simulation object whose kind id is 1 placed on the next node, etc. This continues until the all
simulation objects of a given type are distributed. For example, suppose we once again had 8 simulation
objects with 3 nodes and SPEEDES placed the last simulation object on node 0. Then node 1 gets the
next object whose kind id is 0, node 2 gets the next object whose kind id is 1, node 0 gets the next object
whose kind id is 2, etc.

Let us look at the previous example again. Suppose the forts were to be allocated across two nodes.
Table 3.6 shows how simulation objects would be distributed if block decomposition were used.

Longitude 0 10 20 30 40 50 60 70 80 90
Kind Id 0 1 2 3 4 5 6 7 8 9
Node 0 0 0 0 0 1 1 1 1 1

Table 3.6: Block Decomposition

Suppose the forts in our simulation wanted to share ammunition and each fort can only share ammuni-
tion with the adjacent forts. In that case, the above decomposition would be good since in most cases
the interaction between simulation objects would be on the same node. Only the infrequent case of the
forts whose kind ids are 4 and 5 would require communication across nodes. All other fort communi-
cations would be on same node. Since communication with other nodes is more time-consuming, this
decomposition would minimize the more expensive communication. This distribution method is called
block decomposition.

Now suppose the forts do not share ammunition at all, but instead, their primary purpose is to defend
against invasion. Invasions tend to occur in small geographic areas since the enemy likes to concentrate
its forces. If the invasion occurred at � � � longitude, then only forts that are close to this longitude
would be able to defend against the invasion. In this case, only forts with kind ids of 4 and 5 are close
enough. Since these two forts are on separate nodes, each node would perform approximately one half
of the work load so the simulation would be well balanced. However, suppose the invasion occurred at a

38 CHAPTER 3. SIMULATION OBJECT OVERVIEW

longitude of
� � � . Now forts 7 and 8 would defend against the invasion and, with block decomposition,

all of the work would be done on node 1. In this case, node 1 is overloaded and node 0 is underloaded,
creating an unbalanced load.

Therefore, in this case, having adjacent forts on different nodes would maximize run-time performance.
That way, any invasion involving two adjacent forts would be simulated on both nodes with roughly
equally work loads. The nodes would be balanced. This could be achieved by having the simulation
objects with even numbered kind ids be on node 0 and the simulation objects with odd numbered kind
ids be on node 1. This type of distribution is call scatter decomposition. Table 3.7 shows the forts
distribution pattern using scatter decomposition.

Longitude 0 10 20 30 40 50 60 70 80 90
Kind Id 0 1 2 3 4 5 6 7 8 9
Node 0 1 0 1 0 1 0 1 0 1

Table 3.7: Scatter Decomposition

However, notice that scatter decomposition would be a poor fort distribution method for the first hy-
pothetical problem of ammunition sharing between forts. There are always pluses and minuses when
choosing any decomposition method. The decomposition method will affect the run-time performance
of a simulation and users should consider this issue when selecting a method. The decomposition
method is specified in the third parameter in macro DEFINE SIMOBJ as BLOCK and SCATTER, as
shown in Table 3.1.

Regardless of which type of decomposition method selected, SPEEDES picks up where it left off. That
is, if the last object of the previous type of simulation object was placed on node 3, then the first object of
the next simulation object type is placed on the next available node (e.g. node 0 on a 4 node simulation).

As a last example, consider a simulation involving the following simulation objects with the specified
quantities, as shown in Table 3.8.

Object Type Objects Type Quantity Decomposition Type
Car 2 scatter
Ship 8 block
Plane 6 scatter
Train 4 scatter

Table 3.8: Decomposition Example

In addition, assume that the simulation is to be run on three nodes with the objects plugged in the order
specified above. The simulation objects are then distributed across the different nodes, as shown in
Table 3.9.

Node 0 Node 1 Node 2
Car0 Car1 Ship0
Ship3 Ship6 Ship1
Ship4 Ship7 Ship2
Ship5 Plane0 Plane1
Plane2 Plane3 Plane4
Plane5 Train0 Train1
Train2 Train3

Table 3.9: Block and Scatter Object Distribution by Object Type and Kind Id

3.2. SIMULATION OBJECT MANAGERS 39

3.2.1.2 File Driven Decomposition (Manual Object Placement)

Block and scatter decompositions often do fairly well when the number of objects is large and the
interactions between objects is somewhat random. However, in many simulations, this is not the case.
For simulations that contain simulation objects which are tightly coupled and will tend to roll each other
back if they reside on different nodes, then manual placement can achieve better simulation performance
results. SPEEDES allows users to specify object placement via an input file specification.

SPEEDES allows for two different file driven object placement schemes called file block and file scatter
by specifying FILE BLOCK and FILE SCATTER as the third parameter in macro DEFINE SIMOBJ.
When using these types, the user must supply a file called SimObjPlacement.par, which specifies
the simulation object versus node layout matrix. All simulation objects do not have to be placed on
nodes in this specification. All simulation objects not specified in the input file will be placed on nodes
based on the input parameter FILE BLOCK and FILE SCATTER (i.e. an object not specified in the
input file will be placed on a node based on the block or scatter decomposition algorithm). Figure 3.1
is an example of a placement file for placing objects S PlacedObjectA, S PlacedObjectB, and
S PlacedObjectC.

int NumNodes 3 // Number of nodes
logical ComprehensiveSimObjMgrs F // All object MGRs required?
logical ComprehensivePlacement F // All instances place?

S_PlacedObjectA_MGR {
logical ComprehensivePlacement T // All instance specified
int SimObj_0 0 // Kind id is 0 is on node 0
int SimObj_1 2 // Kind id is 1 is on node 2
int SimObj_2 2 // Kind id is 2 is on node 2
int SimObj_3 1 // Kind id is 3 is on node 1

}

S_PlacedObjectB_MGR {
int SimObj_2 0 // Kind id is 2 is on node 0

}

S_PlacedObjectC_MGR {
int SimObj_0 0 // Kind id is 0 is on node 0
int SimObj_1 2 // Kind id is 1 is on node 2

}

Figure 3.1: Manual Object Manager Input File (SimObjPlacement.par)

The first three lines in the input file are optional. Their definitions are as follows:

� NumNodes:
If the number of nodes is specified, then the simulation must be run with the number of nodes
specified. If a simulation is started with a different number of nodes, then the simulation prints an
error message and exits.

� ComprehensiveSimObjMgrs:
When this is set to true, then all object types which use FILE BLOCK or FILE SCATTER must
be specified in this file. For example, suppose that the simulation represented by Figure 3.1
also contains a simulation object S PlacedObjectD, which used FILE SCATTER as part

40 CHAPTER 3. SIMULATION OBJECT OVERVIEW

of its definition. Then, when ComprehensiveSimObjMgrs is set to false, a definition for
S PlacedObjectD MGR is not required in file SimObjPlacement.par. However, if Com-
prehensiveSimObjMgrs is set to true, then an entry for S PlacedObjectD MGR must be
found in file SimObjPlacement.par. The default value is false.

� ComprehensivePlacement:
When this is set to true, then, for all specified object types, all instances of that type must be
specified. This value can then be overridden for a specific object type. The default value is false.

All of the lines following the first three are used to specify object instance placement. Object instances
are grouped within each object manager (i.e. object managers are derived from the name supplied to the
DEFINE SIMOBJ appended with the string “ MGR”). Each object instance is identified in the file by
using SimObj # where # is the simulation object’s kind id.

In Figure 3.1, this input file specifies the number of nodes as 3, not all object managers must be
present and not all objects within each manager type must be specified. The specification for object
S PlacedObjectA overrides ComprehensiveSimObjMgrs by setting its value to true. There-
fore, all objects must have their placements specified. If an object is not specified, then an error
message will be printed and the simulation will exit. This input file contains four instances of ob-
ject type S PlacedObjectA, which are placed on nodes 0, 2, 2, and 1. Node placements for ob-
ject type S PlacedObjectB are specified by the entry S PlacedObjectB MGR. For this spec-
ification file, only the object instance whose kind id is 2 is placed. All other object instances of type
S PlacedObjectBwill be placed based on the decomposition algorithm specified (i.e. FILE BLOCK
or FILE SCATTER). The decomposition algorithm works as follows:

1. SPEEDES reads the placement file SimObjPlacement.par and determines the location for
all specified objects.

2. Next, objects are placed using the specified decomposition method. The objects are placed in the
order in which they are plugged in.

3. As the decomposition algorithm advances, it will eventually attempt to place an object that was
specified in the placement file. When this occurs, the object is placed on the node as specified
in the input file and the automatic placement location for this object is skipped. For example,
suppose an object was supposed to to be placed on node 1 and the placement file specified it
should be placed on node 0. The object will be placed on node 0, node 1 will be skipped, and the
next object to be placed will be placed on node 2.

This method of manual object placement maintains the placement of all of the auto-placed objects,
moving only the objects placed by the specification file.

Consider the previous example shown in Table 3.8. Let us modify the example to use the following
placement file specification. The ship and the plane will use file block and file scatter decomposition,
respectively.

3.3. SIMULATION OBJECT “OBJECT HANDLES” 41

int NumNodes 3

S_Ship_MGR {
int SimObj_0 1
int SimObj_6 2

}

S_Plane_MGR {
int SimObj_1 1
int SimObj_2 2
int SimObj_3 2

}

Figure 3.2: Car, Ship, Plane, and Train File Placement

Notice that the input file does not contain definitions for the car and train simulation objects. The
decomposition method for these objects could be either scatter or file scatter. Since Comprehen-
siveSimObjMgrs is not set to true, either decomposition method specification will work. The result
of this placement specification is shown in Table 3.10. Notice that all of the objects not specified in the
input file are placed on the same nodes as shown in Table 3.9.

Node 0 Node 1 Node 2
Car0 Car1
Ship3 Ship1
Ship4 Ship7 Ship2
Ship5 Plane0

Plane4
Plane5 Train0 Train1
Train2 Train3

Placed Objects
Ship0 Ship6
Plane1 Plane2

Plane3

Table 3.10: File Driven Placement

3.3 Simulation Object “Object Handles”

When a simulation object is created, a unique object handle is assigned. An object handle is an instance
of the SPEEDES class SpObjHandle, and every simulation object has a unique handle. This class
encapsulates the data required to locate any simulation object among all simulation objects within a
simulation.

Class SpObjHandle consists of three items which will uniquely identify all simulation objects within
a SPEEDES simulation. These items include the node that the object resides on, the type of the object
(manager id), and the local id of the object. Objects of the same type on a single node are numbered
sequentially from 0 to the number of objects - 1. This means that, in some cases, objects of the same
type on different nodes will have the same local id. Contrast this with how objects of the same type
on different nodes will always have different kind ids. The constructor for an object handle looks as
follows:

SpObjHandle(int nodeId, int simObjMgrId, int simObjLocalId)

42 CHAPTER 3. SIMULATION OBJECT OVERVIEW

As an example, if we had three objects of type 12 running on two nodes with scatter decomposition, we
would have object handles of � � � � � � ��� , � � � � � � ��� , and � � � � � � � � , where object handles have the form
of (Node, Object Type, Local Id). This corresponds to the three objects residing on nodes 0, 1, and 0,
respectively, whose type is 12 with local ids of 0, 0, and 1, respectively. Also, it is worth mentioning
here that on each node there is an object manager managing each of these simulation objects. Each
object manager is assigned an object handle whose type is 12 with its local id set to -1. Therefore, the
object handles for the object managers would be � � � � � � � � � and � � � � � � � � � .
Building object handles manually requires quite a bit of knowledge about how the objects are created
and where they are distributed. The SPEEDES framework sets the object handles to their appropriate
values during object creation, which alleviates the user from initializing these. However, the user needs
to understand object handles, since object handles are a required field when scheduling events. The
SPEEDES framework provides a set of global functions for looking up object handles. Table 3.11
shows these global functions which are defined in header file SpGlobalFunctions.H.

Function Description
SpObjHandle
SpGetObjHandle()

Returns the object handle for the current simulation object. This is useful for
scheduling events on the current simulation object. The current simulation
object is the object on which the currently processed event is acting, or the
object whose Init function is executing.

SpObjHandle
SpGetObjHandle(
int simObjKindId)

Returns the object handle of the object whose kind id is passed in and whose
type is the current simulation object’s type. This function cannot be used if
the current simulation object is managed by a manual manager. Manual
managers are managers created without using DEFINE SIMOBJ.

SpObjHandle
SpGetObjHandle(
char* objType,
int simObjKindId)

Looks up an object handle by its type string name and kind id. The string
name of a type is the name of the simulation object’s name postfixed with
the string “ MGR”. This function cannot be used if the current simulation
object is managed by a manual manager. An example of the method is
shown below:

class S_Ship : public SpSimObj {
...

};
...
SpGetObjHandle("S_Ship_MGR", 0);

SpObjHandle
SpGetObjHandle(
char* objType,
char* objName)

If kind id is not known, it is also possible to identify the object by object
type and name. An example of the method is shown below:

class S_Ship : public SpSimObj {
...

};
...
SpGetObjHandle("S_Ship_MGR", "S_Ship_MGR 0");

In this example, the object name is the auto-generated name for the simu-
lation object. If method SetName is used to override the auto-generated
name then that name must be used. This function cannot be used during
simulation object initialization (i.e. Init).

3.4. TIPS, TRICKS, AND POTHOLES 43

Function Description
SpObjHandle
SpGetObjHandle(
int mgrId,
int simObjKindId)

SpObjHandle
SpGetObjHandle(
int mgrId,
char* objName)

These functions are the same as the previous two, except that they use the
simulation object manager id, rather than string look ups. The simulation
object manager id is discussed in Section 3.2.

Table 3.11: Object Handle Global Functions

3.4 Tips, Tricks, and Potholes

� Many actions fail or cause the simulation to crash if they are performed inside of the constructor.
These actions include adding event handlers and subscribing to interactions. In fact, it is recom-
mended that little be done in the constructor and all of the initialization of the simulation object
be performed in the Init method.

� Looking up an object handle using strings for either the type or the object name can be relatively
slow (especially when there are a large number of objects in the simulation). Consequently,
passing the integer representing kind id is much faster, as is the passing of the integer identifying
the object manager. Another recommendation is to grab the object handle once and store it if it is
to be used often. Finally, if the string has a typographical error in it, the compiler will not catch
the error.

� As previously explained, you may refer to a simulation object type by referring to its class name
with some extra characters appended. When using the class name as a C++ string, the string
“ MGR” needs to be appended to the class name. When its integer id is used, the string “ MGR ID”
needs to be appended to the class name. Here is an example which illustrates this:

class S_Ship : public SpSimObj {
...

};
...
SpGetObjHandle("S_Ship_MGR", 0)
SpGetObjHandle(S_Ship_MGR_ID, 0)

44 CHAPTER 3. SIMULATION OBJECT OVERVIEW

Chapter 4

Rollbackable Built-in Types

Simulation objects need to be made rollbackable, because SPEEDES is an optimistic framework. This
means that any changes to the state of a simulation object must be recorded so that the state may be
restored in case an event is rolled back. This goal is usually achieved through use of the built-in,
rollbackable data types that are included with the framework. When these are not sufficient, rollbackable
types can be created by the user in order to support additional functionality. This will be discussed in
Section 5.4.

4.1 Rollbackable Data

From a C++ point of view, a simulation object can be as generic as desired as long as the simulation
object inherits from SpSimObj. Using this object in an optimistic PDES environment raises a number
of issues which we will explore.

When processing a simulation in parallel, one or more of the CPUs (i.e. nodes) on which the simulation
is distributed may run ahead in time relative to other nodes. An event on a simulation object being
processed on a slower node may schedule an event for a simulation object being processed on one of
the faster nodes. Since the scheduling node is running slow, it may schedule an event for the past as
measured by the fast node. Such an event is called a straggler event. Events that were processed on the
faster simulation object need to be reprocessed when an event in the past occurs. The event that was
processed may have changed the state of the simulation object on the fast node, and those changes must
be undone.

For example, suppose a tank simulation object contained an event which fires ammunition and decre-
ments its ammunition count (e.g. ammunition count drops from 5 to 4 on weapon fire). Then, suppose
an event is scheduled for the tank prior to its fire event. For this case, the tank needs to undo the fire
event and restore the ammunition count back to its previous value (e.g. ammunition count is restored to
5). The easiest way to manage change to a simulation object’s state is through use of built-in rollback-
able data types. Additionally, an object’s state can be managed through the use of an advanced feature
of SPEEDES called exchange, which is discussed in Chapter 15.

The most basic rule that should be followed is: If the value of a variable in the simulation object changes
as the result of processing an event, then that variable needs to be rollbackable. This rule applies to
container classes, pointers, basic data types, and aggregated classes that are contained in the simulation
object.

When the built-in or user-defined rollbackable classes are used to build the contents of a simulation

45

46 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

object, then all changes to these attributes are recorded. During a simulation execution, if a simula-
tion object is rolled back, then the rollbackable attributes on that simulation object are restored to their
original values. On GVT updates, all rollbackable data which was saved is released and reused. Roll-
backable classes should never be used to declare temporary variables on the stack (i.e. local variables
in class methods). When this occurs, it is very likely that this will result in memory corruption and
application run-time failure (i.e. core). When users mistakenly use rollbackable variables on the stack,
SPEEDES will output an error similar to what is shown in Figure 4.1.

!!!
vvv
-----------MAJOR ERROR!!!-------------
Memory range [0x7ffff6f8, 0x7ffff6fc] is being accessed in the rollback
queue in an event of type 0
rolling back an SpAltIntValue
at time Time = {500,0,0,6,0}
on an object of type 0
and name S_RBTest_MGR 0
ˆˆˆ
!!!

Figure 4.1: Rollback Variable on Stack Error Message

The name of a rollbackable data type or function is specified by prefixing the name of the correspond-
ing non-rollbackable type or function with the string “RB ”. For example, the rollbackable types for
int and strdup are RB int and RB strdup, respectively. The following sections introduce the
SPEEDES built-in rollbackable data types.

4.2 Basic Data Types

4.2.1 Rollbackable Integers and Doubles

Built-in rollbackable data types RB int and RB double behave almost exactly like their non-rollback-
able counterparts int and double, respectively. These two types provide rollbackable data holders
for integers and doubles. When variables of these types are declared, they are initialized to zero. The
definitions for these classes are described in include files RB int.H and RB double.H. Figures 4.2
and 4.3 show overloaded operators for these classes.

4.2. BASIC DATA TYPES 47

operator int()
int operator ++()
int operator ++(int)
int operator --()
int operator --(int)
int operator =(int)
int operator =(const int&)
int operator +=(int)
int operator -=(int)
int operator *=(int)
int operator /=(int)
int operator %=(int)
int operator ˆ=(int)
int operator &=(int)
int operator !=(int)
int operator >>=(int)
int operator <<=(int)

Figure 4.2: RB int Operators

operator double()
double operator ++()
double operator ++(double)
double operator --()
double operator --(double)
double operator =(double)
double operator =(const double&)
double operator +=(double)
double operator -=(double)
double operator *=(double)
double operator /=(double)

Figure 4.3: RB double Operators

4.2.2 Rollbackable Strings and Void Pointers

Classes RB SpString and RB voidPtr provide the capability of having class attributes, which han-
dle strings and pointers in a rollbackable fashion. The RB SpString class is a rollbackable class that
otherwise behaves like an ordinary NULL terminated string. Declare a variable as RB SpStringwhen
you need a string whose value changes from event to event. The RB voidPtr class is a rollbackable
class for handling pointers to generic objects. The definitions for these classes are described in include
files RB SpString.H and RB voidPtr.H.

In addition to the default constructor and destructor, class RB SpString supports the functionality
shown in Figure 4.4.

48 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

RB_SpString(const char*)
operator const char*() const

const char* operator =(const char*)

Figure 4.4: RB SpString Operators

When RB SpString default constructor is used, RB SpString is initialized to a NULL pointer and
not an empty string. In other words, it is a character pointer (i.e. char*) that points to address,
0x0. In addition to the default constructor, another constructor exists which allows users to construct a
RB SpString initialized to some input string value.

The next two operators are the default conversion to const char* and assignment. The assignment
operator copies the input string into storage within the RB SpString object. The input string does
not need to reside in permanent storage. Changes to a specific element of a string are not permitted
(i.e. operator [] is private).

Class RB SpString handles strings for users in a rollbackable fashion. Strings are a special type of
pointer (i.e. char*). The built-in class RB voidPtr has been provided to handle the more generic
pointer cases. For example, you might need a rollbackable void* or a rollbackable blob*, where
blob is some arbitrary class name. You may need to set the pointer to point somewhere else, but if the
event gets rolled back, then you need the address to be restored to the old address. For the first case, you
may use RB voidPtr, and for other cases, like blob*, you may still use RB voidPtr, but then cast
RB voidPtr to blob* when reading it. This class behaves similarly to a standard void* in C++.
Figure 4.5 shows the operators available for class RB voidPtr.

RB_voidPtr(void value = NULL)
operator void*() const

void* operator =(void*)

Figure 4.5: RB voidPtr Operators

Class RB voidPtr constructor has an optional parameter, which can be used to initialize the class
with a pointer value. If one is not provided, then the pointer is defaulted to NULL. The first operator is a
standard conversion operator that will change a RB voidPtr to a void*. The second is a rollbackable
assignment operator. Notice that, while the pointer assignment is rollbackable, it does not copy the
storage referenced by the pointer (as does the RB SpString assignment).

4.2.3 Rollbackable Booleans

RB SpBool is a boolean class that can take on values of RB SpBool::SpFALSE or RB SpBool-
::SpTRUE The default initial value is RB SpBool::SpFALSE. This class supports rollbackable
events by restoring prior boolean states. The definitions for this class are described in include file
RB SpBool.H. Figure 4.6 shows the methods available in class RB SpBool. There are several meth-
ods available for examining and changing the state of an RB SpBool

4.2. BASIC DATA TYPES 49

enum SpBoolState {
SpFALSE,
SpTRUE}

operator int() const
operator SpBool() const

SpBool operator ==(SpBool)
SpBool operator !=(SpBool)
SpBool operator !()
SpBool operator =(SpBool)
RB_SpBool& operator =(const RB_SpBool&)
SpBoolState IsTrue() const
SpBoolState IsFalse() const

Figure 4.6: RB SpBool Operators

The return value of many of the RB SpBool operators belongs to a class called SpBool, which is a
non-rollbackable version of the RB SpBool class. The integer conversion operator allows an object of
this class to be used in conditional statements. Additionally, SpFALSE or SpTRUE allow testing for
equality.

4.2.4 Rollbackable Streams

Frequently, it is necessary to output information to the user of the simulation. Use of standard C++
streams, such as cout, can result in incorrect output, since an event may be rolled back and repro-
cessed, giving different output or may not be reprocessed at all. To avoid this problem, several classes
are provided that behave similarly to C++ streams, but only stream (output or transfer) the data when the
event is committed (see Chapter 15) and is therefore certain not to be rolled back. Classes RB ostream
and RB exostream provide rollbackable stream capability. The definitions for these classes are de-
scribed in include files RB ostream.H and RB exostream.H.

The class RB ostream provides standard ostream type functionality. This class has the following
constructors:

RB_ostream(char* filename)
RB_ostream(ostream* ostream)

The first constructor creates a RB ostreamwhich writes to a file named filename. The second creates a
RB ostream from the already existing output stream, ostream, but will only write to it in a rollback
protected fashion. This results in the desired behavior when used with a stream such as cout or of-
stream but often leads to unexpected behavior with an ostrstream (i.e. the data is not written to the
stream until the event is committed). Figure 4.7 shows the available operators for class RB ostream.

50 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

RB_ostream operator <<(char data)
RB_ostream operator <<(short data)
RB_ostream operator <<(int data)
RB_ostream operator <<(long data)
RB_ostream operator <<(unsigned char data)
RB_ostream operator <<(unsigned short data)
RB_ostream operator <<(unsigned int data)
RB_ostream operator <<(unsigned long data)
RB_ostream operator <<(float data)
RB_ostream operator <<(double data)
RB_ostream operator <<(void* data)
RB_ostream operator <<(char* data)
RB_ostream operator <<(const char* data)
RB_ostream operator <<(unsigned char* data)
RB_ostream operator <<(SpOmanip manipulator)
RB_ostream operator <<(SpBool data)
RB_ostream operator <<(SpSimTime data)

Figure 4.7: RB ostream Operators

These all behave as expected for outputting data. SPEEDES also includes two global variables, RB cout
and RB cerr, for writing to the standard streams. Note that, unlike cerr, data that is written to
RB cerr is not written to standard error until the event is committed. RB cout is analogous to cout.

Use of RB cout can result in the output appearing out of time order when running on multiple nodes.
The rollbackable external stream (i.e. RB exostream) has a similar interface as class RB ostream,
but writes data to an external module and the output is sorted by time. Class RB exostream supports
the same “write to” operators but supports just one constructor: RB exostream (char *stream-
Name), where streamName is the name of the stream. This name is used by external modules
to separate out the data coming from different external streams. Data inserted into an instance of
RB exostream will not be sent out across the network until an endl, flush, or ends stream
manipulator is inserted into the RB exostream. Unfortunately, RB exostream does not work
when SPEEDES is executing in sequential mode. If SPEEDES is run on one node, then opti-
mize sequentialmust be set to false in speedes.par. See Appendix C.1 for more information
on how to set this parameter.

Note that these classes do not support all of the features found in the built in ostream system. In
particular, they do not support most manipulators or user-defined output operators. For the example
shown below, the first line works fine but the second line has compilation errors.

cout << "Set width to 3: " << setw(3) << 8 << endl;
RB_cout << "Set width to 3: " << setw(3) << 8 << endl;

The work around for this problem is to put the desired string with manipulators into an ordinary
strstream and then put that strstream to the RB ostream.

4.3 Container Classes

For the development of basic simulation models, most data needs are satisfied by the basic types, such
as RB int and RB cout. As complexity increases, however, the need for container classes increases.

4.3. CONTAINER CLASSES 51

SPEEDES provides several container classes with a variety of different performance characteristics, to
aid in modeling.

Each rollbackable container described in the following sections has a non-rollbackable counterpart.
The name for the non-rollbackable container will be the same as the rollbackable version, minus the
“RB ” name prefix. Also the user should avoid adding NULL to the containers. The iterator and search
algorithm depends on NULL terminated data, and an unexpected NULL on a container will result in
incorrect behavior.

4.3.1 Rollbackable Binary and Hash Trees

Class RB SpBinaryTree is a standard binary tree that can behave in either normal, balanced, or splay
tree modes. Class RB SpHashTree supports a similar interface but differs in that the elements cannot
be traversed in a sorted fashion. It does have a consistent order, only it is an arbritray order rather than a
sorted order. These classes support using either a double or a string as the key for inserting, sorting, or
searching a tree, but not both at the same time. These classes allow for the insertion of duplicate keys.
Items inserted into a tree with duplicate keys are preserved in insertion order (i.e. those inserted first will
be found first when walking through the tree). The definitions for these classes are described in include
files RB SpBinaryTree.H and RB SpHashTree.H.

These containers store all data as void* pointers, thus leaving the user responsible for properly creating
and deleting data that is inserted into the container. The methods available for modifying the contents
of a tree are shown in Figure 4.8.

void Insert(void* item, double keyNum)
void Insert(void* item, char* keyName)
void* Remove(double keyNum)
void* Remove(char* keyName)
void* RemoveFirstElement()
void* RemoveFirstElement(double& keyNum)
void* RemoveLastElement()
void* RemoveLastElement(double& keyNum)

Figure 4.8: RB SpBinaryTree and RB SpHashTree Modifier Methods

Insert always succeeds and all Remove methods return the item that was removed, or NULL if no
such element was found. In the case of multiple items with the same key, Remove will return the first
of those items that was inserted into the tree. RemoveFirstElement and RemoveLastElement
will also accept a reference, in which they will return the key corresponding to the first or last element,
respectively.

Figure 4.9 shows the methods available for searching and traversing a tree.

All of the search and iterator methods shown in Figure 4.9 return a NULL pointer if the tree is empty, the
end of the tree is reached, or if the item being searched for is not found. Method Find searches the tree
for the item specified by the key and, if found, returns a pointer to that item. The item is not removed
from the tree.

New items are inserted into a tree via a key which must be either a double or a string. If a tree has
a key of one type, then functions accepting other types are not allowed. Once the key type has been
selected, then the appropriate Find or GetCurrentKeymethod must be used. If the incorrect Find
or GetCurrentKey is used, then an error message will be output. For example, if GetCurrentKey

52 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

int GetNumElements() const
void* Find(const double key)
void* Find(const char* key)
void* GetFirstElement()
void* GetCurrentElement()
void* GetLastElement()
void* GetNextElement()
void* GetPreviousElement()
void* operator ++()
void* operator ++(int)
void* operator --()
void* operator --(int)
double GetCurrentKey()
char* GetCurrentKeyName()

Figure 4.9: RB SpBinaryTree and RB SpHashTree Search and Iterator Methods

was used on a tree which has string keys, then an error message is displayed and this method returns
-1. Likewise, if the tree was built using doubles as keys, then method GetCurrentKeyNamewould
return NULL.

The tree container classes also provide prefix and postfix increment and decrement operators which
move forward and backward through the containers just like the Get methods. The iterator functions are
not rollbackable and GetNextElement should only be called after calling some function which has
set the current element, like GetFirstElement or GetLastElement. The following code shows
how to traverse all of the elements in a binary tree whose name is AccountTree.

Account* myAccount;
myAccount = (Account *) AccountTree->GetFirstElement();
while (myAccount != NULL) {
// Examine account data
myAccount = (Account *) AccountTree->GetNextElement();

}

Reverse searches can be performed by replaceing GetFirstElement and GetNextElementwith
GetLazyElementGetPreviousElement, respectively.

There is only one iterator for each tree object. Therefore, do not write a loop which contains an inner
loop interating on the same container. When processing an item in the body of a loop like the one
above, do not call another function which also iterates over the same tree object. If the container class is
modified (i.e. an insert or remove method used) between two accessing methods, undefined results may
occur. Therefore, used methods GetFirstElementor GetLastElementafter elements have been
added or removed from a tree container and before any other Get methods or operators are applied to the
container. To get around these limitations, use the interator class on these containers (see Section 4.4).

Finally, tree container classes can operate in one of three modes called normal, splay, or balanced.
Figure 4.10 shows methods which can set or query the tree mode. The default mode after constructing
RB SpBinaryTree is normal tree mode. The default for RB SpHashTree is balanced tree mode.

4.3. CONTAINER CLASSES 53

void SetNormalTreeMode()
void SetSplayTreeMode()
void SetBalancedTreeMode()
int IsNormalTreeMode()
int IsSplayTreeMode()
int IsBalancedTreeMode()

Figure 4.10: RB SpBinaryTree and RB SpHashTree Mode Methods

Choosing which tree mode to use is data specific and can determine the performance of the tree. In
normal tree mode, no rotation of the tree is performed. If the data being stored in the tree has no order
before being inserted, normal tree mode is the best choice. In balanced tree mode, a heuristic is used
to balance an unbalanced tree. This is a good mode to use if the data is somewhat ordered before
being inserted or if the minimal or maximal element will always be removed from the tree. Splay tree
mode always rotates the most recently inserted or accessed item to the top of the tree. If the tree is
accessed in a random manner, this mode will yield poor performance. On the other hand, it can provide
a caching-type feature if elements close to the recently accessed element will be accessed.

In general, a RB SpBinaryTree should be used whenever a simulation object needs sorted data with� ������� � � insertion and removal time. This makes the RB SpBinaryTree a good general purpose data
structure. An RB SpHashTree should be used whenever it is not necessary to access the data in sorted
order, but faster look ups and insertions of items are desired.

4.3.2 Rollbackable Lists

Class RB SpList is ideal to use when items in the list do not need to be sorted. The definitions for this
class are found in include file RB SpList.H.

The methods available for modifying the contents of a list are shown in Figure 4.11.

enum {
TOP_FLAG,
BOT_FLAG

}
void Insert(void* item, int TopBotFlag = BOT_FLAG)
void* Remove(void* item)
void* RemoveFirstElement()
void* RemoveLastElement()

Figure 4.11: RB List Modifier Methods

Items may be inserted at the top or bottom of the list by specifying the location with the TopBotFlag
in the Insert method (list classes insert at the bottom by default). RemoveFirstElement and
RemoveLastElement can be used to quickly empty a list, while Remove can be used to remove a
specific item from the list. If there is more than one item in the list matching the input argument, then
the first such match is removed and no other matches are removed. When an item is removed and the
list is empty, then NULL is returned. Method Remove performance grows as

� � � � , but all the other list
methods are

� � � � .
Figure 4.12 shows the methods available for traversing a list.

54 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

int GetNumElements()
void* GetFirstElement()
void* GetLastElement()
void* GetNextElement()
void* GetPreviousElement()
void* operator ++()
void* operator --()

Figure 4.12: RB List Iterator Methods

The above methods are analogous to those in tree container class methods. Similarly, with the tree
containers, adding or removing elements between Get methods calls can result in undefined behavior.
Furthermore, iterating is not rollbackable.

Similar to all other container classes, RB SpList stores all data as void pointers, thus leaving the
user responsible for properly creating and deleting data that is inserted into the container.

4.3.3 Rollbackable Priority Trees

Class RB SpPriorityTree is a specialization of the RB SpBinaryTree, which behaves like a
priority list. This means that items can be inserted into the container, but only removed from the front
of the list or retracted through a retraction handle. Furthermore, the item at the front of the list is
always of highest priority (i.e. lowest numeric priority value). The container can be searched for ele-
ments that match a known priority and, as with the RB SpBinaryTree, duplicates are allowed and
retain the priority of their insertion order. The definitions for this class are described in include file
RB SpPriorityTree.H.

The methods available for modifying the contents of a priority tree are shown in Figure 4.13.

SpRetractionHandle* Insert(void* item, double priority)
void* Remove(double& priority)
void* Remove()
int Retract(SpRetractionHandle* retractionHandle)

Figure 4.13: RB SpPriorityTree Modifier Methods

The first method inserts an item with the specified priority and returns a retraction handle, which can
be used later to retract that item from the container. The second method removes the item at the front
of the list and returns its priority in the argument passed in, or returns NULL if the container is empty.
The third method is the same, except that it does not return the priority by reference. The final method
retracts an item that was inserted at an earlier point and returns

�
if the retraction was successful, and �

otherwise.

The methods available for reading a priority tree are shown in Figure 4.14.

int GetNumElements()
double GetCurrentPriority()
void* Find(double priority)

Figure 4.14: RB SpPriorityTree Reading Methods

Method GetNumElements returns the number of elements in the priority list. GetCurrent-

4.4. INDEPENDENT ITERATORS 55

Priority returns the priority of the next item to be removed. Find returns the item which has
the specified priority (NULL is returned if no item is found).

As with other container classes, this class stores all data as void pointers, thus leaving the user respon-
sible for properly creating and deleting data that is inserted into the container.

4.3.4 Rollbackable Dynamic Pointer Arrays

RB SpDynPtrArray behaves like an array of RB voidPtr. The data structure is dynamic in the
sense that the array size can grow whenever an element beyond the current end is accessed. The defi-
nitions for this are described in include file RB SpDynPtrArray.H. Figure 4.15 shows the interfaces
for the dynamic array.

RB_SpDynPtrArray(int arraySize = 2)
˜RB_SpDynPtrArray()
RB_voidPtr& operator [](int index)

Figure 4.15: RB SpDynPtrArray Interface

The default constructor allows for one optional integer argument, which specifies the initial array length.
The array grows in size by factors of at least 2 whenever elements beyond the end are accessed using
the overloaded [] operator. The growth is performed in a rollbackable fashion, as are assignments to
elements of the array.

Here again, this class stores all data as void pointers, thus leaving the user responsible for properly
creating and deleting data that is inserted into the container.

4.4 Independent Iterators

4.4.1 Introduction

As shown in Section 4.3, various container classes have methods for looping through all items held by
an instance. These include SpList, SpBinaryTree, SpHashTree, and their rollbackable coun-
terparts. The problem with all of these is the fact that, because the container keeps track of the current
item, it can handle only one iteration at a time (e.g. a loop iterating through an SpList will not work
properly if it contains a nested loop that traverses the same SpList). For this reason, it is strongly
recommended that these looping facilities not be used.

What is needed is a separate object (for each iteration) to keep track of the current item. This is what
an independent iterator is. The following is an example showing how an iterator can be used to loop
through all the items in a container (in this case, an RB SpBinaryTree):

RB_SpBinaryTree tree;
//... Add items to the tree

// Construct iterator so that it points to first item in tree.
SpIterator_RB_SpBinaryTree iterator(tree);
RB_cout << "Tree Items:" << endl;

TreeItem* item = (TreeItem *) iterator.GetFirstElement();

56 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

while (item != NULL) {
RB_cout << "Value= " << item->GetValue() << endl;
item = (TreeItem *) iterator.GetNextElement(); // Get next item in tree

}

Notes:

� There is a specialized iterator class corresponding to each container class. In this case, a SpIt-
erator RB SpBinaryTreemust be used to step through the elements in an RB SpBinary-
Tree.

� The iterator class has a one-argument constructor that takes an instance of its corresponding con-
tainer class. This builds the iterator and initializes it to point to the first element in the container
(or to NULL if the container is empty).

� The GetFirstElement method returns a void pointer to the first item in the container, or
NULL if there are none.

� The GetNextElement method advances the iterator to the next item in the container and re-
turns a void pointer to the item. If the iterator is already located at the last item, it returns NULL.

4.4.1.1 Iteration Order

There is an iteration ordering associated with each container class. This is the order in which an iterator
visits items in a container. For lists, the ordering is determined by the way the items were inserted into
the list (i.e. the sequence in which items were inserted and whether they were inserted at the top or
bottom of the list). For binary trees, the keys determine the iteration order (by ascending key value).
With hash trees, however, the iteration sequence is not defined this way. Its ordering is determined by
an efficient traversal of the internal data structures. This order may appear random with respect to the
keys, but is consistent in the following sense: for a given hash tree, repeated iterations will yield the
same ordering as long as no new items have been inserted and no existing items have been removed
from the object. Also, backwards iterations (e.g. going from the last item to the first) are consistent in
that they visit items in the reverse order as the corresponding forward iteration (again assuming a fixed
set of items in the hash tree).

4.4.1.2 Multiple Simultaneous Iterations

As was mentioned above, the essential advantage of iterators is that they permit more than one iteration
at a time on a container. The following example shows such a case: a nested loop searching through an
RB SpList.

Assume that each item in the list contains an integer. There is “special” pair of items in which the integer
value of one is exactly double that of the other. There is only one such pair. The following function
finds the pair (using nested iterator loops) and returns the two integers via reference parameters. The
algorithm is not an efficient one and there is no error checking; it is only intended to demonstrate the
use of nested iterator loops.

void FindIntPair(RB_SpList& list, int& k, int& twoK) {
SpIterator_RB_SpList outerIt(list); // outer loop iterator
SpIterator_RB_SpList innerIt(list); // inner loop iterator

4.4. INDEPENDENT ITERATORS 57

// Get first item pointer.
ListItem* item0 = (ListItem *) outerIt.GetFirstElement();
ListItem* item1;

while (item0 != NULL) {
int i = item0->GetInt();

// search entire list for 2 * i
item1 = (ListItem *) innerIt.GetFirstElement();
while (item1 != NULL) {

int j = item1->GetInt();
if (j == 2 * i) {
k = i;
twoK = j;
return;

}
item1 = (ListItem *) innerIt.GetNextElement();

}

item0 = (ListItem *) outerIt.GetNextElement();
}

}

4.4.2 Iterator Interface

The various iterators are intended to have a very similar “look and feel.” Figure 4.16 shows the interfaces
common to all the iterators (except for GetCurrentKey and GetCurrentKeyName, which are not
provided by the two list iterators, since lists do not use keys). In it, <Container> is a meta-symbol
denoting one of the following container class names. Table 4.1 shows the container class names and
their respective iterator class name.

SpIterator_<Container>()
SpIterator_<Container>(const <Container> &container)
SpIterator_<Container>(const <Container> &container, int TopOrBot)
void* GetCurrentElement() const
operator void* () const
void* GetFirstElement()
void* GetLastElement()
void* GetNextElement()
void* GetPreviousElement()
void* operator++()
void* operator++(int)
void* operator--()
void* operator--(int)
// Note: the next 2 methods not provided by list iterators:
double GetCurrentKey() const
char* GetCurrentKeyName() const

Figure 4.16: Independent Iterator Interface

58 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

Container Name Iterator Name
SpList SpIterator List
RB SpList SpIterator RB SpList
SpBinaryTree SpIterator SpBinaryTree
RB SpBinaryTree SpIterator RB SpBinaryTree
SpHashTree SpIterator SpHashTree
RB SpHashTree SpIterator RB SpHashTree

Table 4.1: Container and Iterator Cross Reference

4.4.2.1 Constructing Iterators

The first three rows in Figure 4.16 show the iterator constructors. The one-argument constructor takes
an instance of the corresponding container class and initializes the iterator to point to the first element
in the container (see Section 4.4.1.1 for iteration ordering). To begin the iteration at the last element,
use the two-argument constructor, passing SpList::BOT FLAG as the second argument. The zero-
argument constructor creates an iterator that points “nowhere” (i.e. its internal item pointer is NULL). It
can only be used after it has been assigned the value of another iterator of the same type that is already
linked to a container object. These ideas are illustrated in the example below:

SpList list;
// ...Insert items into list

SpIterator_SpList head(list); // Points to first item
SpIterator_SpList tail(list, SpList::BOT_FLAG); // Points to last item
SpIterator_SpList newIterator; // Points nowhere

newIterator = tail; // newIterator points to
// last item

4.4.2.2 Accessing Information With Iterators

Once an iterator has been created and positioned, the GetCurrentElementmethod can be used to
access the element that the iterator is currently pointing to. GetCurrentElement returns a void*
pointer to the current item, which must then be cast to the correct pointer type. Each iterator has an
overloaded void* operator. This is equivalent to GetCurrentElement and provides a convenient
syntax for accessing the current item. Also, all the positioning methods and operators (discussed below)
return a pointer to the current item, in addition to moving the iterator.

If the container class is one that uses keys (SpBinaryTree, RB SpBinaryTree, SpHashTree,
or RB SpHashTree), the key associated with the current item can be retreived using either GetCur-
rentKey (for double keys) or GetCurrentKeyName (for string keys).

4.4.2.3 Positioning An Iterator

There are several ways to move an iterator to different locations in the container’s item sequence.
GetFirstElement positions the iterator at the first item and returns a pointer to that item. Get-
LastElement positions the iterator at the last item and returns a pointer to that item. GetNextEle-
mentmoves the iterator to the next item in the container and returns a pointer to that item. If the iterator
is currently at the last item, GetNextElementmoves the iterator past the end of the list (i.e. it points

4.4. INDEPENDENT ITERATORS 59

to NULL) and returns NULL. Subsequent calls just return NULL. GetPreviousElementmoves the
iterator to the prior item in the container and returns a pointer to that item. If the iterator is currently at
the first item, GetPreviousElementmoves the iterator off the beginning of the list (i.e. it points to
NULL) and returns NULL. Subsequent calls just return NULL.

In the example below, an iterator is used to locate the last two items in a list:

RB_SpList list;
//... Add 5 items to list

SpIterator_RB_SpList iterator(list);

// Get last item and move iterator there.
ListItem *item = (ListItem *) iterator.GetLastElement();
RB_cout << "Last item Value= " << item->GetValue() << endl;

item = (ListItem *) iterator.GetPreviousElement(); // back up one element
RB_cout << "Next-to-last item Value= " << item->GetValue() << endl;

Iterators provide both prefix and postfix versions of the ++ and -- operators. The prefix version of ++
is equivalent to GetNextElement: it moves the iterator to the next item and returns a pointer to that
item. The postfix version of ++ returns a pointer to the current item and moves the iterator to the next
item. The prefix version of -- is equivalent to GetPreviousElement: it moves the iterator to the
prior item and returns a pointer to that item. The postfix version of -- returns a pointer to the current
item and moves the iterator to the prior item.

The example below is a function that prints the key and value of all items in a hash tree:

void S_TestObject::PrintHashTree(RB_SpHashTree& hash) {
SpIterator_RB_SpHashTree iterator(hash);

// Get first (current) item pointer.
HashItem *hItem = (HashItem *) iterator.GetFirstElement();

RB_cout << "Hash Keys and Vals:" << endl;
while (hItem != NULL) {

RB_cout << "Key= " << iterator.GetCurrentKey()
<< ", Value= " << hItem->GetValue() << endl;

// Move to next item; return pointer.
hItem = (HashItem *) iterator.GetNextElement();

}
}

4.4.3 Finding an Iterator

As shown in Section 4.3.1, the RB SpBinaryTree and RB SpHashTree containers have a Find
method that locates an item whose key is given (SpBinaryTree and SpHashTree also have this
capability). Sometimes it is useful to examine other items in the container that are “near” the found
item (especially in the case of binary trees, whose items can be traversed by increasing or decreasing
key value). The container’s FindIteratormethod is provided for this purpose. These methods are
similar to the Find methods, except that instead of returning the element found, they return an iterator
pointing to that element. This iterator can then be used to examine adjacent elements.

60 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

For example, suppose the Admiral object in a naval simulation stores its ships in a binary tree, keyed by
ammunition level, as shown below:

SpBinaryTree ships;
ships.Insert("Enterprise", 34.0);
ships.Insert("Reliant" , 28.0);
ships.Insert("Lexington" , 30.0);
ships.Insert("Galileo 7" , 12.0);

The Admiral needs two ships to attack a certain enemy target, each of which must have at least 30
units of ammunition. The following example shows how FindIterator can be used to help locate
the ships. First, FindIterator finds the ship with 30 units of ammunition and returns an iterator
pointing to that ship. Then, the iterator is moved to the next item in the binary tree. Since the iteration
order goes by increasing key value, the next item must have 30 or more units of ammunition.

SpIterator_SpBinaryTree iterator = ships.FindIterator(30.0);
if (iterator.GetCurrentElement()) {
cout << "Assigning ship " << (char*)iterator.GetCurrentElement()

<< " to attack new target." << endl;
// Add code here which schedules attack event for this ship.

}
if (iterator.GetNextElement()) {
cout << "Assigning ship " << (char*)iterator.GetCurrentElement()

<< " to attack new target." << endl;
// Add code here which schedules attack event for this ship.

}

Notes:

� In the above example, the Admiral object knew that there was a ship with exactly 30.0 units of
ammunition; that is how FindIterator was able to locate the first ship. If no item in the
container has a key that precisely matches the argument, FindIterator returns an iterator
pointing to NULL. As always, one must exercise extreme caution when doing exact comparisons
of floating-point numbers.

� In general, a FindIterator call like the one above will be more efficient than using an iterator
to search through the entire SpBinaryTree. The former does a binary search (

� ��� ��� � � time
complexity), while the latter does a linear search (

� � � � time complexity).

In the case of hash trees, it is less obvious why one might want to use FindIterator. Since the
iteration ordering is based on the internal data structures, there is no way of knowing which items will
be “in the vicinity” of a found item. There is, however, one exception to this rule: all items with
the same key will be stored in a “contiguous block” of items, the first of which will be returned by
FindIterator. Thus, to find all items with a given key, simply call FindIterator and then
iterate forward until an item with a different key is found. This is shown below:

SpHashTree hTree;
// Add HashItems to hTree, using string keys

// Count #items whose key is "ABC"
SpIterator_SpHashTree iterator = hTree.FindIterator("ABC");

4.5. GUIDELINES FOR MAKING DATA ROLLBACKABLE 61

int count = 0;

while (iterator.GetCurrentElement()) {
if (strcmp("ABC", iterator.GetCurrentKeyName())) // key != "ABC" {

break;
}
else {

count++;
}
iterator.GetNextElement();

}

cout << "#Items with KeyName ABC = " << count << endl;

4.5 Guidelines for Making Data Rollbackable

The most basic rule for when to make simulation object data rollbackable is: Any data contained in the
simulation object, which changes value from event to event, must be rollbackable. This must include
pointers, base data types, aggregated classes, and container classes. Making a variable rollbackable in
the simulation object will never result in incorrect operation, although it does use CPU resources and a
limited amount of memory resources.

Obviously, the use of a rollbackable variable must incur some overhead since states must be saved.
However, users of SPEEDES need not overly concern themselves with these overheads, which are
insignificant when compared to the amount of work done in processing a normal event. According to
some brief tests, accesses of rollbackable variables cost, at most, a 10% overhead as compared to those
of the non-rollbackable varieties. In most simulations, accessing state variables constitutes the majority
of use. Writes to rollbackable variables, however, are expensive as compared to their non-rollbackable
counterparts. For the simplest rollbackable variables (RB int and RB double), writes can incur as
much as 10 times the overhead associated with the corresponding non-rollbackable version. The penalty
is smaller for container classes. What this means is that users do not need to be overly concerned about
inefficiencies incurred as a result of reading state variables. However, for optimal performance, writes
to state variables should only occur on an as needed basis.

4.6 Tips, Tricks, and Potholes

� An RB int cannot serve as an array index. The American National Standards Institute (ANSI)
C++ standard states that only an int, char, long, or its unsigned version may be used as an
array index. This means an RB int cannot be used as an index to an array. The work around for
this issue is to assign the RB int to an int and index the array with the int. This “feature” of
C++ will not be encountered with all compilers, only those that strictly follow the ANSI standard.

� Some compilers give warnings about casting a RB voidPtr to a pointer type other than void*.
A work around which removes this warning is:

class bar;
bar* someInstancePtr;
RB_voidPtr myVoidPtr;
...
someInstancePointer = (bar*)((void*)myVoidPtr);

62 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

� Rollbackable variables should only be used to represent state in a single simulation object. For
this reason, rollbackable variables should never be used as:

– parameters to a method or function.

– local variables for a method or function.

– global variables.

– static data members of a class.

As in the C++ memory management “rule of three” (every class that uses dynamic memory needs
a copy constructor, assignment operator, and destructor), you must ensure that rollbackable vari-
ables (and classes that are aggregations of rollbackable variables) are not created as temporary
variables. This can be accomplished by making the copy constructor and assignment operator
private in a class containing rollbackable variables.

� The classic indicator that non-rollbackable variables have been used instead of state variables
(i.e. rollbackable variables) is simulation non-repeatability. If the simulation produces differ-
ent results during different runs, has no external interactions and is always running on the same
number of nodes, then an event is probably getting rolled back, and errors are arising because
that event’s manipulation of the state is not being “undone”. The amount of non-repeatability will
vary and may itself not be repeatable.

� To sort a RB SpPriorityTree in reverse order, either use negative priorities or specialize the
class to encapsulate the use of negative priorities.

� To remember two different positions in a container, do not use the built-in iterators. Instead, use
two different instances of an SpIterator class.

� If changes are made to a container (i.e. items added to or removed from the container), all iterators
working on that container are considered invalid. There are several reasons for this, including the
following:

– Since the iterator might be pointing to a removed (and possibly deleted) item, returning a
pointer to the item or repositioning the iterator relative to the item could produce ruinous
consequences.

– If an iterator is positioned at the first (or last) item and then a new item is inserted into the
container, the iterator may no longer point to the first (or last) item.

– If a new item is inserted before the current iterator position, the iterator will never visit that
item.

For these reasons, the only valid thing to do after the contents of a container have been altered
is to reset the iterator so that it points to a legal position. This can be done by calling Get-
FirstElement, GetLastElement, or setting the iterator equal to another iterator that is
currently valid.

� All the iterators inherit from a common base class (SpIterator) in which the positioning and
accessing methods are declared virtual. This means that one can write functions that take an
SpIterator argument and use it to perform some operation on items in the container, without
having to specify the exact iterator or container type. For example, if all container items have
a virtual Print method, then one could write such a function that prints all items in a
container. This one function could be passed any iterator object, and thus could be used with any
of the SpIterator container classes (lists, binary trees, or hash trees).

4.6. TIPS, TRICKS, AND POTHOLES 63

� None of the iterators are rollbackable. Although some contain “RB” in the class name (e.g. SpIt-
erator RB SpHashTree), this means that instances iterate over a rollbackable container, not
that the iterator itself is rollbackable. Therefore, if an iterator is advanced during the processing of
an event (for example), and that event is rolled back, then the iterator position will not be changed
back to the old position.

64 CHAPTER 4. ROLLBACKABLE BUILT-IN TYPES

Chapter 5

Utilities

This chapter discusses a number of additional utilities that are useful in creating simulation objects,
managing their state, and evaluating their performance.

5.1 Rollbackable Memory Management

As stated in Chapter 4, all attributes on a simulation object must be rollbackable, if the attributes contain
state information (i.e. must be rollback safe). The same is true of dynamically allocated memory. Dy-
namic memory management must be handled in a rollbackable fashion in order to avoid memory leaks
(multiple calls to new due to rollbacks) and heap corruption (multiple calls to delete due to roll-
backs). These issues arise in addition to the usual C++ concerns regarding good memory management
practices.

Macro RB DEFINE CLASS (available in RB SpDefineClass.H) generates several functions and
classes useful for dynamic memory management. For example, if class foo is passed in as the argument
to macro RB DEFINE CLASS, the following functions are created:

RB_DEFINE_CLASS(foo);
foo* RB_NEW_foo(); // Replaces new foo
foo* RB_NEW_ARRAY_foo(int size); // Replaces new foo[size]
void RB_DELETE_foo(foo*); // Replaces delete foo
void RB_DELETE_ARRAY_foo(foo*); // Replaces delete [] foo
class RB_PTR_foo; // Replaces foo*

The functions and classes output by the macro serve as the rollbackable counterparts to ordinary new
and delete C++ constructs. A call to the RB NEW foo function from within an event will allocate
memory. In case of an event rollback, memory previously allocated will be deleted. Similarly, calls to
RB DELETE foo do not delete memory until the event is committed. Failure to use these functions in
events will almost certainly result in unexpected behavior due to memory leaks and heap corruption.

The extra overhead incurred when using these rollbackable functions, rather than the ordinary new and
delete, is small relative to the overall cost of memory management calls. These functions should also
be used whenever dynamic memory is added to a rollbackable container class.

Class RB PTR foo serves as an easy-to-use, rollbackable replacement for a foo pointer. RB PTR
attributes handle updates to its value in a rollbackable fashion. The class RB PTR foo is superior to
RB voidPtr, since it requires no type casting.

65

66 CHAPTER 5. UTILITIES

5.2 Rollbackable Random Number Generator

A simulation is considered to be repeatable when, for fixed initial states and random number seeds,
the mapping from inputs to outputs is well-defined. In other words, a simulation, when run twice with
the same initial states and random number seeds, will produce identical results both times. In order to
guarantee repeatable simulations, random number generators need to be rollbackable.

SPEEDES provides a rollbackable random number generator that is accessible through the global func-
tion SpGetRandom in SpGlobalFunctions.H. This random number generator is built into every
simulation object and its seed can be set with the operator RB SpRandom::SetSeed(int seed).
The seed inside the RB SpRandom class is an RB int and can be set at anytime during a simulation
without affecting the rollbackable nature of the RB SpRandom class.

Figure 5.1 shows the public interface for class RB SpRandom and RB SpFastRandom.

class RB_SpRandom {
public:
double GenerateUniform(); // Uniform between [0, 1]
int GenerateInt(int l, int h); // Uniform int

// between [l, h]
double GenerateDouble(double l, double h); // Uniform double

// between [l, h]
double GenerateExponential(double t); // Exponential distribution
double GenerateLaplace(double timeConst); // Laplace distribution
double GenerateRayleigh(double alpha); // Rayleigh distribution
double GeneratePower(double p); // (p + 1) * x ˆ p,

// where 0 <= x <= 1
double GenerateReversePower(double p); // (p + 1) * (1 - x) ˆ p

// where 0 <= x <= 1
double GenerateTriangleUp(); // f = 2 * x

// where 0 <= x <= 1
double GenerateTriangleDown(); // f = 2 * (1 - x)
double GenerateBeta(int m, int n); // (m + n + 1)! / (m! * n!)

// * [t ˆ n * (1 - t ˆ n)]
double GenerateGaussian(double mean, double sigma);

// Gaussian distribution
double GenerateDensityFunction(SpDensityFunction* densityFctn);

// User-defined
// distribution

void GenerateVector(double vector[3], double magnitude = 1.0);
// Random uniform position

double GenerateCauchy(double alpha); // Cauchy distribution
}

Figure 5.1: Random Number Generator

The class RB SpRandom implements a high fidelity random number generator that generates ran-
dom numbers through the computation of random bits. This is an expensive calculation but provides
much better random numbers than those output by a linear congruential generator. A down side of
this generator is that there are only approximately � � � � � � � random numbers available before they are
recycled. For a faster random number generator (at the cost of lower fidelity randomness), the class
RB SpFastRandom is also defined in the header file RB SpRandom.H. This class provides exactly
the same interface but has a longer cycle before numbers repeat and generates random numbers much
faster. In general, if models do not need random numbers which are “truly” random, then using the class

5.3. OTHER ROLLBACKABLE FUNCTIONS 67

RB SpFastRandom is often a good choice. Otherwise, use class RB SpRandom.

User-defined distributions can be added using the density function. To accomplish this, inherit from Sp-
DensityFunction and implement the required pure virtual methods. Figure 5.2 shows the interface
for this class.

class SpDensityFunction {
public:
virtual double f(double x) = 0; // Density function
virtual double GetMaxAmplitude() = 0; // Max amplitude of function
virtual double GetLoLimit() = 0; // Minimum value of function
virtual double GetHiLimit() = 0; // Maximum value of function

}

Figure 5.2: Density Function

5.3 Other Rollbackable Functions

The following subsections discuss a number of rollbackable functions that provide functionality which
emulates many standard C and C++ standard function calls or provides additional framework capability.
These function prototypes are defined in include file RB SpFrameworkFuncs.H.

5.3.1 Rollbackable Assert

The standard C library function assert prints an error message and calls abort if its argument is
false. SPEEDES provides a rollbackable function called RB assert, which performs similarly, but
is not called until the event is committed. This differs from assert in that assert would abort the
program immediately.

void RB_assert(assertion) // Aborts if assertion is false
// (i.e. aborts if assertion = 0

5.3.2 Rollbackable Memory Copy and String Duplication

Functions RB memcpy and RB strdup are rollbackable versions of the C standard functions memcpy
and strdup, respectively. The API for these functions are:

void* RB_memcpy(char* destination, char* source, int size)
char* RB_strdup(const char* source)

RB memcpy copies size bytes from memory area from source to destination. The copy will
be undone if the event is rolled back.

RB strdup makes a copy of the string source on the heap using new in a rollbackable fashion. No-
tice that this is different from the C library function strdup, which allocates and deletes memory using
malloc and free. For RB strdup, RB DELETE ARRAY char must be used delete the memory in
a rollbackable fashion.

68 CHAPTER 5. UTILITIES

5.4 Creating New Rollbackable Functions or Objects

Sometimes it may be necessary to create your own rollbackable function or objects. For example, you
may wish to provide a rollbackable function for committing data to a database or writing data to a disk.
SPEEDES provides a simple means to create new rollbackable functions or objects.

In order to create a custom rollbackable object, an Alterable Item (AltItem) for the function or object
must be created. The class being designed must inherit from SpAlt and must implement the following
pure virtual methods:

class SpAlt {
public:

void Alter();
virtual void Cleanup() = 0;
virtual void Rollback() = 0;
virtual char* GetType() = 0;
virtual int CheckUseOfMemoryRange(void* basePtr, int size) = 0;

};

� Alter:
Initializes the AltItem. This method needs to be called anytime changes are made to a newly
created rollbackable item. This method will save off the old data for the item so that it can be
restored during rollbacks.

Note: This method is not actually on class SpAlt. Users must supply a method that performs
the same functions as described above. As part of the implementation for the new rollbackable
function, users must call this method as shown in Example 5.1. By convention, this method is
called Alter for all rollbackable functions contained in SPEEDES.

� Cleanup:
Performs any action required during the commit phase of an event (see Chapter 15 for more detail
on the event phases). For example, in the case of RB cout, the Cleanup method prints the
input data to the screen.

� Rollback:
Returns the function or class back to the state it was before the function was executed or the
class changed. Method Rollback should be implemented in such a way that it correctly han-
dles rollbacks and also handles the rollforward condition (i.e. used when lazy is enabled (see
Section 15.2.1).

� GetType:
Returns the name of this AltItem.

� CheckUseOfMemoryRange:
Identifies misuse of rollbackable variables. This method returns 0 if the memory between the
range of basePtr and basePtr + size was modified. Additional information on how to
implement this method is provided in the “SPEEDES API Reference Manual”.

Let us examine these methods more closely with the following example. Suppose a simulation needs to
output data to a database during execution and the following function will handle the output of the data:

void WriteToDatabase(tmData);

5.4. CREATING NEW ROLLBACKABLE FUNCTIONS OR OBJECTS 69

The input parameter has a type of Telemetry. Every time function WriteToDatabase is called,
the data currently contained in tmData is saved off into the database. If this function is called inside of
an event, then the data is immediately written to the database. Since events are executed optimistically,
telemetry data could be written to the database prematurely. If the event is rolled back and data was
prematurely written to the database then there will be invalid data in the database. Let us assume for
our application that only “committed” data in our database is acceptable. What we need is a function
which only outputs the data once we are assured that the data can no longer be rolled back. This can
be achieved by creating a rollbackable function, RB WriteToDatabase. The first step is to write the
rollbackable function RB WriteToDatabase, as shown if Example 5.1.

// RB_WriteToDatabase.C
#include "Telemetry.H"
#include "SpAltTelemetry.H"

extern void WriteToDatabase(Telemetry& tmData);

void RB_WriteToDatabase(Telemetry& tmData) {
SpAltTelemetry* altItem; // Defined in SpAltTelemetry.H

if (SpCurrentAltMgr->GetOptimistic() {
altItem = ALLOCATE_SpAltTelemetry(); // ALLOCATE_SpAltTelemetry

// defined by macro
// DEFINE_MEMPOOL in
// SpAltTelemetry.H

altItem->Alter(tmData);
SpCurrentAltMgr->Insert(altItem); // Save changes for cleanup

// or rollback
}
else {

WriteToDatabase(tmData);
}

}
Example 5.1: Rollbackable Function Definition (RB WriteToDatabase)

The basics here are that, if the simulation is running optimistically, then the current data passed into the
method is saved in the SpCurrentAltMgr, which is a class contained on every event. When events
are executed and changes are made to rollbackable data, then this data is saved in SpCurrentAltMgr.
If the simulation is not running optimistically (i.e. simulation is executing on one node and the parameter
optimize sequential is set to true in speedes.par), then the data is immediately written to
the database (i.e. function WriteToDatabase is called). This is because the event cannot be rolled
back.

Next, class SpAltTelemetry has to be implemented, as shown in Example 5.2. The required meth-
ods of Alter Cleanup Rollback GetType, and CheckUseOfMemoryRange are implemented
in this class.

// SpAltTelemetry.H
#ifndef SpAltTelemetry_H
#define SpAltTelemetry_H

#include "SpAlt.H"
#include "Telemetry.H"
extern void WriteToDatabase(Telemetry& tmData);

70 CHAPTER 5. UTILITIES

class SpAltTelemetry : public SpAlt {
public:

void Alter(Telemetry& tmData) {
AltItemSet = 1;
MytmData = tmData;

}
virtual void Cleanup() {

if (AltItemSet == 1) {
WriteToDatabase(MytmData);

}
}
virtual void Rollback() {AltItemSet = !AltItemSet;}

// See SPEEDES API Reference Manual for the following two methods
virtual char* GetType() {return "SpAltTelemetry"; }
virtual int CheckUseOfMemoryRange(void* baseAddr, int size) {

return 1;
}

private:
int AltItemSet;
Telemetry MytmData;

};
// Generates function ALLOCATE_SpAltTelemetry
DEFINE_MEMPOOL(SpAltTelemetry, ALT_CHUNK_SIZE);
#endif

Example 5.2: Alterable Item Class Definition (SpAltTelemetry.H)

Notice that method Alter saves the current data. Once GVT has increased to a point that RB Write-
ToDatabase can no longer be rolled back, then method Cleanup is called. This then writes the
telemetry data to the database. Method Rollback is implemented so that it works correctly in both
rollback and rollforward conditions. If the event is rolled back, then the AltItemSet is set to 0, which
will prevent function WriteToDatabase from being executed in method Cleanup. If the event is
rolled forward, then method Rollback is executed again, which will set AltItemSet back to 1.

The macro called DEFINE MEMPOOL has been introduced above. This macro serves a similar function
for creating AltItem as DEFINE SIMOBJ does for creating simulation objects. In order to maximize
run-time performance, SPEEDES avoids using new and delete regularly. Instead, for dymamic mem-
ory management, SPEEDES pre-allocates memory in large chunks and stores this memory off for later
use. Memory is retrieved from this storage as needed (e.g. ALLOCATE SpAltTelemetry in Exam-
ple 5.1). After the event has been committed, the memory used is no longer needed and is returned to
its storage by the SPEEDES framework.

Finally, the AltItem just created must be plugged in. This is done with PLUGIN MEMPOOLwhich serves
a similar purpose as PLUGIN SIMOBJ and PLUGIN EVENT. The plug-in macro plugs the new AltItem
into the SPEEDES framework. The code for this is shown in Example 5.3.

5.5. PARAMETER FILE PARSING 71

// SpAltTelemtry.C
#include "SpMempool.H"
#include "SpAltTelemetry.H"

PLUGIN_MEMPOOL(SpAltTelemetry);
Example 5.3: Alterable Item Plug-In (SpAltTelemetry.C)

Now, anytime the telemetry data needs to be recorded in the database, simply call to the new rollbackable
function RB WriteToDatabase. The data will then be written to the database at the appropriate time.

Changes similar to those shown above can be applied to a class, in order to create a rollbackable ver-
sion of a non-rollbackable class. This has already done for SPEEDES built-in classes like RB int,
RB double, RB SpBinaryTree, etc. While an example is not shown here, an example is described
in the “SPEEDES API Reference Manual”.

5.5 Parameter File Parsing

SPEEDES provides a powerful parser that is useful for making run-time changes to the simulation,
rather than hard coding values. This parser can be used to read in initial values for simulation objects
Several terms need to be defined for the purpose of this section:

� Parameter file:
This file contains the values for various simulation parameters to be set at run time. The file must
be written using a particular format, which will be discussed shortly.

� Set:
The fundamental recursive data structure containing zero or more elements. Class (SpSet) op-
erates on sets.

� Data parser:
An object that converts a parameter file to a set. This set is given the name “Top Level Set”. Class
(SpParser) builds this top level set.

� Element:
A set, integer, integer array, real, real array, string, string array, logical, or logical array.

A parameter file can have a fairly generic structure using brace notation. Curly braces, “
�
” and “ � ”,

delimit the beginning and end of sets. Note that the entire parameter file is considered to be the top
level set. White space is generally ignored, except when text is to be enclosed within double quotes.
Figure 5.3 shows an example parameter file.

1 // Example parameter file.
2 // The "//" is a comment in a parameter file.
3 Set_0 { // Set 0 definition
4 int SetZerosInt 4 // Integer definition
5 int SetZerosDefaultValue 6 // Integer definition
6 }
7

8 Set_1 { // Set 1 definition
9 Set_4 { // Set 4 definition

72 CHAPTER 5. UTILITIES

10 inherit Set_0 // This set also contains set 0
11 int SetZerosDefaultValue 17 // Overrides SetZerosDefault Value
12 int setFoursInt 6 // Integer definition
13 }
14 Set_5 { // Set 5 definition
15 Set_6 { // Set 6 definition
16 include "SetSixIncludedValues.par"
17 // Set 6 contains all of the
18 // definitions found in
19 // SetSixIncludedValues.par
20 reference Set_2
21 string myString "hello" // String array definition
22 "Good bye"
23 }
24 int firstInt 4 // Integer definition
25 float double1 6.4 1e12 // Float array definition
26 logical boolean1 f F t T // Boolean array definition
27 int x 1 2 3 // Integer array definition
28 }
29 }
30

31 Set_2 { // Set 2 definition
32 int SetTwosInt 4 // Integer definition
33 Set_3 { // Set 3 definition
34 string string1 StringsWithOutSpacesDoNotNeedQuotes
35 // String entry with one element
36 string string2 "String" "Array" "Requires" "Quotes"
37 // String array definition
38 string string3 "As well as strings with spaces"
39 // String with spaces
40 }
41 }

Figure 5.3: Example Parameter File

Line
Number(s) Description
1 - 2 Comment characters are “//”. All text following characters are ignored.
3 Definition for set Set 0. Set names can use any alphanumeric and underscore characters. They

must start with an alphabet letter. The set name must be followed by an open bracket “ � ”.
4-5 Two integer parameters defined for Set 0.
6 Closing bracket for Set 0. This ends the definition for Set 0.
7 Blank line. White space is allowed in parameter files.
8 Set 1 definition.
9 Set 4 definition contained inside Set 1. Sets can be composed of other sets. This set is not

accessable by other sets outside of Set 1.
10 Set 4 inherits parameters defined in Set 0. Therefore, parameters SetZerosInt and Set-

ZerosDefaultValue are defined in Set 4.
11 This line overrides the SetZerosDefaultValue from 6 to 17.
12 A new integer parameter definition.
13 Closing bracket for Set 4.
14 Set 5 definition.
15 Yet another embedded set definition for Set 6.

5.5. PARAMETER FILE PARSING 73

Line
Number(s) Description
16 All of the contents from file SetSixIncludedValues.par is read and place at this location

in Set 6.
17-19 Comments.
20 Set 2 is placed here. When the keyword reference is used, then the entire set is pulled in,

including the set name Set 2 (unlike include, which only pulls in the contents of the set).
Also, reference can be used in advance of the actual set definition.

21-22 String array parameter definition. String arrays must have double quotes around each element in
the array. Data values do not have to be on the same line as shown.

23 Closing bracket for Set 6.
24 Integer parameter added to Set 5.
25 Float array parameter added to Set 5. Data values for floats can use either the dot or exponential

notation. Like string arrays, parameter data values can be on new lines.
26 Logical array parameter added to set Set 5. Logicals behave like type bool. Data values for

logicals can be “f”, “F”, “t”, or “T”. Like string arrays, parameter data values can be on new
lines.

27 Integer array parameter added to Set 5. Like string arrays, parameter data values can be on new
lines.

28-29 Closing bracket for Set 5 and Set 1.
31 Set 2 definition.
32 Integer parameter definition.
33 Embedded set Set 3 definition.
34 String parameter definition. If string does not contain spaces the quotes are optional.
36 String array parameter definition. Quotes must be used to indicate array data elements.
38 String parameter definition. Strings that contain spaces must be enclosed in quotes.
40-41 Closing bracket for Set 3 and Set 2.

Table 5.1: Parameter File Description

5.5.1 Parameter File Language Overview

5.5.1.1 Sets

Sets are the fundamental unit of data collection in a parameter file. In fact, a parameter file is simply a
succession of keyword declarations followed by a succession of sets.

Set syntax consists of an identifier representing the set name, followed by a braced set of parameters (or
followed by nothing if it is a reference). Sets are comprised of the following:

� nested sets

� inherited sets

� referenced sets

� integers

� integer arrays

� floats

� float arrays

74 CHAPTER 5. UTILITIES

� logicals (booleans)

� logical arrays

� strings

� string arrays

5.5.1.2 Parameters

The most basic element of a set consists of integer, float, boolean, and string definitions. Sets use the
keywords “int”, “float”, “logical”, and “string” as type specifiers for each parameter. For example:

MySet1 {
float x 72 // Valid
float x z // Error, ’z’ is not a floating point number
int y 77.6 // Error, 77.6 is not an integer

}

Parameters can also be specified as arrays. Integer, float, and logical arrays are simply space delimited
data values. Strings arrays data values are not space delimited but each data value must be inside double
quotes. For example:

MySet2 {
int iArray1 1 2 7 8 // This is a valid int array
int iArray2 3 5

2 // Arrays can be multi-lined
int iArray3 9 5 4.2 3 // Not valid since 4.2 is not an int
float fArray1 4.2 3.7 5 6.7 // Valid float array.

// 5 is promoted to a float.
logical lArray1 f F t T // Valid logical array
logical lArray2 f F t T s // Invalid logical character ’s’
string sArray1 "Valid" "Array" // Valid string array
string sArray2 "This" // Valid string array with

"is a" // 4 elements
"Valid"
"Array"

}

5.5.1.3 Set Inheritance

A set may inherit another set’s parameters and its values (including all nested sets). This is achieved by
the user by using the reserved keyword “inherit”, followed by the set name to be inherited. When
a set is inherited, all of the parameters become a part of the new set, however the outer set name is not
part of the set. For example, consider the following parameter file:

BaseSet {
BaseSetSubSet {

int parameter_0 17
int parameter_1 289

}

5.5. PARAMETER FILE PARSING 75

int parameter_2 4913
}

DerivedSet {
inherit BaseSet
BaseSetSubSet {

int parameter_1 83521 // Override parameter_1 value.
// parameter_0 remains unchanged

}
int parameter_3 1457 // Extend BaseSet with more elements

}

Set DerivedSet contains all of the parameters in BaseSet (i.e. set BaseSetSubSet and param-
eters parameter 0, parameter 1, and parameter 2), but not the actual set name BaseSet
itself. This is unlike reference which also will include the set name. Also, in order to inherit a set,
it must be previously defined in the parameter file. In addition, any inherited parameter’s value may be
overridden by simply restating the element with its new value. For overriding subparameter values, the
appropriate nesting must be replicated, as shown above with BaseSetSubSet.

5.5.1.4 Set References

A set may reference another set’s parameters and its values (including all nested sets). This is achieved
by the user by using the reserved keyword “reference”, followed by the set name to be referenced.
When a set is reference, all of the parameters become a part of the new set including the reference set
name (unlike inherit describe above). Some differences between inheriting a set and referencing a set
include:

� Values of elements in referenced sets cannot be overridden, while values of elements in inherited
sets can.

� Inherited sets must be fully defined before inheriting, while referenced sets can appear later but
still in scope.

5.5.1.5 Set Includes

A set may include another parameter file. This is achieved by the user by using the reserved keyword
“include”, followed by the name of the parameter file in quotes. The only limitation is that included
sets can only be referenced (not inherited).

5.5.2 General Usage

The SpParser has only a few methods. The actual work is performed in the SpSet (see Sec-
tion 5.5.3). The API for SpParser is shown below:

SpParser(char* filename)
SpParser(istream* infile)
SpSet* Parse(SpSet* set = NULL)

76 CHAPTER 5. UTILITIES

The two constructors allow construction either from a filename or from an already created stream. If the
first constructor is used, SPEEDES first tries to open the file specified in the current directory, or in the
location specified if filename is an absolute pathname. If the file is not found, then the parser will
check in the directory specified by environment variable SPEEDES PAR PATH. If, after all these tries,
the file cannot be opened, an error message is printed and the method returns. There is no destructor for
the SpParser. Therefore, all sets that were allocated by the parser must be deleted separately.

After a SpParser has been created, a set is created by calling method Parse. Method Parse returns
a set, which class SpSet operates on in order to retrieve the set contents.

5.5.3 SpSet Usage

Once a file or stream has been parsed, the data can be accessed through the returned SpSet. SpSet is
a flexible class containing a large number of methods. Each type of integer, float, logical, and string has
an equilent accessor method for extracting parameter data values from a set, as shown in Figure 5.4.

int GetInt(char* key, int defaultValue, int& status)
int GetInt(char* key)
double GetFloat(char* key, double defaultValue, int& status)
double GetFloat(char* key)
bool GetLogical(char* key, bool defaultValue, int& status)
bool GetLogical(char* key)
char* GetString(char* key)
int* GetIntArray(char* key, int& length)
double* GetFloatArray(char* key, int& length)
char** GetStringArray(char* key, int& length)
bool* GetLogicalArray(char* key, int& length)

Figure 5.4: Set Accessor Methods

The non-array Getmethods return the value represented by key, or the defaultValue if key is not
found. GetString differs in that it returns a pointer to the string if found, and NULL otherwise. Do
not delete the string that is returned and be sure to copy the data out of the string if it is to live beyond
the scope of the SpSet.

The array methods return a pointer to the private array of values, and set the length of the array to
length. Do not delete or modify the values that are pointed to by the return value. The arrays also
disappear when SpSet is deleted. So, copy the values if the elements will be modified or must live
beyond the scope of the SpSet. If key is not found, a NULL pointer is returned.

In addition to the set accessor methods, there are methods provided that allow users to navigate through
sets, which are shown in Figure 5.4.

5.5. PARAMETER FILE PARSING 77

SpSet* GetSet(char* name)
SpSet* GetParent()
SpSet* GetAncestor(char* setName)
SpSet* GetAncestor(int numLevels = 1)
SpSet* Root()
int GetNumSets()
SpSet* GetFirstSet()
SpSet* GetNextSet()
int GetNumElements()

Figure 5.5: Set Traversal Methods

� GetSet:
Returns the set contained in the current set with the given name. Returns NULL if it is not found.

� GetParent:
Returns the parent of the current set. If there is no parent set, then NULL is returned.

� GetAncestor:
Returns the ancestor of the current set with either the given name or the given number of levels
up. If the given ancestor is not found, NULL is returned.

� Root:
Returns the top level set for the given set.

� GetNumSets:
Returns the number of sets contained in the given set.

� GetFirstSet:
Returns the first set within the current set.

� GetNextSet:
Returns the next set with the current set.

� GetNumElements:
Returns the number of parameters in the given set.

5.5.4 An Example

Let us consider a case where submarine simulation objects are to be initialized based on an input param-
eter file called submarine.par. The submarine.parwill use inheritence and references in order
to reduce the complexity of the par file. The first set definition in file submarine.par is a set called
SimulationEntity, which will represent the base set for all other simulation objects. It contains
all of the common parameter for all simulation objects.

78 CHAPTER 5. UTILITIES

// submarine.par

SimulationEntity {
int allegence 0 // Team number id
int type -1 // Should be overridden
double health 1 // Always start off with full health
string name "NoName" // Name should always be assigned

}

Objects {
reference Nautilus
reference Hunley
reference RedOctober

}

BasicSubmarine {
inherit SimulationEntity
int type 17 // Override type
int EngineType -1 // -1=Unknown, 0=human, 1=electric,

// 2=diesel, or 3=nuclear
int ConstructionYear 0
double LengthInMeters -1

}

Nautilus {
inherit BasicSubmarine
string name "Nautilus"
int allegence -1 // Rogue ship, no team
int EngineType 1
int ConstructionYear 1870
double LengthInMeters 71.4

}

Hunley {
inherit BasicSubmarine
string name "Conferate Ship Hunley"
int EngineType 0
int ConstructionYear 1863
double LengthInMeters 10.2

}

RedOctober {
inherit BasicSubmarine
string name "Red October"
int EngineType 2
double LengthInMeters 171
int ConstructionYear 1984

}

Figure 5.6: Parameter File submarine.par Example

Suppose that the above submarine.par will initialize a submarine simulation object. The code
shown in Example 5.4 shows one potential implementation for the submarine’s Init method.

5.6. TIPS, TRICKS, AND POTHOLES 79

// S_Submarine Init Method Implementation
void S_Submarine::Init() {

SpParser* subPar;
SpSet* rootSet;
SpSet* objectSet;
SpSet* mySet;
int i;

subPar = new SpParser("submarine.par");
rootSet = subPar.Parse();
objectSet = rootSet->GetSet("Objects");

if (objectSet == NULL) {
cout << "**Error, no set named Objects in submarine.par!" << endl;
exit(-1);

}

mySet = objectSet->GetFirstSet();
for (i = 0; i < SpGetSimObjKindId(); ++i) {
mySet = objectSet->GetNextSet();

}
/*
* Now let the parent set initialize its values from this set.
* It will set the values of allegence, type, health, and name.
*/

S_SimulationEntity::Init(mySet);

SetEngineType(mySet->GetInt("EngineType"));
SetConstructionYear(mySet->GetInt("ConstructionYear"));
SetLengthInMeters(mySet->GetFloat("LengthInMeters"));

}

Example 5.4: Submarine Initializaton from .par File

5.6 Tips, Tricks, and Potholes

� Some compilers, notably the Silicon Graphics, Incorporated C++ compiler, gives an error when
the macro RB DEFINE CLASS(foo) is called, where foo is a primitive type such as a int,
char, or double. This behavior is due to the overloaded -> operator in the RB PTR foo class.
To avoid these problems, the macro RB DEFINE CLASS PRIMITIVE(foo) can be used when
the compiler gives errors.

� When memory is deleted by a call to RB DELETE, it is not actually deleted at the point of the
function call. Instead, memory is deleted during the event commit phase. RB DELETE is imple-
mented in this manner because the event which called this function may be rolled back and the
memory not deleted.

� Always use RB NEW and RB DELETE, even in simulation object constructor, destructor, and
Init methods. There is virtually no overhead for use of these functions at this time, and their
use will avoid other problems when persistence or checkpoint/restart is used.

� RB DEFINE CLASS does not make a class rollbackable; it merely creates the functions and
classes which can new and delete classes in a rollbackable fashion (see Section 5.1).

80 CHAPTER 5. UTILITIES

� Some classes are difficult to make rollbackable for a host of reasons such as non-standard data
members (e.g. bitfields) or because access to class internals is not possible (e.g. third party
software). If a class does not contain dynamic memory, it can be made rollbackable by using
RB memcpy in the copy constructor and assignment operator. For example, consider the class
which has two bit fields with one being 12 bits long and the other 20 bits long.

class MyStuff {
public:

MyStuff(int f1, int f2) : field1(f1), field2(f2) {}
/*
* Copy constructor
*/

MyStuff(const MyStuff& rhs) {
RB_memcpy(this, (char *) &rhs, sizeof(MyStuff));

}
/*
* Assignment operator.
*/

MyStuff& operator = (const MyStuff& rhs) {
RB_memcpy(this, (char *) &rhs, sizeof(MyStuff));
return *this;

}
void SetField1(int f1) {
MyStuff temp;
temp.field1 = f1;
temp.field2 = field2;
*this = temp;

}
void SetField2(int f2) {
MyStuff temp;
temp.field1 = field1;
temp.field2 = f2;
*this = temp;

}
int GetField1() {return field1;}
int GetField2() {return field2;}

private:
int field1:12;
int field2:20;

};
Example 5.5: Rollbackable Class using RB memcpy

Using RB memcpy can make classes rollback safe. However, implementing a class, as shown
above, is not as optimal as creating a class with SpAlt.

� If memory is created using RB NEW ARRAY foo, it must be deleted using RB DELETE ARRAY-
foo. Using different functions will result in undefined behavior.

� An rollbackable variable should never be used as a local variable or as a non-reference argument
to a method. Doing so creates a rollbackable variable on the stack. When a rollbackable variable
is locally in a function or method, then AltItems are created for information which will become
obsolete when the method is exited. However, if the event is rolled back then an attemp is made to
restore the data. Hence, stack data can be overwritten. An error message, as shown in Figure 4.1,
will be displayed when a rollbackable variable is used incorrectly.

5.6. TIPS, TRICKS, AND POTHOLES 81

� If any pointer values are obtained from a SpSet, especially when the set comes from the Sp-
Parser, the data should be copied if the SpSet will be deleted. Also, deleting the SpParser
will not delete the associated set.

82 CHAPTER 5. UTILITIES

Part III

Events

83

Chapter 6

Point-to-Point Events

Point-to-point events are a direct mapping to the way the SPEEDES event management system processes
events. That is, every event in SPEEDES represents one action scheduled by one simulation object, to
act on one other simulation object, at one point in simulated time. The term “point-to-point” refers to
the fact that events are one-way actions scheduled at one point (the scheduling simulation object), to be
sent to act on another point (the scheduled simulation object).

There are three API styles for point-to-point events: simulation object events, local events, and au-
tonomous events. In each case, the code to be invoked (i.e. the callback) for the event is implemented
as a method that acts upon a simulation object. That method may be directly on the simulation object,
contained within the simulation object, or on a separate object that acts on the simulation object. Where
the method resides distinguishes the event’s style. A simulation object event method resides directly
in an object inheriting from SpSimObj or one of its children (e.g. S SpHLA). A local event method
resides in any object in the simulation and must be self-scheduled. This means a simulation object must
only schedule local events for methods on its nested sub-objects. An autonomous event method resides
on an object that is separate from the simulation object on which it acts. All three of these event types
will be described in the sections that follow.

Each of the three API point-to-point method styles serves the basic purpose of enabling time-tagged,
one-way event invocations. Understanding the differences between the different event styles and their
usage enables the user to choose the most appropriate style for each point-to-point event.

To design and use events, follow these three basic steps:

1. Define an event method. An event method is a method on any class, representing work to be done
by that event on a specific simulation object.

2. Plug the user-defined event into the SPEEDES framework.

3. Call a schedule function anywhere within the simulation to execute the event. The schedule
functions cannot be called during simulation object construction (i.e. constructors).

SPEEDES provides a set of macros that turn methods on simulation objects into events, plug these
events into the SPEEDES framework, and generate functions for scheduling these events. To make
scheduling events convenient, the macros automatically build a global function for each event defined,
which users can use to invoke their events. But before events can be discussed in detail, simulation time
must be understood.

85

86 CHAPTER 6. POINT-TO-POINT EVENTS

6.1 Time, As Represented by SPEEDES

The previous chapters have introduced simulation objects and variables used to maintain simulation
object state. Events are used to operate on or change the values of the simulation object state variables,
which will be shown later in this chapter. When events are scheduled, the user specifies a time at which
the event is to be executed. In SPEEDES, time is represented by the class SpSimTime, which contains
five parts consisting of a double for physical execution time and four tie breaking fields. The constructor
for SpSimTime is shown below:

SpSimTime(double time = 0,
int priority1 = 0,
int priority2 = 0,
int counter = 0,
int uniqueId = 0)

Parameter Description
time This is the floating point value of time. The units normally used are the number of

seconds since the start of the simulation.
priority1 This is a user-modifiable field. This field is used by SPEEDES as a tie-breaking

field when the floating point values of two SpSimTime objects are identical. Lower
numbers for this field indicate higher priority. If two SpSimTime objects have the
same floating point value, then an object with a lower number for priority1 occurs
earlier in time than a object with a higher number for priority1. This field can be set
by the SPEEDES framework. Therefore, users should adjust this field by incrementing
its value.

priority2 This is a user-modifiable field. This field is used by SPEEDES as a tie-breaking field
when the floating point values of two SpSimTime objects are identical and when
the priority1 values are identical. This field can be set by the SPEEDES framework.
Therefore, users should adjust this field by incrementing its value.

counter This is a monotonically increasing value set by SPEEDES in order to guarantee unique
ordering of events.

uniqueId This is another field set by SPEEDES in order to guarantee a unique ordering of
events. This is set to the global id of the simulation object that scheduled this event.

Table 6.1: SpSimTime Constructor API

Parameters counter and uniqueId are set by the SPEEDES framework in order to ensure unique
and repeatable simulation time for every event. Hence, changes made to these fields by the user are
ignored. The uniqueId is always set to the global id of the simulation object scheduling the event.
The counter parameter is a more difficult parameter to explain. All simulation objects contain an
internal data counter for counter. This parameter will be greater than or equal to the total number
of events scheduled by this simulation object. During event scheduling, SPEEDES assigns the counter
as the larger of the simulation object counter or the current event execution time counter (once again,
counter retrieved from SpGetTime) plus 1 for first event scheduled. For the second event scheduled
it adds 2 and so on. At the end of the event, the simulation object counter is incremented to the last
counter used during event scheduling.

For example, if the current simulation object has a counter of 4 and the current event has a counter of
12, the counter of scheduled events are set to 13, 14, � � � , (12 + 1 + number of events scheduled). The
counter of the simulation object is then set to 12 + 1 + number of events scheduled.

The useful APIs for SpSimTime are shown in Figure 6.1. In addition to the APIs shown below, the
operator ��� has been overloaded to print both to ostream and RB ostream. This prints out all of

6.1. TIME, AS REPRESENTED BY SPEEDES 87

the SpSimTime current attributes.

88 CHAPTER 6. POINT-TO-POINT EVENTS

double GetTime() // Get physical time
void SetTime(double time) // Set physical time
int SetPriority1(int priority) // Set priority 1
int GetPriority1() // Get priority 1
SpSimTime& IncrementPriority1(int value = 1) // Increment priority 1
SpSimTime& DecrementPriority1(int value = 1) // Decrement priority 1
int SetPriority2(int priority) // Set priority 2
int GetPriority2() // Get priority 2
SpSimTime& IncrementPriority2(int value = 1) // Increment priority 2
SpSimTime& DecrementPriority2(int value = 1) // Decrement priority 2

Figure 6.1: Simulation Time (SpSimTime) API

6.2 Simulation Object Events

Simulation object events are “public” events, in that any simulation object in the simulation may directly
schedule a simulation object event. Because they are defined at the highest and most accessible level
of an object, simulation object events provide the top-level interface between one simulation object and
another.

The first step in creating a simulation object event is to add a method to the simulation object. This
method can contain up to eight parameters of any non-pointer type. If a class is used as a parameter
type, it is highly recommended that the class does not contain pointers. This is because, when sending
objects as event arguments, pointer data becomes corrupted. Also, if a copy constructor exists for these
classes, then the copy constructor must be public.

Once the method has been created, turn it into an event by using a SPEEDES built-in macro. This macro
will automatically generate additional code, turning your simulation object method into an event.

The macro’s syntax is as follows:

DEFINE_SIMOBJ_EVENT_<numParam>_ARG(eventName,
className,
methodName,
[paramList])

Parameter Description
numParam The number of parameters used in the method being converted into an event (valid

range is 0 to 8).
eventName Any user-defined string representing the name of the event (legal characters for string

names include alphanumeric and underscore characters).
className The name of the simulation object class that contains the method that is to be turned

into an event.
methodName The name of the method that is to be turned into an event.
paramList Comma-delimited list of the parameter types found in the method.

Table 6.2: Macro DEFINE SIMOBJ EVENT API

After the events have been defined, you need to plug the events into the SPEEDES framework. The
plug-in macro creates an event name versus event class database (i.e. the event class we created during
the define simulation object event phase), so that the framework can effectively manage events. The
plug-in macro syntax is:

6.2. SIMULATION OBJECT EVENTS 89

PLUG_IN_EVENT(eventName)

The eventName used in the PLUG IN EVENT macro is the same name as was used in the macro
DEFINE SIMOBJ EVENT shown above.

A convention that works well is to add the define event macro at the end of the class definition and create
a function call for the event plug-in. The following shows an example of this convention.

#ifndef S_MySimObj_H
#define S_MySimObj_H

#include "SpMainPlugIn.H"
#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"
#include "MyClass.H"

class S_MySimObj: public SpSimObj {
public:

MyMethod(int param1, double param2, MyClass param3);
};
// Define 1 S_MySimObj simulation object
DEFINE_SIMOBJ(S_MySimObj, 1, SCATTER);
// Define event MySimObj_MyMethod
DEFINE_SIMOBJ_EVENT_3_ARG(MySimObj_MyMethod, S_MySimObj, MyMethod,

int, double, MyClass);

void PlugInMySimObj() {
PLUG_IN_EVENT(MySimObj_MyMethod);
PLUG_IN_SIMOBJ(S_MySimObj);

}

#endif
Example 6.1: Generic Simulation Object Definition

The above example shows an event being defined (i.e. MySimObj MyMethod) and a plug-in func-
tion that automates the registration process for event MySimObj MyMethod and simulation object
S MySimObj for the SPEEDES framework. To use this object and its event, first add the plug-in func-
tion call to main prior to the execution of ExecuteSpeedes. Then, as is described next, you can
schedule the event from any simulation object in the simulation. To facilitate the scheduling of events,
the define event macro creates a global scheduling function for each user-defined event. The schedule
functions created have the following syntax:

SpCancelHandle
SCHEDULE_<eventName>(const SpSimTime& simTime,

const SpObjHandle& objHandle,
[paramList],

const char* data = NULL,
int dataBytes = 0)

Parameter Description
eventName This is the same name used when the event was defined.
simTime This parameter specifies the time at which the event will be executed. The time sched-

uled can be the present time or a future time, but not a time in the past.

90 CHAPTER 6. POINT-TO-POINT EVENTS

Parameter Description
objHandle This parameter uniquely specifies the simulation object on which the event will be ex-

ecuted. There are convenience functions provided in the SPEEDES framework which
can look up object handles for simulation objects in SPEEDES. Please see Chapter 3
for additional information on class SpObjHandle.

paramList This is a comma-delimited list of the parameters that are to be passed to the simulation
object method (e.g. for the above example event method, MyMethod, the list would
be: an int, a double, a MyClass).

data This optional parameter allows users to send data to the receiving event for further
processing. The data can be binary or character stream data. To send a data structure
which contains pointers, make sure to write “wrap” and “unwrap” functions to enable
packing and unpacking of a buffer that represents the data. SPEEDES copies this data,
so the user does not need to keep the data available after the function call.

dataBytes This parameter represents the size, in bytes, of the buffer sent as the “data” parameter.
If you do not use the “data” parameter, then there is no need to use this parameter
either.

Table 6.3: Function SCHEDULE API

We have just discussed the basics for creating, plugging in, and scheduling events. To illustrate these
concepts in action, let us build an example program that simulates a car whose position changes with
time. The simulation will contain a car simulation object (or many car objects), and will contain a traffic
light simulation object that will interact with the car objects by telling them when to start and stop. To
simplify the problem, the car simulation objects will only move in a straight line along one axis. The
traffic lights will be located every quarter mile and will change states every 30 seconds. The code shown
in Examples 6.2 through 6.5 shows the definitions and implementations files for the stop light and car
simulation objects.

1 // S_StopLight.H
2 #ifndef S_StopLight_H
3 #define S_StopLight_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"

7 class S_StopLight : public SpSimObj {
8 public:
9 S_StopLight() {}

10 virtual ˜S_StopLight() {}
11 virtual void Init();
12 void Red();
13 void Green();
14 protected:
15 private:
16 };

17 DEFINE_SIMOBJ(S_StopLight, 1, SCATTER);
18 DEFINE_SIMOBJ_EVENT_0_ARG(StopLight_TurnsRed, S_StopLight, Red);
19 DEFINE_SIMOBJ_EVENT_0_ARG(StopLight_TurnsGreen, S_StopLight, Green);
20 #endif

Example 6.2: Point-to-Point Event StopLight Object Definition File

1 // S_StopLight.C
2 #include "SpGlobalFunctions.H"

6.2. SIMULATION OBJECT EVENTS 91

3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"

5 #include "S_StopLight.H"
6 #include "S_Car.H"

7 void PlugInStopLight() {
8 PLUG_IN_SIMOBJ(S_StopLight);
9 PLUG_IN_EVENT(StopLight_TurnsRed);

10 PLUG_IN_EVENT(StopLight_TurnsGreen);
11 }

12 void S_StopLight::Init() {
13 SCHEDULE_StopLight_TurnsRed(30.0, SpGetObjHandle());
14 }

15 void S_StopLight::Red() {
16 int i;
17 for (i = 0; i < 4; ++i) {
18 SpObjHandle objHandle = SpGetObjHandle("S_Car_MGR", i);
19 SCHEDULE_Car_Stop(SpGetTime(), objHandle, SpGetTime(),
20 (char *) "Red Light On",
21 strlen("Red Light On") + 1);
22 }
23 SCHEDULE_StopLight_TurnsGreen(SpGetTime() + 30.0, SpGetObjHandle());
24 }

25 void S_StopLight::Green() {
26 int i;
27 for (i = 0; i < 4; ++i) {
28 SpObjHandle objHandle = SpGetObjHandle("S_Car_MGR", i);
29 SCHEDULE_Car_Go(SpGetTime(), objHandle,
30 (char *) "Green Light On",
31 strlen("Green Light On") + 1);
32 }
33 SCHEDULE_StopLight_TurnsRed(SpGetTime() + 30.0, SpGetObjHandle());
34 }

Example 6.3: Point-to-Point Event StopLight Object Implementation File

Example 6.2 defines two methods called Red and Green, which are turned into events by using the de-
fine event macros shown on lines 18 and 19. The define event macro will create global functions called
SCHEDULE StopLight TurnsRed and SCHEDULE StopLight TurnsGreen. These names
are created by prepending SCHEDULE to the name provided in the first parameter of the define event
macro. Notice that the define simulation object macro DEFINE SIMOBJ (line 17) defines one stop
light simulation object.

Example 6.3 shows the implementation code for the stop light. Function PlugInStopLight is pro-
vided to plug-in the events and simulation object for the stop light. This function will be called by main.
All simulation object initialization should occur in the virtual method Init. In general, no initialization
should be done in the simulation object constructor (see section 3.1 for more detail). This method sched-
ules the event StopLight TurnsRed by calling SCHEDULE StopLight TurnsRed at time � �����
seconds for the current simulation object. Method Red is used to schedule event Car Stop on each
instance of a car simulation object (lines 17-22) and schedule event StopLight TurnsGreen on
itself at 30.0 seconds in the future (line 23). Event Car Stop is scheduled for immediate processing,
which most likely will cause a rollback on each car object. Notice that this event is sending the current

92 CHAPTER 6. POINT-TO-POINT EVENTS

simulation time via an input argument. This shows how to use the parameter fields when an event re-
quires such a field. The receiving car event then prints this data out. Event StopLight TurnsRed is
using the optional data field to send the data string "Red Light On" to the receiving event. Method
Green is similar to method Red except that it schedules event Car Go.

Examples 6.4 and 6.5 show the code for the car simulation object definition and implementation files.

1 // S_Car.H
2 #ifndef S_Car_H
3 #define S_Car_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"

7 class S_Car : public SpSimObj {
8 public:
9 S_Car() {}

10 virtual ˜S_Car() {}
11 virtual void Init();
12 void Stop(double stopTime);
13 void Go();
14 void StopCar();

15 protected:
16 private:
17 RB_double XPos; // Car Position
18 double Velocity; // Car Velocity
19 RB_double LastTimeStopped; // Time at last Car Stoppage
20 RB_int StopState; // 0 = Stopped; 1 = Moving
21 RB_int TimesStopped; // Number of times Car
22 // Stopped
23 };

24 DEFINE_SIMOBJ(S_Car, 4, SCATTER);
25 DEFINE_SIMOBJ_EVENT_1_ARG(Car_Stop, S_Car, Stop, double);
26 DEFINE_SIMOBJ_EVENT_0_ARG(Car_Go, S_Car, Go);
27 DEFINE_SIMOBJ_EVENT_0_ARG(Car_StopCar, S_Car, StopCar);
28 #endif

Example 6.4: Point-to-Point Event Car Object Definition File

1 // S_Car.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"

5 #include "S_Car.H"

6 static int QuarterMile = 5280 / 4; // In feet

7 void PlugInCars() {
8 PLUG_IN_SIMOBJ(S_Car);
9 PLUG_IN_EVENT(Car_StopCar);

10 PLUG_IN_EVENT(Car_Go);
11 PLUG_IN_EVENT(Car_Stop);

6.2. SIMULATION OBJECT EVENTS 93

12 }

13 void S_Car::Init() {
14 XPos = 0;
15 Velocity = (SpGetSimObjGlobalId() * 10.0 + 11.0) / 3600 * 5280;
16 StopState = 0;
17 LastTimeStopped = 0.0;
18 TimesStopped = 0;

19 SCHEDULE_Car_Go(0.0, SpGetObjHandle());
20 }

21 void S_Car::Stop(double stopTime) {
22 double currentXPos;
23 int nextStopLightPos;
24 double stopLightArrivalTime;

25 currentXPos =(XPos + Velocity * (SpGetTime() - LastTimeStopped));
26 nextStopLightPos =
27 (int) ((((int) currentXPos) / QuarterMile + 1) * QuarterMile);
28 stopLightArrivalTime = (nextStopLightPos - currentXPos) / Velocity;
29 RB_cout << "Received stop signal for Car #" << SpGetSimObjGlobalId()
30 << ", Received argument= " << stopTime
31 << ", Sim" << SpGetTime()
32 << " Received Data= " << SpGetMsgData()
33 << " stopLightArrivalTime= " << stopLightArrivalTime
34 << endl;
35 SCHEDULE_Car_StopCar(SpGetTime() + stopLightArrivalTime,
36 SpGetObjHandle());
37 }

38 void S_Car::Go() {
39 if (StopState == 0) {
40 LastTimeStopped = SpGetTime();
41 StopState = 1;
42 }
43 }

44 void S_Car::StopCar() {
45 XPos = XPos + (Velocity * (SpGetTime() - LastTimeStopped));
46 StopState = 0;
47 ++TimesStopped;

48 RB_cout << "Car #" << SpGetSimObjGlobalId()
49 << " is stopping at " << SpGetTime()
50 << " at X coordinate of " << XPos
51 << ". Car has stopped " << TimesStopped << " times."
52 << " LastTimeStopped= " << LastTimeStopped
53 << endl;
54 }

Example 6.5: Point-to-Point Event Car Object Implementation File

Example 6.4 defines three methods called Stop, Go, and StopCar, which are turned into events by
using the define event macros, as shown on lines 25 through 27. Notice that method Stop is defined
with one parameter of type double. This requires that the one parameter define simulation event macro
be used with its type specified as double (line 25). The DEFINE SIMOBJ macro on line 24 specifies

94 CHAPTER 6. POINT-TO-POINT EVENTS

that 4 cars are to be created in this simulation.

Example 6.5 shows the implementation code for the car simulation objects. Function PlugInCars
is used to plug-in the Car simulation objects and their events. The function should be called by main.
Method Init is used to initialize the car attributes, which includes a different velocity for each car
instance. SPEEDES assigns global ids to objects in the order that they are executed at run time (i.e. the
order in which objects are plugged in). Consequently, if the car objects are plugged in first, then the first
car object’s global id will be 0; the second car object’s global id will be 1; and so on. In the end, the
four car simulation objects will be assigned global id’s of 0 through 3. Finally, because we calculated
each car’s velocity based on its global id, the cars in this example will have velocities of 11, 21, 31, and
41 miles per hour. Event Car Go starts the simulation a time � .

When event Car Stop is executed (i.e. method Stop), then the car needs to stop at the next red light.
The stop lights are located at fixed locations every quarter mile. If the car is not yet at a stop light, then
there is no reason for it to stop. Therefore, the car calculates when it will arrive at the next stop light
and schedules an event for itself to stop when it arrives at the light (lines 25 through 36). Event Car Go
(method Go) turns the traffic signals back to green. Event Car StopCar (method StopCar) stops
the car and updates the car’s current position.

The final step in completing the car simulation is to create main. The code in Example 6.6 shows what
main would look like for this simulation.

1 // Main.C
2 #include "SpMainPlugIn.H"

3 void PlugInCars();
4 void PlugInStopLight();

5 int main(int argc, char** argv) {
6 PlugInCars();
7 PlugInStopLight();

8 ExecuteSpeedes(argc, argv);
9 }

Example 6.6: Car and Stop Light main

6.3 Event Cancellation

During the normal execution of events, any event rolled back will automatically cancel any event that
it scheduled, as defined within the SPEEDES framework algorithms. The capability to cancel events is
also available to the user. That is, when events are scheduled in the future, the user may later decide to
change or cancel the events. This capability is useful when an unanticipated event affects the outcome
of an event that has been previously scheduled. For example, a missile may schedule an event at a
specific impact location, but the missile may be destroyed prior to impact. The destroyed missile’s
already scheduled impact event needs to be canceled. To enable such event cancellation, the SPEEDES
framework contains a global function that allows previously scheduled events to be canceled. The cancel
event API is:

void SCHEDULE_CANCEL_EVENT(SpCancelHandle& cancelHandle)

6.3. EVENT CANCELLATION 95

When events are scheduled, a cancel handle is returned to the user, which then can be used to cancel the
scheduled event, if necessary.

Now let us take a closer look at our previous example. Car 0 is traveling at 11 miles per hour. At 30.0
seconds the light changes from green to red and event Car Stop is scheduled on Car 0. The car has
traveled 484 feet, which makes it still 836 feet away from the stop light. This event then calculates that,
at 11 miles per hour, Car 0 will not reach the next light until 51.8 seconds from now, consequently it
schedules an event to stop the car at 81.8 seconds (30.0 + 51.8). However, the light turns green at 60.0
seconds, so when the car arrives at the traffic light at 81.8 seconds, the light is green. Unfortunately, the
car will now stop at a green light (must be a California driver). To solve this, we can save the cancel
handle from the original scheduling of the Car Stop event. When the light turns green, we can use the
cancel handle to cancel the event.

To fix the previous example, we need to modify the S Car simulation object by saving the cancel handle
for event Car StopCarwhen event Car Stop schedules it. We also save the time at which the event
is scheduled, so that we do not try and remove an event in the past. Add the following lines of code to
the private section of the S Car definition file:

RB_SpCancelHandle CancelHandle;
RB_double EventScheduledTime;

Four changes are required to the S Car implementation file. Replace lines 35 and 36 in Example 6.5
with:

EventScheduledTime = 0.0;
CancelHandle = SCHEDULE_Car_Go((double) EventScheduledTime,

SpGetObjHandle());

Replace line 42 with:

EventScheduledTime = SpGetTime() + stopLightArrivalTime;
CancelHandle = SCHEDULE_Car_StopCar((double) EventScheduledTime,

SpGetObjHandle());

Next, replace all of the code in method S Car::Go with:

if (EventScheduledTime > SpGetTime()) {
SCHEDULE_CANCEL_EVENT(CancelHandle);
EventScheduledTime = -1.0;

}
else {
if (StopState == 0) {

LastTimeStopped = SpGetTime();
StopState = 1;

}
}

Lastly, add the following include file:

#include "SpSchedule.H"

96 CHAPTER 6. POINT-TO-POINT EVENTS

Event Car StopCar is still scheduled when the light changes from green to red, but the cancel handle
is saved so that the event can be later canceled if necessary. Now, when the light changes from red to
green, the time that the light turned green is compared to the time for when the car will stop. If the light
turned green prior to the car reaching the light (i.e. SpGetTime() < EventScheduledTime),
then the event for stopping the car is canceled (i.e. Car StopCar).

6.4 Local Events

Local events are “private” events. A simulation object may have arbitrarily-nested sub-objects that
represent its encapsulated implementation. Many of these sub-objects may be dynamically created and
destroyed. This means only the simulation object, itself, has access to them. Thus, local point-to-point
events begin and end at the same “point” (i.e. the same simulation object). The purpose of local events
is to allow a simulation object to manage and animate its sub-objects with self-scheduled events.

Local events can be created on any object that is a part of your simulation object state. An important
consequence of this is that the object that contains the local events does not have to inherit from the
class SpSimObj. To create local events, the first step is to create a class. Methods on the class can be
turned into events by using the macro designed for local events. The API for this macro is:

DEFINE_LOCAL_EVENT_<numParam>_ARG(eventName,
className,
methodName,
[paramList])

Parameter Description
numParam The number of parameters used in the method being converted into a local event (valid

range is 0 to 8).
eventName Any user-defined string representing the name of the event (legal characters for string

names include alphanumeric and underscore characters).
className The name of the class that contains the method that is to be turned into an event.
methodName The name of the method that is to be turned into an event.
paramList Comma-delimited list of the parameter types found in the method.

Table 6.4: Macro DEFINE LOCAL EVENT API

These events are plugged into the SPEEDES framework via the same plug-in macro described previ-
ously (see page 89). To enable scheduling local events, the define local event macro creates a global
schedule function for each local event defined. Scheduling these events is very similar to scheduling
the simulation object events, as previously described. The only difference is: for local events, pass in a
reference to the local object instead of passing in the simulation object handle (since SPEEDES already
knows that the scheduled object handle must be the current object handle). An example is shown later.
The local event schedule function has the following API:

SpCancelHandle
SCHEDULE_<eventName>(const SpSimTime& simTime,

const className& object,
[paramList],

const char* data = NULL,
int dataBytes = 0)

6.4. LOCAL EVENTS 97

Parameter Description
eventName This is the same name used when the event was defined.
simTime This parameter specifies the time at which the event will be executed. The time sched-

uled can be the present time or a future time, but not a time in the past.
object This is the object instance on which the local event will act.
paramList This is a comma-delimited list of the parameters that are to be passed to the event

method.
data This optional parameter allows users to send data to the event for further processing.

The data can be binary or character stream data. To send something with pointers,
make sure to write “wrap” and “unwrap” functions to enable packing and unpacking
of a buffer that represents the data.

dataBytes This parameter represented the size, in bytes, of the buffer sent as the “data” parame-
ter. If you do not use the “data” parameter, then there is no need to use this parameter
either.

Table 6.5: Function SCHEDULE API for Local Events

The next step in using local events is to create an instance of the local object on your simulation object.
One word of caution: local events cannot schedule local events on other simulation objects. Simulation
objects are identified by their object handles. Those object handles uniquely identify the object instance
(including on which node or processor the object is located). However, local events reside on objects
that have no such identification, since they are not necessarily simulation objects. So, there is no way to
identify the objects on which local events act, unless those objects are contained in the current simulation
object. This is why it is only possible to schedule local events on the current (i.e. local) simulation object.

We have just discussed the basics of local events. Now, let us enhance our prior stop light example to
show local events in action. Let us give our car a radio which will be a local object with local events.
The code shown in Examples 6.7 and 6.8 shows the definition and implementation files for the local
Radio object.

1 // Radio.H
2 #ifndef RADIO_H
3 #define RADIO_H

4 #include "SpDefineEvent.H"
5 #include "RB_int.H"
6 #include "RB_double.H"
7 #include "RB_SpCancelHandle.H"

8 class Radio {
9 public:

10 Radio();
11 ˜Radio() {}

12 void Off();
13 void On();
14 void Scan(int scheduler);
15 void SendFrequency();
16 int GetState() {return (State);}

17 protected:
18 private:
19 RB_int State; // 0 = Off, 1 = On, 2 = Scan
20 RB_double Frequency; // Radio frequency

98 CHAPTER 6. POINT-TO-POINT EVENTS

21 RB_int TimesScanned; // Number of frequencies scanned
22 RB_SpCancelHandle CancelHandle; // Radio_Scan Cancel Handle
23 RB_double EventScheduledTime;
24 // Time Scan event was scheduled
25 };

26 DEFINE_LOCAL_EVENT_0_ARG(Radio_Off, Radio, Off);
27 DEFINE_LOCAL_EVENT_0_ARG(Radio_On, Radio, On);
28 DEFINE_LOCAL_EVENT_1_ARG(Radio_Scan, Radio, Scan, int);
29 DEFINE_LOCAL_EVENT_0_ARG(Radio_SendFrequency, Radio, SendFrequency);
30 #endif

Example 6.7: Local Event Radio Object Definition

1 // Radio.C
2 #include "SpGlobalFunctions.H"
3 #include "SpSchedule.H"
4 #include "SpMainPlugIn.H"
5 #include "RB_ostream.H"

6 #include "Radio.H"
7 #include "S_Car.H"

8 void PlugInRadio() {
9 PLUG_IN_EVENT(Radio_Off);

10 PLUG_IN_EVENT(Radio_On);
11 PLUG_IN_EVENT(Radio_Scan);
12 PLUG_IN_EVENT(Radio_SendFrequency);
13 }

14 Radio::Radio() : State(0), Frequency(100.0), TimesScanned(0) {}

15 void Radio::Off() {
16 RB_cout << "Turning radio in car #" << SpGetSimObjGlobalId()
17 << " off at " << SpGetTime() << endl;
18 State = 0;
19 }

20 void Radio::On() {
21 RB_cout << "Turning radio in car #" << SpGetSimObjGlobalId()
22 << " on at " << SpGetTime() << endl;
23 State = 1;
24 TimesScanned = 0;
25 SCHEDULE_Radio_SendFrequency(SpGetTime(), *this);
26 }

27 void Radio::Scan(int scheduler) {
28 RB_cout << "Radio in car #" << SpGetSimObjGlobalId()
29 << " is scanning for new station at " << SpGetTime() << endl;
30 if (State == 2) { // Are we currently scanning?
31 if (scheduler == 0) { // Did the Car push the Scan Button
32 /*
33 * Car pushed the scan button and we were already scanning.
34 * Therefore, stop the Radio at the current station and cancel
35 * the next self scheduled scan event.
36 */

6.4. LOCAL EVENTS 99

37 SCHEDULE_Radio_On(SpGetTime(), *this);
38 if (EventScheduledTime > SpGetTime()) {
39 SCHEDULE_CANCEL_EVENT(CancelHandle);
40 EventScheduledTime = -1.0;
41 }
42 }
43 else {
44 /*
45 * The radio scheduled this event. If we have changed radio
46 * frequencies less than 10 times then change the frequency
47 * and reschedule the scan event. Otherwise, stop the
48 * radio scanning at the current radio frequency.
49 */
50 if (TimesScanned < 10) {
51 Frequency = Frequency + 101.0;
52 ++TimesScanned;
53 EventScheduledTime = SpGetTime() + 50.0;
54 CancelHandle =
55 SCHEDULE_Radio_Scan((double) EventScheduledTime, *this, 1);
56 SCHEDULE_Radio_SendFrequency(SpGetTime(), *this);
57 }
58 else {
59 SCHEDULE_Radio_On(SpGetTime(), *this);
60 }
61 }
62 }
63 else {
64 /*
65 * Since the current radio state is 1, by default the car just
66 * pushed the radio scan button. Therefore, the radio
67 * should start scanning frequencies for a new radio station.
68 */
69 State = 2;
70 ++TimesScanned;
71 Frequency = Frequency + 101.0;
72 EventScheduledTime = SpGetTime() + 50.0;
73 CancelHandle =
74 SCHEDULE_Radio_Scan((double) EventScheduledTime, *this, 1);
75 SCHEDULE_Radio_SendFrequency(SpGetTime(), *this);
76 }
77 }

78 void Radio::SendFrequency() {
79 SCHEDULE_Car_RadioStation(SpGetTime(), SpGetObjHandle(), Frequency);
80 }

Example 6.8: Local Event Radio Object Implementation

Our radio will be able to take on the states of “on”, “off”, and “scan”. The car will cycle through the
different radio states via scheduling events on the radio object (i.e. local events). Each time the radio
station changes, the Radio object schedules an event on its creator (Example 6.8, line 79), which notifies
the car of the current radio frequency. Notice that we use global function SpGetObjHandle to get the
object handle for the simulation object that originally started the sequence of events on this local object.

The scan event scans through ten frequencies, after which it stops scanning. However, the car could push
the scan button while the radio is scanning, indicating that the Radio is to stop scanning. Therefore, the
cancel handle for the scan event is saved so that any scan event already scheduled can be canceled.

100 CHAPTER 6. POINT-TO-POINT EVENTS

The code shown in Examples 6.9 and 6.10 shows the new definition and implementation for the car
simulation object.

1 // S_Car.H
2 #ifndef S_Car_H
3 #define S_Car_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"
7 #include "RB_SpCancelHandle.H"
8 #include "Radio.H"

9 class S_Car : public SpSimObj {
10 public:
11 S_Car() {}
12 virtual ˜S_Car() {}
13 virtual void Init();
14 void Stop(double stopTime);
15 void Go();
16 void StopCar();
17 void RadioController();
18 void RadioStation(double frequency);

19 protected:
20 private:
21 RB_double XPos; // Car Position
22 double Velocity; // Car Velocity
23 RB_double LastTimeStopped; // Time at last Car Stoppage
24 RB_int StopState; // 0 = Stopped; 1 = Moving
25 RB_int TimesStopped; // Number of times Car
26 // Stopped
27 RB_SpCancelHandle CancelHandle; // StopCar Cancel Handle
28 RB_double EventScheduledTime; // StopCar Event Scheduled
29 Radio MyRadio; // Car Radio
30 };

31 DEFINE_SIMOBJ(S_Car, 4, SCATTER);
32 DEFINE_SIMOBJ_EVENT_1_ARG(Car_Stop, S_Car, Stop, double);
33 DEFINE_SIMOBJ_EVENT_0_ARG(Car_Go, S_Car, Go);
34 DEFINE_SIMOBJ_EVENT_0_ARG(Car_StopCar, S_Car, StopCar);
35 DEFINE_SIMOBJ_EVENT_0_ARG(Car_RadioController, S_Car, RadioController);
36 DEFINE_SIMOBJ_EVENT_1_ARG(Car_RadioStation, S_Car, RadioStation, double);
37 #endif

Example 6.9: Local Event Car Object Definition File

6.4. LOCAL EVENTS 101

1 // S_Car.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"
5 #include "SpSchedule.H"

6 #include "S_Car.H"

7 static int QuarterMile = 5280 / 4; // In feet

8 void PlugInCars() {
9 PLUG_IN_SIMOBJ(S_Car);

10 PLUG_IN_EVENT(Car_StopCar);
11 PLUG_IN_EVENT(Car_Go);
12 PLUG_IN_EVENT(Car_Stop);
13 PLUG_IN_EVENT(Car_RadioController);
14 PLUG_IN_EVENT(Car_RadioStation);
15 }

16 void S_Car::Init() {
17 XPos = 0;
18 Velocity = (SpGetSimObjGlobalId() * 10.0 + 11.0) / 3600 * 5280;
19 StopState = 0;
20 LastTimeStopped = 0.0;
21 TimesStopped = 0;

22 EventScheduledTime = 0.0;
23 CancelHandle = SCHEDULE_Car_Go((double) EventScheduledTime,
24 SpGetObjHandle());
25 SCHEDULE_Car_RadioController(SpGetSimObjGlobalId() * 10.0,
26 SpGetObjHandle());
27 }

28 void S_Car::Stop(double stopTime) {
29 double currentXPos;
30 int nextStopLightPos;
31 double stopLightArrivalTime;

32 currentXPos = (XPos + Velocity * (SpGetTime() - LastTimeStopped));
33 nextStopLightPos =
34 (int) ((((int) currentXPos) / QuarterMile + 1) * QuarterMile);
35 stopLightArrivalTime = (nextStopLightPos - currentXPos) / Velocity;
36 RB_cout << "Received stop signal for Car #" << SpGetSimObjGlobalId()
37 << ", Received argument= " << stopTime
38 << ", Sim" << SpGetTime()
39 << " Received Data= " << SpGetMsgData()
40 << " stopLightArrivalTime= " << stopLightArrivalTime
41 << endl;
42 EventScheduledTime = SpGetTime() + stopLightArrivalTime;
43 CancelHandle = SCHEDULE_Car_StopCar((double) EventScheduledTime,
44 SpGetObjHandle());
45 }

46 void S_Car::Go() {
47 if (EventScheduledTime > SpGetTime()) {

102 CHAPTER 6. POINT-TO-POINT EVENTS

48 SCHEDULE_CANCEL_EVENT(CancelHandle);
49 EventScheduledTime = -1;
50 }
51 else {
52 if (StopState == 0) {
53 LastTimeStopped = SpGetTime();
54 StopState = 1;
55 }
56 }
57 }

58 void S_Car::StopCar() {
59 XPos = XPos + (Velocity * (SpGetTime() - LastTimeStopped));
60 StopState = 0;
61 ++TimesStopped;

62 RB_cout << "Car #" << SpGetSimObjGlobalId()
63 << " is stopping at " << SpGetTime()
64 << " at X coordinate of " << XPos
65 << ". Car has stopped " << TimesStopped << " times."
66 << " LastTimeStopped= " << LastTimeStopped
67 << endl;
68 }

69 void S_Car::RadioController() {
70 int currentRadioState = MyRadio.GetState();
71 int nextRadioState;

72 if (currentRadioState != 2) {
73 nextRadioState = (currentRadioState + 1) % 3;
74 }
75 else {
76 if (GetRandom()->GenerateDouble() > 0.75) {
77 nextRadioState = currentRadioState;
78 }
79 else {
80 if (GetRandom()->GenerateDouble() > 0.5) {
81 nextRadioState = 0;
82 }
83 else {
84 nextRadioState = 1;
85 }
86 }
87 }

88 switch (nextRadioState) {
89 case 0: SCHEDULE_Radio_Off (SpGetTime() + 10.0, MyRadio);
90 break;
91 case 1: SCHEDULE_Radio_On (SpGetTime() + 15.0, MyRadio);
92 break;
93 case 2: SCHEDULE_Radio_Scan (SpGetTime() + 20.0, MyRadio, 0);
94 break;
95 default: break;
96 }
97 SCHEDULE_Car_RadioController(SpGetTime() + 400.0, SpGetObjHandle());
98 }

6.5. AUTONOMOUS EVENTS 103

99 void S_Car::RadioStation(double frequency) {
100 RB_cout << "Radio Station for car #" << SpGetSimObjGlobalId()
101 << " is at frequency " << frequency << endl;
102 }

Example 6.10: Local Event Car Object Implementation File

In Example 6.9, the definition file added two methods called RadioController and RadioSta-
tion on lines 17 and 18, respectively. The radio local object was added to the car simulation object on
line 29. Finally, macro DEFINE SIMOBJ EVENT is used to turn RadioController and Radio-
Station into events, as shown on lines 35 and 36.

The car simulation object contains two additional methods. In Example 6.10, lines 69 through 102
show the implementation for methods that cycle though the radio’s states, as well as displaying the
radio’s frequency.

Finally, Example 6.11 shows the new file for main.

1 // Main.C
2 #include "SpMainPlugIn.H"

3 void PlugInCars();
4 void PlugInStopLight();
5 void PlugInRadio();

6 int main(int argc, char** argv) {
7 PlugInCars();
8 PlugInStopLight();
9 PlugInRadio();

10 ExecuteSpeedes(argc, argv);
11 }

Example 6.11: Local Event main

6.5 Autonomous Events

The final SPEEDES API point-to-point event type is the autonomous event. Where, as previously
discussed, point-to-point events all are based on methods residing directly or indirectly in the simulation
object, autonomous events have been separated from the simulation object upon which they act.

Autonomous events inherit from class SpEvent. This gives users access to several virtual methods
on the event, which provides greater control over the event during its different event phases (see Sec-
tion 15.2). The most likely method to be used would be lazy, which allows users to rollforward a
rolled back event to prevent reexecution of the event. The allows for events that are CPU intensive to
not be reexecuted if not necessary. The downside to this approach is the separation of the event from the
simulation object it works on, which can add to event code complexity and makes code more difficult to
maintain. Chapter 15 describes autonomous events in detail.

When defining autonomous events, another SPEEDES macro is used which unifies the API with the rest
of SPEEDES event definitions. The autonomous event macro API is:

Let us expand the car example to show how to make an autonomous event by converting event Car Stop
(i.e. method S Car::Stop) to an autonomous event. The code shown in Example 6.12 and 6.13 shows
the previous car event Car Stop turned into the new autonomous event by the same name.

104 CHAPTER 6. POINT-TO-POINT EVENTS

DEFINE_AUTONOMOUS_EVENT_<numParam>_ARG(eventName,
className,
methodName,
[ParamList])

Parameter Description
numParam The number of parameters used in the method being converted into an event (valid

range is 0 to 8).
eventName Any user-defined string representing the name of the event (legal characters for string

names include alphanumeric and underscore characters).
className The name of the event class that contains the method that is to be turned into an event.
methodName The name of the method that is to be turned into an event.
paramList A comma-delimited list of the parameter types found in the method.

Table 6.6: Macro DEFINE AUTONOMOUS EVENT API

1 // E_Car_Stop.H
2 #ifndef E_Car_Stop_H
3 #define E_Car_Stop_H

4 #include "SpDefineEvent.H"

5 class E_Car_Stop : public SpEvent {
6 public:
7 E_Car_Stop();
8 virtual ˜E_Car_Stop() {};

9 virtual int lazy();
10 void Stop(double stopTime);

11 protected:
12 private:
13 double XPos;
14 };

15 DEFINE_AUTONOMOUS_EVENT_1_ARG(Car_Stop, E_Car_Stop, Stop, double);
16 #endif

Example 6.12: Autonomous Event Stop Event Definition File

1 // E_Car_Stop.C
2 #include "SpMainPlugIn.H"
3 #include "RB_ostream.H"

4 #include "E_Car_Stop.H"
5 #include "S_Car.H"

6 static int QuarterMile = 5280 / 4; // In feet

7 void PlugInECarStop() {
8 PLUG_IN_EVENT(Car_Stop);
9 }

10 E_Car_Stop::E_Car_Stop() {
11 enable_lazy();

6.5. AUTONOMOUS EVENTS 105

12 }

13 int E_Car_Stop::lazy() {
14 int returnValue = 0;
15 S_Car* carObj = (S_Car *) SpGetSimObj();
16 if (XPos == carObj->GetXPos()) {
17 /*
18 * Since Xpos did not change from last time there is no need
19 * to reprocess the Car_Stop event. Therefore return non-zero.
20 */
21 returnValue = 1;
22 }
23 return(returnValue);
24 }

25 void E_Car_Stop::Stop(double stopTime) {
26 int nextStopLightPos;
27 double stopLightArrivalTime;
28 S_Car* carObj = (S_Car *) SpGetSimObj();
29 double eventScheduledTime;
30 SpCancelHandle cancelHandle;

31 XPos = carObj->GetXPos() +
32 (carObj->GetVelocity() *
33 (SpGetTime() - carObj->GetLastTimeStopped()));
34 nextStopLightPos =
35 (int) ((((int) XPos) / QuarterMile + 1) * QuarterMile);
36 stopLightArrivalTime = (nextStopLightPos - XPos) /
37 carObj->GetVelocity();
38 RB_cout << "Received stop signal for Car #" << SpGetSimObjGlobalId()
39 << ", Received argument= " << stopTime
40 << ", Sim" << SpGetTime()
41 << " Received Data= " << SpGetMsgData()
42 << " stopLightArrivalTime= " << stopLightArrivalTime
43 << endl;
44 eventScheduledTime = SpGetTime() + stopLightArrivalTime;
45 cancelHandle = SCHEDULE_Car_StopCar((double) eventScheduledTime,
46 SpGetObjHandle());
47 carObj->SetEventScheduledTime(eventScheduledTime);
48 carObj->SetCancelHandle(cancelHandle);
49 }

Example 6.13: Autonomous Event Stop Event Implementation File

The format for these files is very similar to both the simulation object event and local event defini-
tion and implementation files. Example 6.12 shows the definition for our new autonomous event. By
SPEEDES convention, autonomous events are prefixed with an E . This example implements the vir-
tual method lazy and user method Stop (Example 6.12, lines 9 and 10). The method lazy, is one of
several optional virtual methods which, if implemented, conditionally prevents work from being redone
during rollbacks. In other words, during normal event processing (i.e. when lazy is not enabled), if a
simulation object has been rolled back, then events on the object will always be reprocessed. However,
reprocessing these events may not always be necessary. When lazy is enabled, lazy methods check
whether reprocessing rolled back events could possibly produce an outcome different than when the
rolled back event was initially processed. If not, then the event can be rolled forward, saving execution
time by not re-executing the rolled back event (e.g. method E Car Stop::Stop in this case). Also,
events that the rolled back event scheduled are not canceled. This allows additional simulation run-time

106 CHAPTER 6. POINT-TO-POINT EVENTS

parameters {
logical lazy T

}

Figure 6.2: Autonomous Event speedes.par Lazy Cancellation

performance increases.

Line 15 shows how to use the autonomous event macro to turn the method Stop into event Car Stop.
The code in Example 6.13 shows the implementation for the autonomous event. Function Plug-
InECarStop is used to plug the event into the SPEEDES framework. Since our example uses lazy
cancellation, we must enable lazy (line 11) and implement the method lazy (line 13 through 24), which
defines how to determine if lazy passed or failed. Method E Car Stop::Stop is the same code as
method S Car::Stop. Notice, however, that this new method does not have access to the private data
in class S Car. This requires that accessors and mutators for class S Car be written. When this event
is executed, access to the S Car object is gained by using global function SpGetSimObj and type
casting its output to a S Car.

To use the new autonomous event, we need to make some minor changes to files S Car.H and S Car.C.
First, delete the Stop method from files S Car.H and S Car.C. In S Car.C, delete the plug-in for
event Car Stop. In S Car.H, delete the define simulation object event macro for event Car Stop.
Finally, add accessors and mutators for the data elements that our autonomous event needs. In our
example, add the following to S Car.H:

int GetXPos() {return(XPos);}
double GetVelocity() {return(Velocity);}
double GetLastTimeStopped() {return(LastTimeStopped);}
void SetCancelHandle(SpCancelHandle& ch) {
CancelHandle = ch;

}
void SetEventScheduledTime(double& est) {
EventScheduledTime = est;

}

Next, modify code S StopLight.C slightly by adding:

#include "E_Car_Stop.H"

Finally, we must plug-in our new autonomous event. Do this by adding the following to Main.C.

void PlugInECarStop();

PlugInECarStop();

When running the example car simulation, lazy must be enabled in the speedes.par file. The
speedes.par file shown in Figure 6.2 shows what this would look like.

6.6 Choosing an Interface Style

There are two interface styles for point-to-point events: merged and separate. The examples in this
User’s Guide use the merged style. However, if compile time is a concern, the separate interface style

6.6. CHOOSING AN INTERFACE STYLE 107

may be a better choice, as it reduces unnecessary dependencies between files. This section explores the
difference between these two styles to enable users to make informed decisions in choosing between
them.

The separate interface style requires defining and including a separate interface header file. This in-
terface file is then also included by files that contain code that schedules the event. In this way, a
compilation-independent interface serves to assure type consistency between the event method and the
schedulers of that event.

The merged interface style does not require a separate interface file. Instead, the header file with the
event method definition serves as the interface for schedulers of the event. Rather than residing in an
independent file, the interface is “merged” with the event method definition macro, requiring the event
method header file to serve both as a header for the class in which it is contained, and also as an interface
for schedulers.

The separate interface style minimizes compilation dependencies while still maintaining complete event
parameter type checking. So, when compilation efficiency is a concern, the separate interface style is
recommended for simulation object events and sometimes for autonomous events as well. For local
events, it only has value when files with schedulers are able to compile the pointer to the event method’s
object by means of a forward class reference. Otherwise, they require including the very event method
header file that the separate interface style is designed not to require including, thus eliminating the
benefit of a separate interface file.

While the merged interface style requires less code and has equivalent type checking, it creates un-
necessary include file dependencies, thus lengthening the average time required for compilation during
software development. For instance, when using the merged interface style for simulation object events,
whenever a software developer modifies a simulation object header file containing one or more event
methods, all files that schedule events corresponding to any of those methods include that simulation
object header file and, thus, must get recompiled. Conversely, none of the event scheduling files get
recompiled using the separate interface style.

In summary, the separate interface style minimizes compile times, since it minimizes the dependency
between the event method and the event scheduler to the one and only actual dependency: the event
parameters. Since this is the one and only condition where both the method and the schedulers must
change their code, this is the one and only condition where a compilation dependency is needed. All
other dependencies are spurious, and only degrade compilation efficiency.

However, the merged interface style is more convenient, and requires less files. The merged interface
may prove expedient when porting legacy systems. It may also simplify development when the event
method header files have few dependencies, are changed infrequently, or both. Finally, it may make
sense in some situations to use the more expedient merged interface style during initial prototyping or
legacy system porting, and then as the code matures, eventually port to the separate interface style.

108 CHAPTER 6. POINT-TO-POINT EVENTS

6.7 The Separate Interface Style

The separate interface style is recommended when compilation efficiency is important. The indepen-
dence of the interface file is the key to minimizing compile times, since schedulers will not be recom-
piled when the event method header file changes, but only when the interface file changes.

To create an event using the separate interface style, first create the interface as an independent file. The
file needs to include SpDefineEvent.H and then, insert the following macro:

DEFINE_EVENT_INTERFACE_<numParam>_ARG(eventName,
[paramList])

Parameter Description
numParam The number of parameters used in the method being converted into an event (valid

range is 0 to 8).
eventName Any user-defined string representing the name of the event (legal characters for string

names include alphanumeric and underscore characters).
paramList A comma-delimited list of the parameter types found in the method.

Table 6.7: Macro DEFINE EVENT INTERFACE API

The corresponding interface file for the event in Example 6.1 is shown in Example 6.14

#ifndef I_MY_EVENT
#define I_MY_EVENT

#include "SpDefineEvent.H"
#include "MyClass.H"
DEFINE_EVENT_INTERFACE_3_ARG(MyEvent, int, double, MyClass);
#endif

Example 6.14: Separate Interface Style

Next, write a method with a signature matching the paramList in the associated event interface
macro. Then, use the appropriate macro for the type of event created (analogous to sections 6.2 through
6.5). The event interface macros used are DEFINE SIMOBJ EVENT, DEFINE LOCAL EVENT, and
DEFINE AUTONOMOUS EVENT. The parameters for all three macros are identical. The API for DE-
FINE SIMOBJ EVENT is shown below:

DEFINE_SIMOBJ_EVENT(eventName,
className,
methodName,
numParam)

Parameter Description
eventName The same eventName which was used in the Macro DEFINE EVENT INTERFACE.
className The name of the class that contains the method that is to be turned into an event.
methodName The name of the method that is to be turned into an event.
numParam The number of parameters used in the method being converted into an event (valid

range is 0 to 8).

Table 6.8: Macro DEFINE SIMOBJ EVENT (Interface) API

These macros differ from the merged interface style in that the macro names are shortened and a new
parameter numParam replaces the paramList of the merged style. This is so the paramList can be
contained in a separate interface file so as to allow the compiler to type-check both the event method and
the schedulers with an independent file. Example 6.15 illustrates the same event defined in Example 6.1
above, but using the separate interface style.

6.8. TIPS, TRICKS, AND POTHOLES 109

#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"
#include "I_MyEvent.H"

class S_MySimObj: public SpSimObj {
public:
MyMethod(int param1, double param2, MyClass param3);

};
DEFINE_SIMOBJ(S_MySimObj, 1, SCATTER);
DEFINE_SIMOBJ_EVENT(MyEvent, S_MySimObj, MyMethod, 3);

Example 6.15: Defining a Method Using the Separate Interface Method

The separate interface style uses the same event plug-in style as the merged interface style.

Finally, Example 6.16 demonstrates scheduling an event, as defined in Example 6.14, with a variable
length argument representing the character string “hello”.

#include "I_MyEvent.H"
#include "SpSimTime.H"

MyScheduleObj::ScheduleEventForMySimObj(MyClass myObj) {
SpSimTime time(3.2); // schedule event for time = 3.2
SpObjHandle objHandle =

GetObjHandle("S_MySimObj", 3); // kind Id = 3

SCHEDULE_MyEvent(time, objHandle, 4, 6.5, myObj,
"hello", strlen("hello") + 1);

}
Example 6.16: Scheduling using the Separate Interface Style

6.8 Tips, Tricks, and Potholes
� It is recommended that the simulation object class contain only a small number of direct event

methods (simulation object events). Any events that are self-scheduled should use the local event
style. If the class is getting bogged down by too many event methods, making the class hard
to maintain, it may make sense to convert some or all of those simulation object events to au-
tonomous events.

� Do not use rollbackable types as local variables in events. Rollbackable types used as local
variables cause run-time errors and application crashes. An error message, as shown in Figure 4.1,
will be displayed when rollbackable types are used incorrectly. However, it is fine for local pointer
variables to point to rollbackable variables.

� Local events will rarely benefit from using the separate interface style option, since they normally
already require what the separate interface file is designed to remove: including the event method
file. Schedulers of local events require a pointer to the event method’s object, which presumes
that the scheduler also needs the event method object’s header file, regardless of the scheduling
interface. The only exception to this is when a scheduler uses a forward class reference for the
event method object pointer, which will probably be rare in practice.

� Never schedule an event in the past. SPEEDES will identify this situation, print an error message,
and attempt to continue on. This condition will possibly result in an application crash or an
infinite loop. One way to avoid this problem is to determine the schedule using SpGetTime()
+ delta. For example:

110 CHAPTER 6. POINT-TO-POINT EVENTS

SpSimTime scheduleTime = SpGetTime();
...
scheduleTime += deltaTimeInFuture;
SCHEDULE_<eventName>(scheduleTime,...);

The += operator on SpSimTimewill preserve the priority fields that may have been set by other
events.

If an event is scheduled in the past, then the following error message is output by SPEEDES.

Error, event list out of order

� Only attempt to cancel events that are in the future. Ensure that the physical part (i.e. the double
part, ignoring the integer tie-breaking fields) of the scheduled time is greater than the physical
part of the current time (i.e. ((double) SpGetTime() < ScheduledEventTime)).

Chapter 7

Event Handlers

Event handlers differ from point-to-point events in two fashions. First, event handlers allow for both
one-to-one events as well as one-to-many events. Second, event handlers can be run-time configured
rather than compile time configured like point-to-point events. For example, a user could have one
method registered for a given trigger and, at a later point, remove that method and add a different
method to respond to that trigger or remove all sensitivity for that trigger.

As a more concrete example: a simulation object may create handlers out of two simulation object
methods “Invincible” and “Vulnerable” through the DEFINE HANDLERmacro. At the start of the sim-
ulation, the simulation object may register the handler “Invincible” for the trigger “Check For Damage”.
At a later point in the simulation, the simulation object can remove the “Invincible” handler and add in
the handle “Vulnerable” to change its response.

Handler events may be scheduled for a specified simulation object (directed) or for the entire simulation
(undirected). Directed handler events are analogous to point-to-point events in that they represent a one-
way invocation from one simulation object to another. Undirected handler events are not point-to-point,
but rather they are broadcasted out to all simulation objects that have subscribed to that trigger.

Event handler have two levels of filtering: a handler event type and an optional trigger string. The
handler event type is determined at compile time, while the trigger string is determined at run time.
The number of possible normal handler event triggers is unlimited, since after filtering by type, the
second trigger is dynamically specified by string. However, since strings are specified dynamically,
their binding to registered handlers cannot be verified at compile time. To achieve compile-time type
verification, simply avoid passing the optional dynamic trigger string.

Handler types come in three styles: standard event handlers, interactions, and interface event handlers.
The first two are predefined styles, while interface handler events are user-defined.

� Standard handler events are the simplest style and they send a variable-length buffer to recipients.

� Interactions differ from the standard style in that they send a variable-length, generic, parameter-
ized data set using the SpParmSet rather than passing a variable length buffer as data.

� Finally, interface handler events use callback method signatures (as analogous to all three point-
to-point event styles). In addition, interface handler events may send a variable length buffer to
invoked handlers just like standard event handlers or point-to-point events.

The process for creating and using event handlers is simple when using the API. The basic steps for
creating and using event handlers are:

111

112 CHAPTER 7. EVENT HANDLERS

1. Create an event handler from any method on any object in the application. This method can be on
a simulation object (i.e. a child object of SpSimObj) or on any other object.

2. Apply one of the SPEEDES API macros to the method. This turns the method into an event
handler that can then be scheduled by other events.

3. Register the event handler with the simulation object.

4. Schedule events for the simulation object, calling the event handler.

These items are discussed in more detail in the following sections.

7.1 Standard Event Handlers

Standard event handlers are the easiest to implement when no data is needed for the handlers. This is
because there are no special interfaces to set up at compile time, and because their associated handler
methods require no signature (i.e. standard handler methods have no parameters). However, when data
does need to be sent, they are much harder to implement, since all data must be sent via a variable
length buffer. This means standard event handlers are the most appropriate style when sending data is
either unnecessary or erratic, and when a single, run-time level of handler filtering (i.e. trigger strings)
is sufficient.

To create a standard event handler, the first step is to create a method on any object. The method should
return a void and it cannot have any parameters. Once the method has been defined, then one of the
event handler macros is applied to the method, which creates the event handler. The syntax for the
macros are:

DEFINE_HANDLER(handlerName,
className,
methodName)

DEFINE_SIMOBJ_HANDLER(handlerName,
className,
methodName)

Parameter Description
handlerName Any user-defined string representing the name of the event handler (legal characters

for the handler name include alphanumeric and underscore characters).
className The name of the class containing the method that is to be turned into an event handler.
methodName The name of the method that is to be turned into an event handler. This method cannot

have any parameters (i.e. input parameters must be void).

Table 7.1: Macro DEFINE HANDLER and DEFINE SIMOBJ HANDLER API

If the method being converted into a handler is located on a simulation object (i.e. a child of Sp-
SimObj), then the macro DEFINE SIMOBJ HANDLER should be used when defining the handler.
DEFINE HANDLER must be used when the method is not on a simulation object. Use of these macros
will result in new auto-generated classes whose name will be the name supplied in parameter han-
dlerName appended by the string “ HDR ID”. Instances of this class are needed when registering and
unregistering event handlers with simulation objects. Three methods on class SpSimObj allow users
to add, subscribe, and remove event handlers. These methods are shown below:

7.1. STANDARD EVENT HANDLERS 113

AddHandler (const SpHandlerId& handlerId,
char* trigger = NULL)

SubscribeHandler(const SpHandlerId& handlerId,
char* trigger = NULL)

RemoveHandler (const SpHandlerId& handlerId,
char* trigger = NULL)

Parameter Description
handlerId This parameter is an instance of a macro-generated class created by macro DEFINE-

HANDLER or DEFINE SIMOBJ HANDLER. A product of these macros is a class
called handlerName (input parameter to the macro) appended by the string
“ HDR ID”. When the macro DEFINE HANDLER is used then the class instance
containing the handler must be used as an argument to the macro built HDR ID
class constructor. For example, suppose object W (non-simulation object) uses
macro DEFINE HANDLER with an input argument of Abc. Then the output from
this macro will be a class called Abc HDR ID. Classes that want to register this
handler for use must then create an instance of class W and use this instance as
the handlerId for AddHandler, RemoveHandler, or SubscribeHandler
(e.g. Abc HDR ID(Winstance)). When the macro DEFINE SIMOBJ HANDLER
is used, the object for which the handler resides on is already known. Therefore,
the object is not needed as input to the HDR ID class (i.e. handlerId will be
Abc HDR ID).

trigger Optional parameter which associates a string with the handler. If this parameter is
provided, then the caller of this handler (i.e. scheduler) must also provide the trigger
string in order for the event handler to be invoked. If an event handler is added or
subscribed with a trigger, then it must also be removed with the same trigger.

Table 7.2: Handler Methods Add, Subscribe, and Remove API

Choosing whether to use AddHandler or SubscribeHandler to register handlers with their sim-
ulation object affects the conditions under which they are called. When method AddHandler is used,
then the handler will be invoked only when the scheduler schedules a directed event handler. If, on the
other hand, method SubscribeHandler is used then the handler will be invoked when the scheduler
schedules a directed or undirected event handler.

Directed event handlers specify an object handle for which the object on which the handlers should be
called, hence the term “directed”. In other words, directed event handlers are invoked on a specific
simulation object (and sensitive to a particular trigger if the scheduler of the event handlers provided
one). Conversely, schedulers of undirected handler events do not provide a particular object handle, but
instead intend all handlers on all simulation objects in the simulation (that are sensitive to a particular
trigger if the scheduler provided one) to be invoked. In other words, the handler event is not directed
toward one particular simulation object, hence the term undirected.

The final step necessary for using event handlers is the scheduling of the handlers. This is done by using
one of the following two global functions:

114 CHAPTER 7. EVENT HANDLERS

SpCancelHandle
SCHEDULE_HANDLER(const SpSimTime& simTime,

const SpObjHandle& objHandle,
const char* trigger = NULL,
const char* data = NULL,

int dataBytes = 0)

SpCancelHandle
SCHEDULE_HANDLER(const SpSimTime& simTime,

const char* trigger = NULL,
const char* data = NULL,

int dataBytes = 0)

Parameter Description
simTime This parameter specifies the time at which the event handlers will be invoked. It must

be at the present or future simulation time with respect to when it is scheduled (i.e. it
cannot be scheduled in the simulation time past).

objHandle This parameter uniquely specifies the simulation object for which handlers will be in-
voked. There are convenience functions provided in the SPEEDES framework which
can look up object handles for simulation objects in SPEEDES. Please see Section 3.3
for additional information on class SpObjHandle.

trigger This optional parameter specifies a trigger string to further filter which handlers are
to be invoked. The trigger used must match the triggers specified when the handlers
were registered using AddHandler or SubscribeHandler.

data This optional parameter allows users to send a character buffer (can be binary or a
character string) to the invoked handlers.

dataBytes The parameter specifies the size of the optional data, if sent, in bytes.

Table 7.3: SCHEDULE HANDLER API

Notice that the above schedule functions come in two forms. When an object handle is provided as
an argument to a schedule function, then directed event handlers are scheduled (i.e. handler on specific
object). If a trigger is provided, then a handler with the exact trigger must have been registered on
the receiving object. When the scheduling function is used without an object handle, undirected event
handlers are being scheduled (i.e. all handlers on all objects which match the trigger specifications).
Notice that event handlers can be scheduled without specifying an object handle or trigger. This will
invoke all handlers on any object that were subscribed without triggers.

Let us revisit the car and stop light example first introduced in Chapter 6. Specifically, let us modify the
example described in Section 6.3 to use event handlers. The code shown in Example 7.1 shows the new
definition file for the stop light object. Changes made to the stop light definition file are:

1. Changed SpDefineEvent.H to SpDefineHandler.H (line 6).

2. Added class H Red to process the red stop light signal (lines 7 through 11).

3. Turned method H Red::Red into an event handler by using the macro DEFINE HANDLER (line
12).

4. Added class H Green to process the green stop light signal (lines 13 through 17).

5. Turned method H Green::Green into an event handler by using macro DEFINE HANDLER
(line 18).

7.1. STANDARD EVENT HANDLERS 115

6. Deleted methods Red and Green from class S StopLight, since these capabilities have been
moved to class H Red and H Green.

7. Deleted event definition macro DEFINE SIMOBJ EVENT 0 ARG used to define events, since
they are no longer needed.

1 // S_StopLight.H
2 #ifndef S_StopLight_H
3 #define S_StopLight_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineHandler.H"

7 class H_Red {
8 public:
9 H_Red() {};

10 void Red();
11 };
12 DEFINE_HANDLER(RedLight, H_Red, Red);

13 class H_Green {
14 public:
15 H_Green() {};
16 void Green();
17 };
18 DEFINE_HANDLER(GreenLight, H_Green, Green);

19 class S_StopLight : public SpSimObj {
20 public:
21 S_StopLight() {};
22 virtual ˜S_StopLight() {};
23 virtual void Init();
24 protected:
25 private:
26 H_Red *RedHandler;
27 H_Green *GreenHandler;
28 };
29 DEFINE_SIMOBJ(S_StopLight, 1, SCATTER);
30 #endif

Example 7.1: Standard Event Handler Stop Light Object Definition File

Notice that, in this example, macro DEFINE HANDLERwas used rather than DEFINE SIMOBJ HAN-
DLER. The methods being turned into handlers are not on a simulation object (i.e. child of class SpSim-
Obj). Rather, they are on self-contained objects H Red and H Green. By SPEEDES convention,
handlers not on simulation objects, but rather self-contained in their own class definition are prefixed
with an H .

The code shown in Example 7.2 shows the new implementation file for the stop light object. Changes
made to the stop light implementation are:

1. Added #include "SpSchedule.H" (line 5).

2. Delete macro PLUG IN EVENT used to define events StopLight TurnsRed and Stop-
Light TurnsGreen since this functionality has been changed to event handlers.

116 CHAPTER 7. EVENT HANDLERS

3. Instantiated handlers H Red and H Green (lines 12 through 13). Added these handlers to the
simulation object using method AddHandler (lines 14 through 15).

4. Implemented method H Red::Red (lines 18 through 29).

5. Implemented method H Green::Green (lines 30 through 41).

1 // S_StopLight.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"
5 #include "SpSchedule.H"

6 #include "S_StopLight.H"
7 #include "S_Car.H"

8 void PlugInStopLight() {
9 PLUG_IN_SIMOBJ(S_StopLight);

10 }

11 void S_StopLight::Init() {
12 RedHandler = new H_Red;
13 GreenHandler = new H_Green;
14 AddHandler(RedLight_HDR_ID(*RedHandler));
15 AddHandler(GreenLight_HDR_ID(*GreenHandler), "Light Turned Green");
16 SCHEDULE_HANDLER(30.0, SpGetObjHandle());
17 }

18 void H_Red::Red() {
19 int i;
20 for (i = 0; i < 4; ++i) {
21 SpObjHandle objHandle = SpGetObjHandle("S_Car_MGR", i);
22 SCHEDULE_Car_Stop(SpGetTime(), objHandle, SpGetTime(),
23 (char *) "Red Light On",
24 strlen("Red Light On") + 1);
25 }
26 SCHEDULE_HANDLER(SpGetTime() + 30.0, SpGetObjHandle(),
27 "Light Turned Green",
28 (char *) "Go", strlen("Go") + 1);
29 }

30 void H_Green::Green() {
31 int i;
32 RB_cout << "H_Green::Green Message Data= "
33 << SpGetMsgData() << endl;
34 for (i = 0; i < 4; ++i) {
35 SpObjHandle objHandle = SpGetObjHandle("S_Car_MGR", i);
36 SCHEDULE_Car_Go(SpGetTime(), objHandle,
37 (char *) "Green Light On",
38 strlen("Green Light On") + 1);
39 }
40 SCHEDULE_HANDLER(SpGetTime() + 30.0, SpGetObjHandle());
41 }

Example 7.2: Standard Event Handler Stop Light Object Implementation File

7.2. INTERACTION EVENT HANDLERS 117

This example contains several interesting differences, which require further discussion. Notice that,
since the handler methods are not contained in the simulation object, the classes containing the handler
methods must be instantiated prior to use (lines 12 and 13). If these methods were on the simulation
object, then this step would not be necessary (as shown later).

The next step for using the handlers is to register them with the simulation object. This is done with
method AddHandler (lines 14 and 15). Since AddHandler was used in the above example, these
handlers can only be invoked through directed event handlers (i.e. scheduler must specify the object
handle for the stop light object). If SubscribeHandler had been used, then this object would be
capable of receiving undirected events.

Also, notice that the red handler is added without a trigger string (line 14) and the green handler is
registered with a trigger string (line 15). This requires the scheduler to use the appropriate trigger when
scheduling this handler. The handler object is specified in the “* HDR ID” constructor when adding
the handler (lines 14 and 15). This is due to the handler methods not being on the simulation object.
Finally, the global function SCHEDULE HANDLER is called to schedule a handler. The object handle
for the stop light is specified with no trigger which means the red handler will be executed at time 30.0.

The red handler shown on lines 18 through 29 is very similar to the redmethod described in Section 6.3.
The only difference is in the way the events are scheduled (lines 26 through 28). In this example, the
global function SCHEDULE HANDLER is used to schedule the green event handler, as opposed to func-
tion SCHEDULE StopLight TurnsGreen described in the point-to-point example. AddHandler
was used to add the handler to the simulation object with a trigger. Consequently, the stop light’s ob-
ject handle must be specified in the function SCHEDULE HANDLER along with the appropriate trigger
(i.e. “Light Turned Green”). Finally, for example purposes, the string “Go” was sent as optional
data.

The green handler shown on lines 30 through 41 is very similar to the green method described in
Section 6.3. Once again, there is a difference with the scheduling of the red event handler on the stop
light (shown on line 40). The differences are the same as described in the previous paragraph. However,
since the red handler was added without a trigger, it is scheduled without one as well. Lines 32 and 33
were added so that this handler can print out the optional data that was sent from the red event handler.

7.2 Interaction Event Handlers

Interactions are similar to standard handler events, except in the way they pass data. Interaction sched-
ulers and interaction handlers both use one variable-length parameter of type SpParmSet, which al-
lows schedulers to send any number of primitive data types and non-typed buffers to interaction handlers.

Thus, interactions are preferred over using standard handler events, when their handlers need primitive
typed parameters passed to them. The interaction style is particularly useful when handlers need differ-
ent sets of parameters each time they are called. The class SpParmSet is designed to handle varying
sets of parameters.

The SPEEDES framework provides macros which turn object methods into interaction handlers. These
macros are similar to the macros described in Section 7.1. The macros used to define interaction handlers
are:

118 CHAPTER 7. EVENT HANDLERS

DEFINE_INTERACTION_HANDLER(handlerName,
className,
methodName);

DEFINE_SIMOBJ_INTERACTION_HANDLER(handlerName,
className,
methodName);

The descriptions of these parameters are the same as those for DEFINE HANDLER, which are described
in Table 7.1, with one exception. Method methodNamemust have one argument of type SpParmSet.

In order to schedule an interaction handler, the following global functions are provided:

SpCancelHandle
SCHEDULE_INTERACTION(const SpSimTime& simTime,

const SpObjHandle& objHandle,
const char* trigger,
const SpParmSet& parmSet)

SpCancelHandle
SCHEDULE_INTERACTION(const SpSimTime& simTime,

const char* trigger,
const SpParmSet& parmSet)

Parameter Description
simTime This parameter specifies the time at which the event handlers are invoked. It must be

at the present or future simulation time with respect to when it is scheduled (i.e. it
cannot be scheduled in the simulation time past).

objHandle This parameter uniquely specifies the simulation object on which handlers will be in-
voked. There are convenience functions provided in the SPEEDES framework which
can look up object handles for simulation objects in SPEEDES. Please see Section 3.3
for additional information on class SpObjHandle.

trigger This optional parameter specifies a trigger string to filter which handlers are to be
invoked. The trigger used must match the triggers specified when the handlers were
registered using AddHandler or SubscribeHandler.

parmSet This parameter contains the data which is passed along to the interaction handler.
Class SpParmSet allows users to build data structures of non-pointer type data
(i.e. primitive types such as integers, doubles, and other classes, which contain only
primitive base types and strings).

Table 7.4: SCHEDULE INTERACTION API

Methods AddHandler, SubscribeHandler, and RemoveHandler are used to add, subscribe,
and remove interaction event handlers in a similar fashion as described in Section 7.1. The “trigger”
parameter is not an optional parameter when adding, subscribing, or removing interaction handlers.

Let us continue enhancing the car and stop light simulation to illustrate interaction event handlers. Also,
some additional standard event handler capabilities are provided. Example 7.3 shows some additional
changes made to the stop light object which include:

1. Lines 19 through 25 in Example 7.2 were replaced with lines 19 through 22 in Example 7.3 as
shown below.

2. Lines 34 through 39 in Example 7.2 were replaced with lines 30 and 31 in Example 7.3 as shown
below.

7.2. INTERACTION EVENT HANDLERS 119

1 // S_StopLight.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"
5 #include "SpSchedule.H"

6 #include "S_StopLight.H"
7 #include "S_Car.H"

8 void PlugInStopLight() {
9 PLUG_IN_SIMOBJ(S_StopLight);

10 }

11 void S_StopLight::Init() {
12 RedHandler = new H_Red;
13 GreenHandler = new H_Green;
14 AddHandler(RedLight_HDR_ID(*RedHandler));
15 AddHandler(GreenLight_HDR_ID(*GreenHandler), "Light Turned Green");
16 SCHEDULE_HANDLER(30.0, SpGetObjHandle());
17 }

18 void H_Red::Red() {
19 SpParmSet tmpParm;
20 tmpParm.InsertDouble("FirstData", SpGetTime());
21 tmpParm.InsertString("SecondData", "Red Light On");
22 SCHEDULE_INTERACTION(SpGetTime(), "Red", tmpParm);

23 SCHEDULE_HANDLER(SpGetTime() + 30.0, SpGetObjHandle(),
24 "Light Turned Green",
25 (char *) "Go", strlen("Go") + 1);
26 }

27 void H_Green::Green() {
28 RB_cout << "H_Green::Green Message Data= "
29 << SpGetMsgData() << endl;

30 SCHEDULE_HANDLER(SpGetTime(), "Green", "Green Light On",
31 strlen("Green Light On") + 1);
32 SCHEDULE_HANDLER(SpGetTime() + 30.0, SpGetObjHandle());
33 }

Example 7.3: Interaction Event Handler Stop Light Object Implementation File

The stop light simulation object has been modified such that it now communicates with the car simu-
lation objects via handlers instead of point-to-point events. Methods Red and Green have both been
modified by replacing the for loop with a call to a schedule handler. If global communication is needed
for many objects, handlers are often a good communication choice.

Method Red has been modified to send an interaction handler with data (i.e. parameter SpParmSet
has been initialized). Since the object handle for the call to SCHEDULE INTERACTION has not been
used, an undirected interaction handler is being sent. The trigger for this call is “Red”. Therefore, all
simulation objects that have registered a handler with a trigger of “Red” will be invoked.

Method Green has been modified to send a standard handler with string data (i.e. “Green Light
On”). Since the object handle for the call to SCHEDULE INTERACTION has not been used, an undi-
rected interaction handler is being sent. The trigger for this call is “Green”. Therefore, all simulation

120 CHAPTER 7. EVENT HANDLERS

objects that have registered a handler with a trigger of “Green” will be invoked.

The car simulation object has been modified so that it will invoke the appropriate event handlers that are
scheduled by the stop light simulation object. Example 7.4 shows the changes made to the car object
definition file. The changes made to the definition file were:

1. Changed SpDefineEvent.H to SpDefineHandler.H (line 6).

2. Added #include "RB SpString.H" (line 7).

3. Changed method Stop parameter to (SpParmSet& interactionData) (line 13). This is
required, since method Stop is being converted to an interaction event handler.

4. Added attribute RB SpString TriggerString; (line 24). This attribute keeps track of the
current trigger used for method StopCar.

5. Changed event Car Stop from a point-to-point event to an interaction event handler using macro
DEFINE SIMOBJ INTERACTION HANDLER (line 28).

6. Changed events Car Go and Car StopCar from point-to-point events to standard event han-
dlers using macro DEFINE SIMOBJ HANDLER (line 29 through 30).

1 // S_Car.H
2 #ifndef S_Car_H
3 #define S_Car_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineHandler.H"
7 #include "RB_SpString.H"

8 class S_Car : public SpSimObj {
9 public:

10 S_Car() {};
11 virtual ˜S_Car() {};

12 virtual void Init();
13 void Stop(SpParmSet& interactionData);
14 void Go();
15 void StopCar();

16 protected:
17 private:
18 RB_double XPos; // Car Position
19 double Velocity; // Car Velocity
20 RB_double LastTimeStopped; // Time at last Car Stoppage
21 RB_int StopState; // 0 = Stopped; 1 = Moving
22 RB_int TimesStopped; // Number of times Car
23 // Stopped
24 RB_SpString TriggerString; // The trigger string for
25 // Car_StopCar handler
26 };

27 DEFINE_SIMOBJ(S_Car, 4, SCATTER);
28 DEFINE_SIMOBJ_INTERACTION_HANDLER(Car_Stop, S_Car, Stop);

7.2. INTERACTION EVENT HANDLERS 121

29 DEFINE_SIMOBJ_HANDLER(Car_Go, S_Car, Go);
30 DEFINE_SIMOBJ_HANDLER(Car_StopCar, S_Car, StopCar);
31 #endif

Example 7.4: Interaction Event Handler Car Object Definition File

Notice that this example uses DEFINE SIMOBJ HANDLER as opposed to DEFINE HANDLER, as
shown in Section 7.1. This is because the methods being converted into handlers are located on the
car simulation object. This allows for additional compile time type checking when adding, subscribing,
or removing handlers.

Example 7.5 shows the changes made to the car object implementation file. The specific changes made
to the implementation file are as follows:

1. Deleted the macros for plugging in the point-to-point events, since these events have been con-
verted to event handlers.

2. Added code which initializes the event handlers (line 17 through 26).

3. Changed method Stop parameter to (SpParmSet& interactionData) (line 27).

4. Added code to display the data in interactionData (line 37 through 44).

5. Modified the code required for scheduling the old point-to-point event Car StopCar to a stan-
dard event handler schedule (line 45 through 51).

6. Modified code in method Go for processing the green stop light signal (line 54 through 61).

1 // S_Car.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"
5 #include "SpSchedule.H"

6 #include "S_Car.H"

7 static int QuarterMile = 5280 / 4; // In feet

8 void PlugInCars() {
9 PLUG_IN_SIMOBJ(S_Car);

10 }

11 void S_Car::Init() {
12 XPos = 0;
13 Velocity = (SpGetSimObjGlobalId() * 10.0 + 11.0) / 3600 * 5280;
14 StopState = 0;
15 LastTimeStopped = 0.0;
16 TimesStopped = 0;

17 SubscribeHandler(Car_Stop_HDR_ID(), "Red");
18 SubscribeHandler(Car_Go_HDR_ID(), "Green");
19 TriggerString = "TOA";
20 char tempStr[80];
21 strcpy(tempStr, TriggerString);
22 AddHandler(Car_StopCar_HDR_ID(), tempStr);

122 CHAPTER 7. EVENT HANDLERS

23 SCHEDULE_HANDLER(0.0, SpGetObjHandle(),
24 "Green", "Green On",
25 strlen("Green On") + 1);
26 }

27 void S_Car::Stop(SpParmSet& interactionData) {
28 double currentXPos;
29 int nextStopLightPos;
30 double stopLightArrivalTime;

31 currentXPos =
32 (XPos + Velocity * (SpGetTime() - LastTimeStopped));
33 nextStopLightPos =
34 (int) ((((int) currentXPos) / QuarterMile + 1) * QuarterMile);
35 stopLightArrivalTime =
36 (nextStopLightPos - currentXPos) / Velocity;
37 RB_cout << "Received stop signal for Car #" << SpGetSimObjGlobalId()
38 << ", Received argument= "
39 << interactionData.GetDouble("FirstData")
40 << ", Sim" << SpGetTime()
41 << " Received Data= "
42 << interactionData.GetString("SecondData")
43 << " stopLightArrivalTime= " << stopLightArrivalTime
44 << endl;

45 char tempStr[80];
46 sprintf(tempStr, "TOA%.4f",
47 SpGetRandom()->GenerateDouble(0.0, 100.0));
48 TriggerString = tempStr;
49 AddHandler(Car_StopCar_HDR_ID(), tempStr);
50 SCHEDULE_HANDLER(SpGetTime() + stopLightArrivalTime,
51 SpGetObjHandle(), tempStr);
52 }

53 void S_Car::Go() {
54 char tempStr[80];
55 RB_cout << "S_Car::Go Message Data= " << SpGetMsgData() << endl;
56 strcpy(tempStr, TriggerString);
57 RemoveHandler(Car_StopCar_HDR_ID(), tempStr);
58 if (StopState == 0) {
59 LastTimeStopped = SpGetTime();
60 StopState = 1;
61 }
62 }

63 void S_Car::StopCar() {
64 XPos = XPos + (Velocity * (SpGetTime() - LastTimeStopped));
65 StopState = 0;
66 ++TimesStopped;

67 RB_cout << "Car #" << SpGetSimObjGlobalId()
68 << " is stopping at " << SpGetTime()
69 << " at X coordinate of " << XPos
70 << ". Car has stopped " << TimesStopped << " times."
71 << " LastTimeStopped= " << LastTimeStopped
72 << endl;

7.3. INTERFACE EVENT HANDLERS 123

73 }
Example 7.5: Interaction Event Handler Car Object Implementation File

Let us examine this example in more detail. On lines 17 and 18, subscriptions are made for processing
the red and green stop light signal. Method SubscribeHandler is used to register these handlers
with the SPEEDES framework, which allows both directed and undirected schedules to be used. For
this example, the scheduler is scheduling undirected event handlers, as shown on lines 22 and 30 in
Example 7.3. Zero parameters are passed to the “* HDR ID” constructor. This is because macros
DEFINE SIMOBJ HANDLER and DEFINE SIMOBJ INTERACTION HANDLER were used to define
the handlers. Lines 19 through 22 add the handler that will handle the car when it actually stops. Only
directed events can cause this handler to be invoked.

Method Stop is used to process the red stop light signal, which was sent via an interaction event handler
(Example 7.3 line 22). The code for calculating the car’s position remains unchanged. Some additional
code was added to extract the interaction data. Lines 45 through 51 are used to schedule the handler
for the actual stopping of the car. Recall that Section 6.3 described how to use cancel handles to cancel
events. This example could have used the same technique to cancel unnecessary events. However,
for illustration purposes, this example adds a handler with a unique trigger. If the event needs to be
canceled, then the handler is removed. The event still goes off, but since the event handler was removed,
the code for processing the stopped car is not executed, thus producing the correct results. Lines 45
through 49 were added to calculate the unique handler trigger name and register the handler with the
SPEEDES framework.

The counterpart to method Stop is method Go. Every time this method is executed, the handler for
stopping the car is removed. This prevents the car from stopping at green lights.

7.3 Interface Event Handlers

The last type of handler is called the interface event handler. This type of handler allows handler methods
to contain multiple arguments, as opposed to the zero argument standard event handlers previously
discussed.

The process for using interface handlers requires the use of two macros. The first macro defines the in-
terface name, number of arguments that the method takes and their types. This method has the following
API:

DEFINE_HANDLER_INTERFACE_<numParam>_ARG(interfaceName,
[paramList])

Parameter Description
numParam The number of parameters used in the method being converted into an interface event

handler (valid range is 0 to 8).
interfaceName Any user-defined string representing the name of the interface (legal characters for the

handler include alphanumeric and underscore characters).
paramList Comma delimited list of the parameter types found in the method. The types specified

can be any primitive base type (i.e. integer, double, etc.) or class whose attributes
contain primitive base types. Pointer types are not allowed.

Table 7.5: Macro DEFINE HANDLER INTERFACE with Arguments API

The interface signature can be placed in its own independent header file. Then, by including this header
file, the arguments to the schedulers and parameters to the handler methods are type checked.

124 CHAPTER 7. EVENT HANDLERS

After the interface signature (or type) has been defined, the macro for turning an object method into an
interface event handler can be used. The API for these macros is:

DEFINE_INTERFACE_HANDLER(handlerName,
className,
methodName,
interfaceName,
numParam)

DEFINE_SIMOBJ_INTERFACE_HANDLER(handlerName,
className,
methodName,
interfaceName,
numParam)

Parameter Description
handlerName Any user-defined string representing the name of the event handler. (legal characters

for the handler include alphanumeric and underscore characters.)
className The name of the object or simulation object class that contains the method that is to

be turned into an event handler.
methodName The name of the method that is to be turned into an interface event handler.
interfaceName This parameter uses the name which was defined with macro DEFINE-

HANDLER INTERFACE <numParam> ARG above.
numParam This parameter is number of parameters specified when using the macro DE-

FINE HANDLER INTERFACE <numParam> ARG.

Table 7.6: Macro DEFINE INTERFACE HANDLER API

The code shown in Example 7.6 shows an example of how to use these macros.

#ifndef S_My_Sim_Obj_H
#define S_My_Sim_Obj_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineHandler.H"

class S_My_Sim_Obj : public SpSimObj {
public:

S_My_Sim_Obj() {};
virtual ˜S_My_Sim_Obj() {};

void MyMethod(int arg1, double arg2);
};
DEFINE_SIMOBJ(S_My_Sim_Obj, 1, SCATTER);
DEFINE_HANDLER_INTERFACE_2_ARG(MyInterfaceDefinition, int, double)
DEFINE_SIMOBJ_INTERFACE_HANDLER(MyHandlerName,

S_My_Sim_Obj,
MyMethod,
MyInterfaceDefinition,
2);

#endif
Example 7.6: Interface Event Handler

A byproduct of the DEFINE INTERFACE HANDLER and DEFINE SIMOBJ INTERFACE HANDLER
is a function which is used for scheduling interface handlers. The API for this function is:

7.4. TIPS, TRICKS, AND POTHOLES 125

SpCancelHandle
SCHEDULE_HANDLER_<interfaceName>(const SpSimTime& simTime,

const SpObjHandle& objHandle,
[paramList],

const char trigger = NULL,
const char* data = NULL,
int dataBytes = 0);

SpCancelHandle
SCHEDULE_HANDLER_<interfaceName>(const SpSimTime& simTime,

[paramList],
const char trigger = NULL,
const char* data = NULL,
int dataBytes = 0);

Parameter Description
interfaceName The interface name was defined by macro DEFINE HANDLER INTERFACE.
simTime This parameter specifies the time at which the scheduled handler event will be in-

voked. This time must be at the present time or future time (i.e. it cannot be in the
past).

objHandle This parameter uniquely specifies the simulation object on which handlers will be in-
voked. There are convenience functions provided in the SPEEDES framework which
can look up object handles for simulation objects in SPEEDES. Please see Section 3.3
for additional information on class SpObjHandle.

paramList A comma delimited list of the parameters that are to be passed to the simulation object
method (e.g. in the above example data parameters passed to MyMethod should be
an integer and double).

trigger This optional parameter specifies a trigger string, which allows additional filtering to
occur when handlers are invoked. The trigger used must match the triggers specified
when the handlers were registered using AddHandler or SubscribeHandler.

data This optional parameter allows users to send a character buffer (can be binary or a
character string) to the invoked handlers.

dataBytes This parameter specifies the size of the optional data, if sent, in bytes.

Table 7.7: Function SCHEDULE HANDLER API

For example, the scheduling function for Example 7.6 would be SCHEDULE HANDLER MyInter-
faceDefinition. Of course, in order for this function to work, the simulation object must have
used method AddHandler or SubscribeHandler to register MyHandlerName.

7.4 Tips, Tricks, and Potholes

� While handler events are powerful, do not assume they are always a better event paradigm than
point-to-point events. Point-to-point events have the advantage that schedulers know exactly what
code will be invoked each time they schedule an event. Handlers offer no such assurance, since
handlers can be added and removed dynamically at any point in simulated time. Also, use of undi-
rected event handlers typically increases the number of events processed (i.e. internal SPEEDES
events).

126 CHAPTER 7. EVENT HANDLERS

Chapter 8

The Process Model

The process model extends normal C++ methods into specialized algorithms called “processes”. When
so transformed, an algorithm inside such a method evolves over a simulated time span, rather than
occurring at a single instant in simulation time.

In SPEEDES, a “process” is a point-to-point event that uses special macros that allow execution of code
to be exited at at any point and reentry to the code at the exit point at some later simulated time. This is
done without losing local variable state or algorithmic context.

Traditional discrete-event models are often called “event-based”, while models written mainly using
processes are often called “process-based”. Writing a process-based simulation is often simpler, more
intuitive, and easier to maintain than writing the same simulation in the event-based paradigm. This is
because processes are able to model a thread of control as a single algorithm, while event-based models
must jump from one piece of code to another whenever simulation time advances.

The event-based paradigm maps well to passive models. Events serve as callbacks to modify a passive
model’s state when something happens. For event-based passive models, saving state data to preserve
context from one event to another suffices.

However, active models have another type of “state”: the state of each process used to self-propagate
their state themselves, such as a heat-sensing missile. In addition to preserving state data context,
process-based models also preserve the algorithmic context of their self-propagating processes. This
enables developers to write algorithms that map naturally to the processes that animate those models.
Thus, it often makes sense to design active models using the process model.

In practice, it usually makes sense to combine both event-based semantics and process-based semantics
in a single simulation. SPEEDES supports not only mixing both paradigms in the same simulation,
but also mixing event-based semantics and process-based semantics within a single process. Since a
SPEEDES process is an abstraction that uses point-to-point events as its implementation, processes and
normal events work together using the common SPEEDES event-based simulation engine.

8.1 Process Model API

The following sections describe the API for the process model, which includes:

1. Process model initializers.

2. Wait reentry points (similar to UNIX’s “sleep” command).

127

128 CHAPTER 8. THE PROCESS MODEL

3. Semaphore reentry points.

4. Ask reentry points.

8.1.1 Required Process Model Initializers

To use the process model, an event must be written that contains process model initializer constructs and
one or more process model reentry point constructs. Process model reentry points mark where in the
user algorithm the process model will jump to upon process model reentry. All process model events
must contain, at a minimum, the following three structural macros:

P_VAR;
P_BEGIN(numReentryLabels);
P_END;

P VAR is always the first macro in the event. P BEGIN marks the beginning of process model user-
code algorithm. Macro parameter numReentryLabels is an integer number that defines the number
of process model reentry point constructs to be used in this event. For example, if the process model
contains two reentry points, then 2 would be the parameter used in macro P BEGIN. Macro P END
marks the end of the process model event and is usually placed at the bracket prior to the method exit.

Process models can also define local state or stack variables. These variables are defined between the
macros P VAR and P BEGIN. To define a local state variable, the following macro is used:

P_LV(type, name);

Parameter Description
type Any primitive base-type (e.g. int, double, etc.), class or pointer. It cannot be a

rollbackable type (e.g. RB int). Instead, all types placed here, will be turned into
a rollbackable type automatically, since the process model saves all of this data in a
rollbackable manner. While rollbackable types cannot be used here, pointers to such
types can be used. Most often, these rollbackable types are encapsulated in a class
for which a pointer type is created and set to point to this class instance. Also, if a
class is used here as the type, then the class can be made up of primitive base-types or
pointers to rollbackable types. The class cannot contain pointers to non-rollbackable
data.

name Local state variable name.

Table 8.1: Macro P LV API

Process model reentry point macros are the final constructs necessary to implement process model
functionality. All process model reentry point macros have one item in common, which is the first
parameter for the macro. The first parameter must be an integer, which is unique for each process model
construct. This id is a structural parameter that allows the macro to create a unique and identifiable
process model reentry point. This enables the process model to be reentrant by allowing the code to
restart execution at the exit point (i.e. previous execution point in the code). Wherever the process
model exits and reenters, users need to place a unique integer beginning with 1 and ending with the total
number of reentry labels. The code shown in Example 8.1 illustrates this, as well as the other process
model initializer macros.

8.1. PROCESS MODEL API 129

#ifndef MyClass_H
#define MyClass_H

#include "SpDefineEvent.H"
#include "SpProc.H"
#include "RB_SpBinaryTree.H"

class MyClass {
public:
void MyMethod(int param1, double param2) {

/*
* Process model variable definitions start here. Define all
* process model state variables between P_VAR and P_BEGIN
* using macro P_LV.
*/

P_VAR;
P_LV(double, a); // double state variable
P_LV(RB_SpBinaryTree*, b); // RB_SpBinaryTree pointer state

// variable
int i; // Local non-state variable
/*
* P_BEGIN marks the end of the variable definition area and
* the start of the user-defined process model algorithm.
*/

P_BEGIN(2);
/*
* User-defined algorithm is added between P_BEGIN and P_END.
* This example should contain 2 process model reentry points.
* P_END marks the end of the user-defined process model algorithm.
*/

P_END;
}

};

DEFINE_LOCAL_EVENT_2_ARG(MyProcess, MyClass, MyMethod, int, double);
#endif

Example 8.1: Basic Process Model Form

8.1.2 Wait (a.k.a. Sleep) Process Model Reentry Points

The most basic constructs in the process model are the WAIT and WAIT UNTIL reentry point constructs.
These constructs mimic the UNIX sleep command. Specifically, WAITwill wait the specified amount
of time prior to process model continuation (as measured by GVT, not wall clock time). WAIT UNTIL
waits until the specified GVT has been reached before process model continuation. The API for these
constructs is shown below:

WAIT(reentryLabel, duration);
WAIT_UNTIL(reentryLabel, simTime);

130 CHAPTER 8. THE PROCESS MODEL

Parameter Description
reentryLabel Integer id for the appropriate process model reentry label. For example, if P BEGIN

defines the number of reentry labels to be 3, then there should be 3 process model
reentry constructs whose labels are 1, 2 and 3.

duration Specifies the amount of time, in seconds, that will elapse (i.e. GVT, not wall clock
time) before process will continue.

simTime Specifies the simulation time when processing will continue. For example, if GVT
is 10.0 seconds and simTime is set to 100.0, then the code directly following
WAIT UNTIL will be executed (i.e. committed) when GVT reaches 100.0 seconds. If
the time specified is in the past of the current simulation time, then the WAIT UNTIL
construct is ignored.

Table 8.2: Macro WAIT and WAIT UNTIL API

To illustrate these process model constructs, let us revisit the car and stop light example described in
Chapter 6. The code shown in Examples 6.2 and 6.3 shows the original stop light simulation object
design. This object will be redesigned to use the process model WAIT and WAIT UNTIL constructs.
The new design for the stop light simulation object now only requires one event, as compared to the
two events in the previous design. Therefore, in the definition file, methods Red and Green have been
replaced with method Signal. Example 8.2 shows the new definition code for the stop light simulation
object.

1 // S_StopLight.H
2 #ifndef S_StopLight_H
3 #define S_StopLight_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"

7 class S_StopLight : public SpSimObj {
8 public:
9 S_StopLight() {};

10 virtual ˜S_StopLight() {};

11 virtual void Init();
12 void Signal();

13 protected:
14 private:
15 RB_int TimesChanged;
16 };

17 DEFINE_SIMOBJ(S_StopLight, 1, SCATTER);
18 DEFINE_SIMOBJ_EVENT_0_ARG(StopLight_Signal, S_StopLight, Signal);
19 #endif

Example 8.2: Process Model Sleep Stop Light Object Definition File

The implementation for method Signal is shown on lines 16 through 44 in Example 8.3. Line 23
shows the WAIT construct being used with a wait of 30.0 seconds. When processing continues after the
WAIT, an event is scheduled on each car object, notifying the cars that the light has turned red. Line 35
shows the WAIT UNTIL construct being used with a simTime of “now” plus 30.0 seconds (i.e. sleep

8.1. PROCESS MODEL API 131

for 30.0 seconds). After the WAIT UNTIL, an event is scheduled on each car instance indicating that the
light has turned green. Lines 26 through 28 output the values of the process model local state variable
and the simulation object state variable. The two state variables contain the number of times the light has
turned red. These two values should always be equal. Other changes made to the implementation file
are the plugging in of the correct event (line 10) and the scheduling of the first StopLight Signal
event (line 14).

1 // S_StopLight.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"
5 #include "SpProc.H"

6 #include "S_StopLight.H"
7 #include "S_Car.H"

8 void PlugInStopLight() {
9 PLUG_IN_SIMOBJ(S_StopLight);

10 PLUG_IN_EVENT(StopLight_Signal);
11 }

12 void S_StopLight::Init() {
13 TimesChanged = 0;
14 SCHEDULE_StopLight_Signal(0.0, SpGetObjHandle());
15 }

16 void S_StopLight::Signal() {
17 P_VAR;
18 P_LV(int, changes);
19 int i;
20 P_BEGIN(2);
21 changes = 0;
22 for (;;) {
23 WAIT(1, 30.0);
24 ++changes;
25 ++TimesChanged;
26 RB_cout << "Event StopLight_Signal local state variable= " << changes
27 << " should be equal to class state variable= "
28 << TimesChanged << endl;
29 for (i = 0; i < 4; ++i) {
30 SpObjHandle objHandle = SpGetObjHandle("S_Car_MGR", i);
31 SCHEDULE_Car_Stop(SpGetTime(), objHandle,
32 (char *) "Red Light On",
33 strlen("Red Light On") + 1);
34 }

35 WAIT_UNTIL(2, SpGetTime() + 30.0);
36 for (i = 0; i < 4; ++i) {
37 SpObjHandle objHandle = SpGetObjHandle("S_Car_MGR", i);
38 SCHEDULE_Car_Go(SpGetTime(), objHandle,
39 (char *) "Green Light On",
40 strlen("Green Light On") + 1);
41 }
42 }
43 P_END;

132 CHAPTER 8. THE PROCESS MODEL

44 }
Example 8.3: Process Model Sleep Stop Light Object Implementation File

In order to execute this example, the main and car simulation objects introduced in Section 6.3 are
needed. Method S Car::Stopwas modified by removing its input argument. The define event macro
used for turning the method into an event was changed to use the 0 argument macro.

8.1.3 Semaphore Process Model Reentry Points

The process model WAIT FOR and WAIT FOR RESOURCE constructs work with classes called sema-
phores. These constructs break out of their waits based on the setting of a semaphore or after the
specified wake-up time has expired. The API for the semaphore process model constructs is:

WAIT_FOR(reentryLabel, semaphore, timeOut);
WAIT_FOR_RESOURCE(reentryLabel, semaphore, amount, timeOut);

Parameter Description
reentryLabel Integer id for the appropriate process model reentry label. For example, if P BEGIN

defines the number of reentry labels to be 3, then there should be 3 process model
reentry constructs whose labels are 1, 2 and 3.

semaphore This parameter must be of typeSpLogicalSem or SpCounterSem for WAIT FOR
and of type SpResourceSem for WAIT FOR RESOURCE. When set, these
semaphores cause the appropriate process model construct to wake-up and continue
processing.

timeOut This parameter specifies when the process model WAIT FOR construct may break out
of its wait and continue processing. If the value for this parameter is greater than 0,
then the WAIT FOR construct waits this amount of time or until the semaphore is set,
whichever is shorter. If the parameter is negative, there is no timeout period (i.e. the
only way to continue processing is for the semaphore to be set). Finally, a value of
0 has no meaning for WAIT FOR (i.e. if 0 is used, then the WAIT FOR construct is
ignored and processing continues).

amount This parameter, only found in WAIT FOR RESOURCE, specifies how much of the
SpResourceSem resource is desired (i.e. being waited for). Once that amount of
resource becomes available or the timeout condition occurs, the process continues.
If the resource amount desired becomes available before the timeout condition, that
amount is subtracted from the resource. Currently, there is no built-in way to deter-
mine which of these conditions caused the process to continue, unless the timeout
condition is negative, in which case continuing implies the resource did become avail-
able.

Table 8.3: Macro WAIT FOR and WAIT FOR RESOURCE API

The classes SpLogicalSem, SpCounterSem, and SpResourceSem are an integral part of the
process model WAIT FOR construct. Semaphores allow other events to interrupt the process model
during its wait period. Process models use the WAIT FOR construct to wait for either:

� A semaphore to be set, which causes processing to continue.

� The timeout time to expire, which causes processing to continue.

When using the WAIT FOR construct, users may specify a maximum simulated time interval to wait for
the semaphore to be set. A description of each semaphore is described in Table 8.4.

8.1. PROCESS MODEL API 133

Semaphore Description
SpLogicalSem This semaphore can have one of two values, true or false. These values are represented

by a non-zero value for true and a zero value for false. Objects of this type may be
used as booleans (or technically, integers) in equations and assignments.

SpCounterSem This semaphore is initialized to a non-negative value. This semaphore returns 0 when
its value is greater than zero and returns 1 once the counter reaches 0. When zero,
processes wait for this semaphore. When non-zero, the processes are released. Objects
of this type may be used as integers in equations and assignments.

SpIntSem and
SpDoubleSem

These semaphores are resources that are initialized to non-negative values (integer for
SpIntSem or double for SpDoubleSem) that represents the amount of resource
available. These semaphores work in conjunction with WAIT FOR RESOURCE,
“amount” parameter. The amount parameter specifies how much of the resource
semaphore is required in order for processing to continue. If the amount requested
is available, then the processing continues.

Table 8.4: List of Semaphores

Logical and counter semaphores contain a method called IsSet. When processing continues after a
WAIT FOR process model construct, users can call the method to determine if the semaphore was set,
or if the process model breakout was due to a timeout. If IsSet() returns � , then the semaphore was
not set and the timeout was reached.

Let us continue enhancing the car and stop light example to show the process model WAIT FOR con-
struct usage with semaphores and timeouts. Example 8.4 shows the new definition file for the car
simulation object. Changes made to the definition file are:

1. Added #include "SpProcSem.H" (line 7).

2. Changed method name from StopCar to Controller (line 15).

3. Deleted the attributes XPos, LastTimeStopped,StopState, Cancel Handle, and
Event Scheduled Time.

4. Added two SpLogicalSem semaphores called Red and Green (line 21 and 22).

5. Changed DEFINE SIMOBJ EVENT 0 ARG(Car StopCar, S Car, StopCar) to
DEFINE SIMOBJ EVENT 0 ARG(Car Controller, S Car, Controller) (line 27).

1 // S_Car.H
2 #ifndef S_Car_H
3 #define S_Car_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"
7 #include "SpProcSem.H"

8 class S_Car : public SpSimObj {
9 public:

10 S_Car() {};
11 virtual ˜S_Car() {};

12 virtual void Init();
13 void Stop();
14 void Go();

134 CHAPTER 8. THE PROCESS MODEL

15 void Controller();

16 protected:
17 private:
18 double Velocity; // Car Velocity
19 RB_int TimesStopped; // Number of times Car
20 // Stopped
21 SpLogicalSem Red; // Set when light is red
22 SpLogicalSem Green; // Set when light is green
23 };

24 DEFINE_SIMOBJ(S_Car, 4, SCATTER);
25 DEFINE_SIMOBJ_EVENT_0_ARG(Car_Stop, S_Car, Stop);
26 DEFINE_SIMOBJ_EVENT_0_ARG(Car_Go, S_Car, Go);
27 DEFINE_SIMOBJ_EVENT_0_ARG(Car_Controller, S_Car, Controller);
28 #endif

Example 8.4: Semaphore Car Object Definition File

The code shown in Example 8.5 shows the changes made to the car implementation file. The following
list explains the changes made in the implementation file, as compared to the event version described in
Section 6.3:

1. Added #include "SpProc.H" (line 6).

2. Replaced PLUG IN EVENT(Car StopCar)with PLUG IN EVENT(Car Controller)
(line 11).

3. Deleted the initialization attributes XPos, LastTimeStopped,StopState,
Cancel Handle, and Event Scheduled Time.

4. Cleared semaphore attributes Red and Green (line 18 and 19).

5. Replaced method Stop with code that sets semaphore Red (line 22 though 24).

6. Replaced method Go with code that sets semaphore Green (line 25 though 27).

7. Renamed method StopCar to Controller (line 28).

1 // S_Car.C
2 #include "SpGlobalFunctions.H"
3 #include "SpMainPlugIn.H"
4 #include "RB_ostream.H"
5 #include "SpSchedule.H"
6 #include "SpProc.H"

7 #include "S_Car.H"

8 static int QuarterMile = 5280 / 4; // In feet

9 void PlugInCars() {
10 PLUG_IN_SIMOBJ(S_Car);
11 PLUG_IN_EVENT(Car_Controller);
12 PLUG_IN_EVENT(Car_Go);
13 PLUG_IN_EVENT(Car_Stop);
14 }

8.1. PROCESS MODEL API 135

15 void S_Car::Init() {
16 Velocity = (SpGetSimObjGlobalId() * 10.0 + 11.0) / 3600 * 5280;
17 TimesStopped = 0;
18 Red.Unset();
19 Green.Unset();

20 SCHEDULE_Car_Controller(0.0, SpGetObjHandle());
21 }

22 void S_Car::Stop() {
23 Red.Set();
24 }

25 void S_Car::Go() {
26 Green.Set();
27 }

28 void S_Car::Controller() {
29 P_VAR;

30 P_LV(double, XPos);
31 P_LV(double, LastTimeStopped);
32 P_LV(int, StopState);
33 double currentXPos;
34 int nextStopLightPos;
35 double stopLightArrivalTime;

36 P_BEGIN(2);

37 XPos = 0.0;
38 LastTimeStopped = 0.0;
39 StopState = 1;
40 for (;;) {
41 Red.Unset();
42 WAIT_FOR(1, Red, -1.0);
43 /*
44 * Light turned Red. Calculate the distance the car is from the
45 * stop light and the amount of time that it will take for the
46 * car to arrive at the light.
47 */
48 if (StopState == 0) {
49 LastTimeStopped = SpGetTime() - 30.0;
50 StopState = 1;
51 }
52 currentXPos =
53 (XPos + Velocity * (SpGetTime() - LastTimeStopped));
54 nextStopLightPos =
55 (int) ((((int) currentXPos) / QuarterMile + 1) * QuarterMile);
56 stopLightArrivalTime =
57 (nextStopLightPos - currentXPos) / Velocity;
58 Green.Unset();
59 WAIT_FOR(2, Green, stopLightArrivalTime);
60 /*
61 * Either the light has turned Green (Car never made it to the
62 * light before the light turned red), or the WAIT_FOR

136 CHAPTER 8. THE PROCESS MODEL

63 * timed out which indicates we have arrived at the stop light
64 * and the light was red so we must stop.
65 */
66 if (Green.IsSet() == 0) {
67 StopState = 0;
68 ++TimesStopped;
69 XPos = XPos + (Velocity * (SpGetTime() - LastTimeStopped));
70 LastTimeStopped = SpGetTime();
71 RB_cout << "Car #" << SpGetSimObjGlobalId()
72 << " is stopping at " << SpGetTime()
73 << " at X coordinate of " << XPos
74 << ". Car has stopped " << TimesStopped << " times."
75 << " LastTimeStopped= " << LastTimeStopped
76 << endl;
77 }
78 else {
79 /* Light is green. Therefore do not stop the car */
80 }
81 }
82 P_END;
83 }

Example 8.5: Semaphore Car Object Implementation File

Method Controller now contains the entire algorithm for handling the car position and state. Lines
30 though 35 define all of the variables necessary for this method. Notice that the car simulation object
state variables XPos, LastTimeStopped, and StopState, which were deleted from the simulation
object definition, are now process model local state variables (this was not required, but provided a nice
example for local state variables). Line 41 clears the Red semaphore, before entering the WAIT FOR
construct. On line 42 we enter the process model WAIT FOR construct waiting for semaphore Red to
be set. Since the timeout defined here is negative, processing will not continue until the semaphore is
set.

Once the Red semaphore is set, processing continues on line 48. If StopState is equal to 0, then
the car had been stopped at a red stop light, so variable LastTimeStopped is set to the time that the
light last turned green. This keeps this example consistent with the previous car and stop light example
simulations. If the stop light turned red and the car was not stopped at the stop light, then the distance
from the light is calculated along with the time that it will take for the car to arrive at the next stop light
(lines 52 through 57). This time is used for the timeout time in the process model WAIT FOR construct.
Line 58 clears the Green semaphore.

On line 59, the process model WAIT FOR construct is entered. The car will arrive at the stop light at
the time calculated previously. When either the Green semaphore is set or the timeout value reached,
processing will continue on line 66. At this time, a check is done to determine if the semaphore was set
(light turned green before the car arrived at the red light), or if the timeout was reached (indicates the
car arrived at the red light and needs to stop). If the car arrived at the light and the light was still red,
then lines 66 though 77 update the car’s position.

Although the output from this example and the car and stop light example described in Section 6.3 are
identical, there are interesting differences. The car and stop light simulation modeled in Chapter 6 was
implemented using only events. The model code was spread out over three different events, which can
add to model complexity. The process model example still contained three events, but all of the logic
required to model the car’s position and state is contained in one event. The use of the process model
can simplify model logic at times.

8.1. PROCESS MODEL API 137

8.1.4 Ask Process Model Reentry Points

The third and last type of process model construct is the ASK. This process model construct allows
users to send data, via input parameters, to another simulation object method, regardless of what node
the simulation object resides on. The receiving simulation object responds to the sender via return output
parameters. The ASK and the response to the ASK are implemented in two separate events.

The process model ASK construct communicates with (i.e. asks) a user-defined event method written
on any simulation object. To employ the ASK in a process, the user must first use a macro that turns a
method into an event that can be used by the process model ASK construct. The API for this event is
very similar to previously discussed event definition macros and is shown below:

DEFINE_ASK_EVENT_<numParam>_ARG(askEventName,
className,
methodName,
[paramList])

Parameter Description
numParam The number of parameters used in the method being converted into an ask

event (valid range is 0 to 8).
askEventName Any user-defined string representing the name of the event (legal characters

for string names include alphanumeric and underscore characters).
className The name of the simulation object class that contains the method that is to be

turned into an ask event.
methodName The name of the method that is to be turned into an ask event.
paramList A comma delimited list of the parameter types found in the method.

Table 8.5: Macro DEFINE ASK EVENT API

The ASK response method (i.e. the method defined with the macro shown above) is invoked by using
the process model ASK construct. The API for this macro is as shown:

ASK_<numParam>_ARG(reentryLabel,
simTime,
objHandle,
askEventName,
[paramList],
data,
dataBytes)

Parameter Description
numParam The number of parameters used in the ASK event that is being invoked by this call

(valid range is 0 to 8).
reentryLabel Integer id for the appropriate process model reentry label. For example, if P BEGIN

defines the number of reentry labels to be 3, then there should be 3 process model
reentry constructs whose labels are 1, 2, and 3.

simTime This parameter specifies the simulation time at which the asked event will be executed.
The further this time is ahead of GVT, the less likely that the object that the event
is scheduled on will be rolled back. However, the response that is returned by the
asked event will be scheduled at current GVT. Therefore, this object will be rolled
back (provided there are additional events on this object). This side effect may be
eliminated or reduced in future.

138 CHAPTER 8. THE PROCESS MODEL

Parameter Description
objHandle Object handle of the object for which the asked event is scheduled.
askEventName Any user-defined string representing the name of the event. (legal characters for string

names include alphanumeric and underscore characters).
paramList This is a list of parameters, representing the arguments to pass to the ask event method.
data This parameter allows users to send additional data to the asked event for further

processing. This data is sent in the form of a char buffer. If this parameter is not
needed, set it to (char *) NULL.

dataBytes Number of bytes sent in the data parameter (set to 0 if data is NULL).

Table 8.6: Macro ASK API

Let us now show how to use the process model ASK construct by adding a Global Positioning System
(GPS) object to the car and stop light example. The GPS object will simply define an ASK event that
will return the input position to the caller. The code shown in Example 8.6 shows the definition file
for the GPS object. Specifically, lines 16 and 17 use the DEFINE ASK EVENT macro to turn method
S GPS::Position into an ASK event.

1 // S_GPS.H
2 #ifndef S_GPS_H
3 #define S_GPS_H

4 #include "SpSimObj.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"

7 class S_GPS : public SpSimObj {
8 public:
9 S_GPS() {};

10 virtual ˜S_GPS() {};

11 void Position(double inPos, double& outPos);

12 protected:
13 private:
14 };

15 DEFINE_SIMOBJ(S_GPS, 1, SCATTER);
16 DEFINE_ASK_EVENT_2_ARG(Gps_Ask_For_Position, S_GPS, Position,
17 double, double);
18 #endif

Example 8.6: Ask GPS Object Definition File

The code shown in Example 8.7 shows the implementation file for the GPS object. Lines 4 through 7
define the plug-ins necessary for the GPS object. This function must be called from main with the other
plug-ins. This is a simple object that returns the input position supplied by the caller (lines 8 through
10).

1 // S_GPS.C
2 #include "SpMainPlugIn.H"

3 #include "S_GPS.H"

4 void PlugInGPS() {

8.1. PROCESS MODEL API 139

5 PLUG_IN_SIMOBJ(S_GPS);
6 PLUG_IN_EVENT(Gps_Ask_For_Position);
7 }

8 void S_GPS::Position(double inPos, double& outPos) {
9 outPos = inPos;

10 }
Example 8.7: Ask GPS Object Implementation File

The final step for this example is to have the car simulation object ask the GPS object for its position.
In order to accomplish this, the code shown in Example 8.5 is modified as follows, which will result in
the code shown in Example 8.8:

1. Add #include "S GPS.H" below line 7.

2. Add double askPosition; below line 35.

3. Change line 36 from P BEGIN(2) to P BEGIN(3).

4. Add the following below line 70.

askPosition = -1.0;
ASK_2_ARG(3, SpGetTime(), SpGetObjHandle("S_GPS_MGR",

"S_GPS_MGR 0"),
Gps_Ask_For_Position, XPos, askPosition,
(char*) NULL, 0);

5. Add << ", askPosition= " << askPosition below line 75.

// S_Car.C
#include "SpGlobalFunctions.H"
#include "SpMainPlugIn.H"
#include "RB_ostream.H"
#include "SpSchedule.H"
#include "SpProc.H"

#include "S_Car.H"
#include "S_GPS.H"

static int QuarterMile = 5280 / 4; // In feet

void PlugInCars() {
PLUG_IN_SIMOBJ(S_Car);
PLUG_IN_EVENT(Car_Controller);
PLUG_IN_EVENT(Car_Go);
PLUG_IN_EVENT(Car_Stop);

}

void S_Car::Init() {
Velocity = (SpGetSimObjGlobalId() * 10.0 + 11.0) / 3600 * 5280;
TimesStopped = 0;
Red.Unset();
Green.Unset();

SCHEDULE_Car_Controller(0.0, SpGetObjHandle());

140 CHAPTER 8. THE PROCESS MODEL

}

void S_Car::Stop() {
Red.Set();

}

void S_Car::Go() {
Green.Set();

}

void S_Car::Controller() {
P_VAR;

P_LV(double, XPos);
P_LV(double, LastTimeStopped);
P_LV(int, StopState);
double currentXPos;
int nextStopLightPos;
double stopLightArrivalTime;
double askPosition;

P_BEGIN(3);

XPos = 0.0;
LastTimeStopped = 0.0;
StopState = 1;
for (;;) {
Red.Unset();
WAIT_FOR(1, Red, -1.0);
/*
* Light turned Red. Calculate the distance the car is from the
* stop light and the amount of time that it will take for the
* car to arrive at the light.
*/

if (StopState == 0) {
LastTimeStopped = SpGetTime() - 30.0;
StopState = 1;

}
currentXPos =

(XPos + Velocity * (SpGetTime() - LastTimeStopped));
nextStopLightPos =

(int) ((((int) currentXPos) / QuarterMile + 1) * QuarterMile);
stopLightArrivalTime =

(nextStopLightPos - currentXPos) / Velocity;
Green.Unset();
WAIT_FOR(2, Green, stopLightArrivalTime);
/*
* Either the light has turned Green (Car never made it to the
* light before the car arrived at the light), or the WAIT_FOR
* timed out which indicates we have arrived at the stop light
* and the light was red so we must stop.
*/

if (Green.IsSet() == 0) {
StopState = 0;
++TimesStopped;
XPos = XPos + (Velocity * (SpGetTime() - LastTimeStopped));

8.2. TIPS, TRICKS, AND POTHOLES 141

LastTimeStopped = SpGetTime();
askPosition = -1.0;
ASK_2_ARG(3, SpGetTime(),

SpGetObjHandle("S_GPS_MGR", "S_GPS_MGR 0"),
Gps_Ask_For_Position, XPos, askPosition,
(char *) NULL, 0);

RB_cout << "Car #" << SpGetSimObjGlobalId()
<< " is stopping at " << SpGetTime()
<< " at X coordinate of " << XPos
<< ". Car has stopped " << TimesStopped << " times."
<< " LastTimeStopped= " << LastTimeStopped
<< ", askPosition= " << askPosition
<< endl;

}
else {

/* Light is green. Therefore do not stop the car */
}

}
P_END;

}
Example 8.8: Ask Car Object Implementation File

When this example is executed, the cars “X coordinate” and “askPosition” will both output the same
value.

8.2 Tips, Tricks, and Potholes

� Use the process model construct WAIT, since they are self-scheduled events that cannot cause
rollbacks.

� Wherever possible, use semaphores to interrupt processes, rather than using “polling” or “time
stepping” events. If a process cannot determine the next simulated time at which it needs to
perform a calculation, have it WAIT FOR a semaphore and let another event set that semaphore at
the appropriate time. This alleviates the process from having to periodically “poll” the simulation
to check if it needs to act.

� Schedule ask events as far in the future as possible in order to reduce rollbacks (this goes for all
types of events as well).

� If asks are used to retrieve part or all of another simulation object’s state, consider the trade-offs
between using asks versus using the object proxy system to access the other simulation object’s
state. Asks use a “pull” method for accessing another simulation object’s state, while proxies
use a “push” method. From a performance perspective, use the following rule to decide between
these two strategies: If simulation object A’s data is updated more often than simulation object B
accesses it, use asks when the simulation object B needs to access simulation object A’s data. If
simulation object B needs to access simulation object A data more often than simulation object A
updates that data, use object proxies on simulation object B to access simulation object A’s data.

� Use the process model WAIT FOR construct to implement interruptible waits.

� Multiple DEFINEmacros can be used on a common simulation object method. Thus, one method
can be used as an ask event, a point-to-point event, a handler method, or any combination of these.

142 CHAPTER 8. THE PROCESS MODEL

� Care must be taken when using P LV to define used variables if the type specified contains
pointers. The following code is incorrect because SpList contains pointers that point to non-
rollbackable data. If this process is reentered, then the variable list will not be restored cor-
rectly:

P_LV(SpList, list);

That code could be corrected as follows:

P_LV(RB_SpList*, list);
...
list = RB_NEW_RB_SpList();

As a second example, the following is correct, since SpSimTime has no pointers:

P_LV(SpSimTime, time);

Part IV

Object Proxies

143

Chapter 9

Using Object Proxies

9.1 Introduction

In the previous chapters, simulation objects and different types of events have been introduced. If data
needs to be shared between different simulation objects, then this data has to be sent in an event. While
this could be done, this would be a tedious process. SPEEDES has a built-in capability called “Object
Proxies” that allows simulation objects to “see” other simulation object’s state data. It does this by
automatically mirroring the public part of the state of the simulation object. That way, a simulation
object holding a proxy can see the attributes of object represented by that proxy and base its processing
on that information. For example, a radar simulation object, might have an airplane proxy containing the
plane’s position. This information could be used by the radar simulation object to change its behavior
based on whether or not the airplane is within its radar range.

In the case of a traditional, single CPU simulation, the object proxy mechanism probably would not be
particularly important, because all information is locally available. However, by using object proxies
on a multiple CPU simulation, simulation objects gain read access to other simulation object’s proxies,
regardless of simulation object CPU (i.e. node) location. The proxy mechanism makes this transparent
to the requesting simulation object. From the simulation object perspective, it is just as if the simulation
is running on one node and the simulation object is reading global data from another simulation object,
even though this object’s physical location is on a different CPU (or computer, for that matter). Without
the proxy, an object would have to:

1. Learn of the existence of a certain type of simulation object.

2. Determine node location of simulation object.

3. Query the node containing the simulation object asking for the current state of the desired simu-
lation object.

4. Wait for the reply message to arrive.

Object proxies eliminate this process by automatically “pushing” updates to all proxy holders when
the public state of the object is changed (and only when there are changes). Of course, “pushing”
updates, rather than having simulation objects “pull” them as needed, involves a trade-off, since updates
could be sent to simulation objects that do not actually need them. However, since proxies are only
pushed to simulation objects that have previously expressed an interest for its data (i.e subscription),
then this trade-off should be favorable. Also, the way SPEEDES implements proxies minimizes message

145

146 CHAPTER 9. USING OBJECT PROXIES

traffic generated by sending proxy updates. Should this prove inadequate, SPEEDES provides additional
filtering through its DDM services (see Chapter 11). Finally, the simplification to the code associated
with proxies is in itself a big advantage when compared to the code users would need to write when not
using the built-in proxy services.

9.2 Essential SPEEDES Object Proxy Terminology

High Level Architecture (HLA) Simulation Object: An HLA simulation object is defined to be a sim-
ulation object that inherits from class S SpHLA. This class inherits from class SpSimObj. Therefore,
it has all of the functionality previously discussed. In addition, new functionality has beed added which
allows users read access to other HLA simulation object state variables.

Attribute: The elements of a simulation object’s state that are to be made public for subscribers are
called its attributes. For example, a ship simulation object could have a name, id number, position,
course, and speed attributes (among others). Note that a simulation object’s attributes are just the part
of the object that it wishes to advertise, and not necessarily the entire state of the simulation object. In a
typical case, the implementation of a simulation object class will have many internal data members that
are not publicly announced, hence not part of its proxy.

Publish: When a simulation object publishes itself, it announces that it is making part of its state
publicly readable to other simulation objects that are interested in this information.

Subscribe: This is the complement of publish, except done with respect to object classes. That is, when
a simulation object subscribes to a class, it is asking SPEEDES to inform it of the existence of all such
simulation objects instances, and to provide updates on the state of these simulation objects.

Discover: When a simulation object is created, all subscribers to that class are informed of the existence
of the new simulation object. This is called discovering a simulation object. In SPEEDES, the discovery
of a simulation object is implicit in the delivery of a proxy to the subscriber. The delivered proxy
corresponds to the newly discovered simulation object.

Reflect: When a simulation object modifies one or more of its attributes, then subscribers to that class
are informed of the new attribute values.

Declaration Management (DM): This term refers to the basic proxy algorithm that matches publishers
and subscribers. Proxies representing a given class are delivered to all subscribers of that class (or a
superclass). Subscribers receive all attribute updates.

Data Distribution Management (DDM): This term refers to a more advanced mechanism than that
of DM above, in that DDM filters out attribute updates that are not needed or requested. For example,
a radar object would not need to know about the current position of a plane located 8000 miles away
and the use of DDM would allow automatic filtering of these out of range objects (see Chapter 11 for
additional detail on DDM).

9.3 Object Proxy Usage Overview

The purpose of this section is to outline the procedure required to use proxies in SPEEDES. This will
provide a context within which to understand the more detailed instructions in later sections. The fol-
lowing four steps describe the essence of proxy usage:

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 147

1. Define the simulation object’s public attributes in the required file called Objects.par. Typ-
ically, each class is specified by a name and a list of its attribute names, along with a type des-
ignation for each attribute. Also, classes may specify desired class subscriptions at this point.
The advantage of this is that the subscriptions can be changed via a text file (no-recompilation of
source code).

2. Write classes corresponding to the simulation object classes defined in Objects.par. This
means that the classes contain the attributes specified in Objects.par. SPEEDES provides
special attribute classes for this purpose. Also, these simulation objects must inherit from a built-
in SPEEDES class called S SpHLA (hence the name “HLA” simulation object), which allows the
proxy system to function.

3. Publish the simulation object instances. This occurs automatically if step 2 has been done cor-
rectly. To accomplish this, the simulation object’s constructor must “declare” its name (i.e. this
name must be identical to that found in Objects.par) and “define” its attributes. These two
operations hook the simulation object instance and its associated attributes into the proxy system.

When an HLA simulation object is constructed, SPEEDES sends a proxy to all subscribers of the
simulation object’s class. Also, when attributes are altered, SPEEDES keeps track of the changes
and sends update messages to proxy holders so that the proxies mirrors the new attribute values.
This automatic update mechanism is performed by the special attribute classes mentioned in step 2
above.

4. Subscribe to simulation object classes. SPEEDES will do this automatically if the subscription
classes have been listed in the object class definition in Objects.par (step 1 above). For
example, if the Objects.par had defined classes called Ship, Submarine, and Airplane and
the Ship was subscribing to Submarines, then each Ship simulation object instance would receive
a proxy of each Submarine. Likewise, since the Ship did not subscribe to the Airplane class,
then it will not receive any Airplane proxies. SPEEDES provides mechanisms for examining the
attributes contained in the proxies. Using these mechanisms, a subscriber can “see” the state of
remote objects, and base its actions on that information.

Also, there are methods available for manually subscribing and unsubscribing to object classes.
This allows greater control over subscriptions than the class-wide method described above. That
is, individual objects can decide whether to subscribe to a class and for how long.

9.4 Object Proxy Usage Detailed Description

The following sections elaborate on the four basic steps outlined above. The intent is to provide enough
detail to begin using object proxies right away. Although there is some overlap, the first several sec-
tions deal primarily with the publisher’s side of things. That is, the process of defining public object
classes and creating instances that subscribers can see. The later section discuss the details of how a
subscriber discovers objects, maintains lists of proxies, and how the proxies themselves can be queried
for information.

9.4.1 Defining Object Classes in File Objects.par

SPEEDES reads in the Objects.par. file during simulation initialization. This allows SPEEDES
to know how to build object proxies matching the objects that will be published and subscribed to
in the simulation. Therefore, simulation object publications and subscriptions can only be made for

148 CHAPTER 9. USING OBJECT PROXIES

classes defined in Objects.par. Figure 9.1 below shows a example Objects.par file contain-
ing the definition of five simulation object classes named Entity, FixedEntity, GroundRadar,
Airplane, and Airport. The example shows several different types of features and attribute types
available for use when designing the Objects.par file.

// The characters "//" indicate the start of a comment
// Base class for all objects
Entity {
define int EntityID // Proxies can contain integers
define string EntityName // Proxies can contain strings
define logical Alive // Proxies can contain booleans

}

// Base class for immobile objects
FixedEntity {
reference INHERIT Entity // Inherits attributes from Entity
define position ObjLocation // Fixed position declaration

}

// Stationary radar class
GroundRadar {
reference INHERIT FixedEntity // GroundRadar is a fixed entity
reference SUBSCRIBE Airplane // GroundRadar "subscribes" to

// Airplanes
define double ScanTime // Proxies can contain doubles

}

// Generic airplane class
Airplane {
reference INHERIT Entity // Airplane is an entity
define dynamic_position Position // Dynamic position declaration

}

Airport {
reference INHERIT FixedEntity // Airport is a fixed entity
define object MyRadar // Airport has a radar
define list ListOfPlanes // Airport maintains a list

// of airplanes
define int HourlyFlights[24] // Array of 24 integers

}

Figure 9.1: Objects.par Example File

The first class definition described is for Entity. The syntax is similar to that of a C++ class. It consists
of a class name followed by the class description enclosed in braces. The Entity class description
contains a list of three attribute declarations. This class definition tells SPEEDES that an Entity
proxy consists of an int attribute called EntityID, a string attribute called EntityName, and a
logical attribute called Alive (the logical type is like the C++ bool type and the string type
is similar to a char array). SPEEDES provides many attribute types to choose from when designing
the Objects.par file and HLA simulation objects (see Chapter 10). Note that C++ style comments
are allowed (i.e. all text after the double slash is ignored).

So far, all that has been done is to define a class called Entity which has three attributes called
EntityID (an integer), EntityName (a string), and Alive (a boolean). Class FixedEntity
illustrates how a class can inherit from another class and add addition attributes to its definition. To have

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 149

an HLA class inherit from another HLA class, add the keywords reference INHERIT to that class
definition, as shown below:

reference INHERIT className

The className specified must match exactly (i.e. a case-sensitive string comparison) the name of a
class previously defined in the Objects.par file. For this example, this means that FixedEntity
contains the three attributes specified in Entity. The next line in the file adds an additional attribute
called ObjLocation to FixedEntity. The position type is a SPEEDES attribute type denoting
a fixed location (as opposed to a dynamic position attribute, which describes the location of a moving
object over time). A position attribute can be specified in a variety of coordinate systems (more about
this in Section 10.2.4).

Next, examine the GroundRadar declaration. This object inherits from FixedEntity. Therefore,
it contains all the attributes that a FixedEntity does. The next line illustrates how class definitions
can statically subscribe to other objects by using the following construct:

reference SUBSCRIBE className

In this case, reference SUBSCRIBE indicates that all GroundRadar simulation objects are sub-
scribed to Airplane simulation objects. Therefore, a proxy for each Airplane instance will be
delivered to each GroundRadar simulation object. Notice, that the Airplane class definition has
not been defined yet. Definition of the class objects prior to subscription is not a requirement when
creating an Objects.par file. Once again, the className specified must match, exactly, the name
of a class defined somewhere in Objects.par file. Finally, the GroundRadar declaration adds
another attribute, ScanTime, which is a double precision floating point number.

The next object definition Airplane, inherits from Entity. Airplane adds one attribute called
Position, which is of type dynamic position. Attributes of this type contain a function, � � � � ,
that returns that position (e.g. latitude, longitude, altitude) at a given time (i.e. position = � ��������� �). How
this function is specified will be discussed in greater detail in Section 10.2.4.

The idea of a dynamic position is that the subscribing object can use this attribute to figure the current
location of an Airplane by itself, and therefore, does not need to get a series of location updates. This
works as long as the Airplane sticks to its scripted motion plan. If it deviates from the plan, it sends
out an update of the Position attribute so that subscribers obtain a new motion function, 	 � � � , that
reflects the new motion plan. There are many built-in dynamic attribute types available in SPEEDES,
such as the DYNAMIC DOUBLE ATTRIBUTE, which specifies a double precision number that varies
over time, and the DYNAMIC INT ATTRIBUTE, which does likewise for an integer. Of course, you
can design your own dynamic types if the built-in SPEEDES types are inadequate.

The final object declaration is the Airport, which inherits from FixedEntity. There are a few
things to note, beginning with the first attribute declaration, define object MyRadar. The ob-
ject type tells SPEEDES that the attribute will correspond to one of the classes defined in Ob-
jects.par. In this case, the attribute will represent a GroundRadar, hence the name MyRadar.
This is all the information required by SPEEDES to set up the object proxies. Therefore, it is unnec-
essary to specify the exact object type. The object type attribute is essentially a recursive definition
saying that this attribute will itself be represented by a proxy. In the simulation object corresponding to
Airport, there will be a data member that inherits from OBJECT ATTRIBUTE, one of the attribute
types provided by SPEEDES. A description on how to set this up is discussed later.

150 CHAPTER 9. USING OBJECT PROXIES

The next attribute, ListOfPlanes, is of type list. This type allows the user to accumulate an
ordered collection of objects. That is, one can add and remove items to create sequences of arbitrary
length, but each list item must inherit from OBJECT ATTRIBUTE. In this case, the intent is to
keep track of all of the Airplane objects at the airport, hence it is called ListOfAirplanes.
Section 10.1.5 will describe in greater detail how to use this attribute.

The final attribute declaration, define int HourlyFlights[24], is shown as an example of
how to declare an array attribute. HourlyFlights is an array of 24 integers (indexed 0 to 23), that
keeps track of the number of flights departing the airport during each hour of the day. Any of the attribute
types can be made into an array simply by appending [N] onto the end of the attribute name (where N
is a positive integer). For example, the following line defines Vec to be an array of 100 doubles:

define double Vec[100]

As another example to define an array of twelve strings, write:

define string Months[12]

The following rules summarize the syntax of the Objects.par file. Although a somewhat informal
notation is used, this should be sufficient to specify the format without introducing significant ambiguity.
The basic notation rules are:

� The only meta-character is the asterisk (“*”) which means “zero or more occurrences of the
immediately preceding item”.

� All text in Courier font (e.g. define) is to be used literally.

� Items in italics represent text patterns that are described in one of the rules, and should be replaced
by a suitable instance of the pattern.

Objects.par file rules:

1. An Objects.par file consists of a list of zero or more ObjectClassDefinitions:

ObjectClassDefinition*

2. ObjectClassDefinition defines an object class, and is in the following form:

ObjectClassName
�

ClassSpecification
�

3. ObjectClassName is a case-sensitive string consisting of one or more allowable characters, begin-
ning with a letter (not a numeral or an underscore). Allowable characters include all the letters
(upper and lower case), the numerals 0 through 9, and the underscore character, “ ”.

4. ClassSpecification consists of a series of the following lines, in the order shown, where Inheri-
tanceLine is optional (it is only used if the class inherits from another class in Objects.par):

InheritanceLine
SubscriptionLine*
AttributeSpecificationLine*

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 151

(a) InheritanceLine is a line in the following form:

reference INHERITObjectClassName

(b) SubscriptionLine is a line in the following form:

reference SUBSCRIBEObjectClassName

(c) AttributeSpecificationLine is a line in one of the following two forms (where ArraySize is an
integer greater than 0):

define AttributeType AttributeName

define AttributeType AttributeName[ArraySize]

Where AttributeType is one of the following: int, logical, double, string, ob-
ject, list,binary buffer,position,dynamic int, dynamic logical,dy-
namic double, or dynamic position.

9.4.2 Implementing Object Definitions Contained in Objects.par

After the object classes have been defined in file Objects.par, then the appropriate SPEEDES con-
structs that match these object classes have to be implemented. The simulation classes “match” in the
sense that they contain all the attributes defined in the Objects.par and are of the correct type. The
easiest way to describe this further is through the use of examples.

Consider the definition for class Entity shown in Figure 9.1 and repeated below for convenience.

// Base class for all objects
Entity {
define int EntityID // Proxies can contain integers
define string EntityName // Proxies can contain strings
define logical Alive // Proxies can contain booleans

}

The code shown in Example 9.1 shows the implementation for this simulation object.

// S_Entity.H
#ifndef S_Entity_H
#define S_Entity_H

#include "S_SpHLA.H"

class S_Entity : public S_SpHLA {
public:
S_Entity(char* objClassName = "Entity") :

S_SpHLA(objClassName) {}

virtual ˜S_Entity() {}

void Init() {
DEFINE_ATTRIBUTE(EntityID, "EntityID");
DEFINE_ATTRIBUTE(EntityName, "EntityName");
DEFINE_ATTRIBUTE(Alive, "Alive");
SetEntityID(-1);
SetEntityName(NULL);
SetAliveStatus(1);

}

152 CHAPTER 9. USING OBJECT PROXIES

void SetEntityID(int id) {EntityID = id;}
int GetEntityID() {return EntityID;}

void SetEntityName(char* n) {EntityName = n;}
const char* GetEntityName() {return EntityName;}

void SetAliveStatus(int objIsAlive) {
if (objIsAlive != 0) {

Alive = LOGICAL_TRUE;
}
else {

Alive = LOGICAL_FALSE;
}

}

int ObjIsAlive() {
return (Alive == LOGICAL_TRUE);

}

private:
INT_ATTRIBUTE EntityID; // Unique object id
STRING_ATTRIBUTE EntityName; // Object name
LOGICAL_ATTRIBUTE Alive; // Object Status

};
#endif

Example 9.1: Entity Class Definition

This example has several items of interest, including:

1. The class inherits from S SpHLA. This enables simulation object instances to participate in the
proxy system. Objects that inherit from SpSimObj do not participate in the proxy system.

2. The name of the class (i.e. S Entity) does not need to be the same as the class name in the
Objects.par file. The S Entity constructor takes a char * argument, which it passes on
to the S SpHLA constructor. The name of this argument has to be defined in a class listed in
Objects.par. The S SpHLA constructor publishes the simulation object instance allowing
subscribers to discover it. This concept should be followed through in derived classes such as
S FixedEntity. That is, the class constructor should take a char * argument and call the
constructor of the parent class. This will result in code similar to what is shown in Example 9.2.

Notice that the constructor for S Entity has a default argument (i.e. objClassName = "En-
tity"). This is necessary for the DEFINE SIMOBJ macros to work. The simulation define
macros produce code that creates objects using zero-argument constructors. Therefore, a default
argument is essential for using HLA objects with the DEFINE SIMOBJ macros.

3. The class contains attributes that correspond to the attributes listed in the Objects.par defini-
tion. Specifically, the data member INT ATTRIBUTE EntityID corresponds to EntityID,
data member STRING ATTRIBUTE EntityName corresponds to EntityName, and LOG-
ICAL ATTRIBUTE Alive corresponds to Alive. As with the class name, the data members
do not need to have the same name as the attributes listed in Objects.par.

The types INT ATTRIBUTE, STRING ATTRIBUTE, and LOGICAL ATTRIBUTE are three of
the built-in attribute classes provided by SPEEDES. Some of these attribute classes have been
designed to mimic C++ types. For example, an INT ATTRIBUTE x can be used in expressions
just like an ordinary integer (e.g. int x = y * 3 + 27). The reason they must be used

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 153

is that they automate the sending of updates to subscribers. Any change to INT ATTRIBUTE
x (e.g. x = y + 14, x--, ++x, etc.) will cause an update message to be sent to all
subscribers, altering their proxies to reflect the new value assigned to x. The way this works is by
overloading the assignment operators so that they cause updates to be distributed (in addition to
performing a normal assignment). All of the built-in proxy attributes are shown and described in
Chapter 10.

4. The Init method calls macro DEFINE ATTRIBUTE for each attribute definition. There must
be one DEFINE ATTRIBUTE call for each attribute in the class. This macro’s first argument
is the data member and its second argument is the corresponding attribute name from the Ob-
jects.par. Once again, the name used in the second argument must be identical to the name
found in the Objects.par file. This macro call is needed to associate the data member with
the attribute name, and to hook it into the proxy system.

When the subscriber receives the proxy representing an instance of S Entity, the current at-
tribute values are extracted using the attribute names given to DEFINE ATTRIBUTE. The proxy
has a method called Find that returns a pointer to the attribute with the given name:

INT_ATTRIBUTE* EntityId = (INT_ATTRIBUTE *)
EntityProxy.Find("EntityID");

// S_FixedEntity.H
#ifndef S_FixedEntity_H
#define S_FixedEntity_H

#include S_Entity.H

class S_FixedEntity : public S_Entity {
public:
S_FixedEntity(char* objClassName = "FixedEntity") :

S_Entity(objClassName) {}
virtual ˜S_FixedEntity() {}

void Init() {
DEFINE_ATTRIBUTE(ObjLocation, "ObjLocation");

}

private:
POSITION_ATTRIBUTE_TYPE ObjLocation;

}
#endif

Example 9.2: Fixed Entity Class Definition

9.4.3 Publishing Objects

HLA objects, by default, are self-publishing. Users need not do anything out of the ordinary to have
simulation objects publish themselves for properly implemented HLA objects.

The three basis steps to follow when implementing HLA simulation objects are:

1. Define the class and its public attributes in the Objects.par file.

154 CHAPTER 9. USING OBJECT PROXIES

2. Implement a class that inherits from class S SpHLA. Its constructor should pass the class name
defined in Objects.par to the S SpHLA constructor. This announces the existence of the
instance to the proxy system. If the macro DEFINE SIMOBJ is called, make sure that the class
contains a default constructor (i.e., a constructor which can be called without passing arguments).

3. Use the SPEEDES-provided attribute classes when implementing the HLA simulation objects.
These classes are rollbackable and automate attribute updates. In the simulation object’s Init
method, use the DEFINE ATTRIBUTEmacro on each attribute. All of the built-in attribute types
available in the SPEEDES framework are described in Chapter 10.

9.4.4 Subscribing to Object Classes

HLA simulation objects can “subscribe” to other HLA simulation objects. Any subscriptions to an HLA
simulation object causes SPEEDES to give all of the published attributes to the subscriber. There are
two methods which HLA simulation objects can use to make subscriptions

The easiest way to subscribe to a class is to add reference SUBSCRIBE to the appropriate class(es)
definition in Objects.par. The example shown below shows the GroundRadar subscribing to all
Airplane simulation objects. Using a SUBSCRIBE line means that every instance of a Ground-
Radar object will automatically subscribe to the Airplane class.

Airplane {
define double Speed
define int IntVec[10]

}

GroundRadar {
reference SUBSCRIBE Airplane // <-- SUBSCRIBE line
define double ScanTime

}

Setting the subscriptions via Objects.par allows users to configure the inter-simulation object sub-
scription requirements at simulation initialization. Subscriptions can be created or removed during run
time by using the following methods found on class S SpHLA.

int Subscribe(char* objClass)
int UnSubscribe(char* objClass)

Therefore, by using these methods at the appropriate time, a user can control “when” a simulation object
starts or stops subscribing to another class of objects.

Let us look at the details of finding a proxy and examining it. The subscriber class must also in-
herit from S SpHLA, just like the publisher. From the S SpHLA class, the subscriber gains access to
method GetRemoteObjectProxies. This method, which takes no arguments, returns a pointer to
an RB queue, which is a linked list (see the “SPEEDES API Reference Manual” for additional details
regarding RB queues). The items in the RB queue are pointers to F SpProxyItem, a container
holding a proxy pointer (SpObjProxy *). The following example illustrates how to find a proxy on
the proxy list.

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 155

// Return proxy of Airplane whose global id is given. If
// not found, return NULL.

SpObjProxy* S_GroundRadar::GetPlaneProxy(int globalId) {
int i;
// Get list of delivered Airplane proxies
RB_queue* planeProxies = GetRemoteObjectProxies();

int numProxies = planeProxies->get_length(); // Number of proxies
// in list

// Search through list for the proxy with right global id
F_SpProxyItem* pItem = (F_SpProxyItem *) planeProxies->get_top();
for(i = 0; i < numProxies; ++i) {

SpObjProxy* planeProxy = pItem->GetObjProxy();
if (planeProxy->GetProxySimObjGlobalId() == globalId) {

return planeProxy;
}
pItem = (F_SpProxyItem *) pItem->get_link();

}
return NULL; // not found

}

The above example shows the proper way of accessing each proxy on the simulation object remote
proxy list, as well as looping through the proxy list. The primary points of interest are:

� Use the method get top to access the first item in the list, and get length to find the number
of items in the list.

� The proxy pointer is retrieved from each F SpProxyItem * item using the GetObjProxy
method.

� The next item in the RB queue is retrieved by calling get link on the current item.

� Caution: The remote proxy list is an RB queue, which is not necessarily NULL-terminated. To
search the list, use methods get top and get length in a loop as shown above, counting the
number of list items visited.

After the subscriber has found a given proxy in the list returned as GetRemoteObjectProxies,
the proxy may be examined. To locate an attribute by name, use the following method located on class
SpObjProxy.

BASE_ATTRIBUTE* Find(const char* name, int arrayIndex = 0)

The parameter name specifies the string name of the attribute being searched for. If the data being
searched for is an array, then an index for an array element can be supplied. The following short
example shows how to retrieve both non-array and array data values from the proxy.

GroundRadar* radar = GetRadar();

SpObjProxy* planeProxy = radar->GetPlaneProxy();

DOUBLE_ATTTRIBUTE* planeSpeed =

156 CHAPTER 9. USING OBJECT PROXIES

(DOUBLE_ATTTRIBUTE *) planeProxy->Find("Speed");

// Get the 7th item from IntVec[10] attribute.
// Indexing is 0..9
INT_ATTTRIBUTE* planeSpeed =
(INT_ATTTRIBUTE *) planeProxy->Find("IntVec", 6);

Both of the above versions of Find search an array of attributes, and locate the one with the correct
name using string compares. This inefficient method should be replaced by the use of GetReference
to obtain the attribute’s reference (i.e. its integer index) into the proxy array. This will allow faster look
ups. The Find method has been overloaded to work with the attribute reference (for both scalar and
array attributes).

GroundRadar* radar = GetRadar();

SpObjProxy* planeProxy = radar->GetPlaneProxy();

// Get reference to "Speed" attribute
int speedRef = planeProxy->GetReference("Speed");

// Find attribute by reference:
DOUBLE_ATTTRIBUTE* planeSpeed =
(DOUBLE_ATTTRIBUTE*) planeProxy->Find(speedRef);

// ***** This also works with array attributes *****

// Get reference to "IntVec" attribute
int intVecRef = planeProxy->GetReference("IntVec");

// Get the 7th item from IntVec[10] attribute.
// Find attribute by reference:
INT_ATTTRIBUTE* planeSpeed =
(INT_ATTTRIBUTE*) planeProxy->Find(intVecRef, 6);

You may be wondering why we did not just save a pointer to the attribute and use it for even faster
access to the attributes. The problem with this approach is that the pointer could become invalid as
the simulation progresses (even though the reference remains valid). When the proxy is updated, the
attribute storage is replaced, not just overwritten, so a saved attribute pointer might be pointing to deleted
memory. Therefore, for faster access, use GetReference, not saved attribute pointers.

As shown above, the Find method is the most general way to retrieve the attributes contained within
a proxy. In addition to Find, there are several type-specific methods for accessing attributes. For
example, the GetInt method can be used to get the current value of an integer attribute, and like
Find, it can locate attributes by name or by reference. Unlike Find, it returns the current value of the
attribute, rather than a pointer to the attribute. The SpObjProxy class provides type-specific accessors
for all the attribute types (e.g. GetString, GetList, GetLogical, etc.). See the “SPEEDES API
Reference Manual” for addition information on these interfaces.

9.4.4.1 Associating Proxies With Objects

In the previous example, the simulation object global ids were used to locate the proxy corresponding
to a particular object. Proxies contain other important data that can be used to identify the object it

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 157

represents. The following SpObjProxymethods are available for this purpose.

� int GetProxySimObjGlobalId()
Returns the global id of the object represented by this proxy.

� int GetProxySimObjLocalId()
Returns the local id of the object represented by this proxy.

� int GetProxySimObjMgrId()
Returns the type id of the object represented by this proxy.

� int GetProxyNode()
Returns the node number on which the object represented by this proxy is located.

� char* GetProxyName()
Returns the name of the object represented by this proxy. This corresponds to the name assigned
to the object by the method SetName on S SpHLA. Note that the object must be named only
once, when it is created in method Init.

9.4.5 Attribute Level Subscription

In the previous section, we explained how to subscribe to object classes using the DM system. Using this
method, the subscriber discovers all object instances whose classes are (or inherit from) the subscribed
class. Also, the subscriber receives an update event whenever any of the attributes in a discovered object
are altered. That is, the subscriber has subscribed to all attributes published by the object.

Clearly, this is not always desirable. A class might, for example, publish twenty attributes, but a given
subscriber might be interested in only five of these. It would be advantageous if that object could
subscribe to only those five attributes. This would mean that the subscriber would receive update events
only when one of these five attributes changed, and would not be interrupted by extraneous updates. The
importance of this capability becomes apparent when one realizes that these extraneous update events
could occur in the subscriber’s past, thus inducing a rollback of all processing done by events whose
time stamp is greater than the update, and that have already acted on the subscriber.

For this reason, SPEEDES provides the ability to subscribe to attributes on an individual basis. This
means that a simulation object can subscribe to any subset of the attributes published by a given class
X (including the empty subset of zero attributes, which results in objects being discovered, but not
updated). This subset is called the attribute subscription for class X. It acts as a filter that removes
all update events, except for those containing attributes in the subset. This filter can be dynamically
changed throughout the course of the simulation.

In order to use attribute level subscription, an object must subscribe to a published object class (or to
a DDM space; see Chapter 11). The procedure for doing this was detailed in section 9.4.4. When this
has been done, the attribute subscription for the class (i.e. the filtering subset) can be specified. This
is accomplished using the SubscribeByAttribute method of the S SpHLA class. This method
specifies the current attribute subscription for a given class. Its interface is as follows:

void SubscribeByAttribute(char* objClass,
int numAtts,
char** attNames)

158 CHAPTER 9. USING OBJECT PROXIES

Parameter Description
objClass Specifies the name of the class for which the attribute subscription is desired. This is

the same class name used in Objects.par.
numAtts Specifies the number of attributes in the subscription filter.
attNames Specifies an array of attribute names to subscribe to. there must be numAtts of

these names, each of which should exactly match an attribute name for the class in
Objects.par.

Table 9.1: Subscribe By Attribute API

SubscribeByAttribute creates a new attribute subscription, and replaces the current one, if any.
Let us consider an example. Assume the Objects.par file contained the following class declaration:

class Blob {
define int K1
define int K2
define int K3
define int K4

define double X1
define double X2
define double X3

define string S1
define string S2

define list L1
}

In order to subscribe to Blob class attributes K1, X2, S2, and L1, the following code could be used (in
the Init method, for example):

// Must subscribe to class Blob (if not already done):
Subscribe("Blob");

const int numAtts = 4;
char* attNames[numAtts];

attNames[0] = "K1";
attNames[1] = "X2";
attNames[2] = "S2";
attNames[3] = "L1";

// Set current filter to subset { K1, X2, S2, L1 }. This object will
// only receive updates when K1, X2, S2 or L1 is changed.
SubscribeByAtttribute("Blob", numAtts, attNames);

Other methods provided by S SpHLA for altering attribute subscriptions are:

void SubscribeAllAttributes(char* objClass)

void UnSubscribeAllAttributes(char* objClass)

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 159

void AddAttributeSubscription(char* objClass,
int numAtts,
char** attNames)

void RemoveAttributeSubscription(char* objClass,
int numAtts,
char** attNames)

int CurrentlySubscribedToAtt(char* objClass,
char* attName)

The parameter definitions for each method are the same as those specified in Table 9.1. A description
for each method is:

� SubscribeAllAttributes:
Changes the current subscription to contain all attributes for the class denoted by parameter obj-
Class. This is the default behavior when one does a DM subscribe and there does not yet
exist a subscription set. (Which, incidentally, means that it is slightly more efficient to do Sub-
scribeByAtttribute first, and then do the Subscribe, assuming both calls occur within
the same event. This circumvents the need for Subscribe to create a full set only to have it
immediately overridden by SubscribeByAtttribute.)

� UnSubscribeAllAttributes:
Changes the current subscription to the empty set. This means that instances of class objClass
will be discovered, but no updates will be received (assuming the object has subscribed to obj-
Class).

� AddAttributeSubscription:
Inserts additional attributes into the current subscription. The parameters are exactly like those
from SubscribeByAtttribute, except that numAtts and attNames specify a set of at-
tributes to be added to the current subscription (instead of replacing the current subscription).
The resulting subscription set will be the union of the existing set and the set of additional at-
tributes specified by the call. It is not an error to add attributes that are already in the subscription
set; however, if there is any question about what the current subscription is, it is probably easi-
est to simply use SubscribeByAttribute, which defines the entire set, rather than making
changes relative to the existing one.

� RemoveAttributeSubscription:
This method is the opposite of AddAttributeSubscription. It removes all attributes spec-
ified in the call from the current subscription set. It is not an error to remove an attribute that is not
a member of the current subscription set; such cases are simply ignored. If, however, an attempt
is made to remove attributes before a subscription has been created, a warning is printed.

� CurrentlySubscribedToAtt:
Returns 1 if if the specified objClass and attName currently exist in the current subscription
set, otherwise it returns 0. As usual the parameters must exactly match (i.e. case-sensitive) a class
name and an attribute name, respectively, from the Objects.par file.

9.4.5.1 Effects of Attribute Level Subscription

As was mentioned above, the purpose of attribute level subscription is to prevent superfluous update
events from reaching the subscriber. To complete the explanation, there is a feature and two issues

160 CHAPTER 9. USING OBJECT PROXIES

related to updating that need to be described.

First of all, the SpObjProxy class (and descendants) contain an “accessor guard” feature that prevents
a subscriber from accessing attributes that are not currently in the attribute subscription set. The reason
for this is that such attributes could very well be out of date, meaning that the data they contain might
not correctly reflect the current state of the object they represent. This makes perfect sense, by not
subscribing to an attribute, the object is asking not to receive updates for that attribute. Thus, the
attribute’s value could be an outdated one.

There are two aspects to this guard feature. First, an attempt to reference the attribute will return an
“error” value. For example, if an object is not subscribed to STRING ATTRIBUTE ObjName, then
calling the SpObjProxymethod GetString returns NULL:

ShipProxyType *shipProxy = GetShipProxy(); // Grab proxy

// shipName will be NULL if not subscribed to ObjName:
const char *shipName = shipProxy->GetString("ObjName");

The above example illustrates the problem with this technique: how can you tell whether the result is an
“error” value or the actual attribute value? It might, for example, be perfectly legitimate for an object to
have a NULL name.

In general, an object should not be accessing attributes to which it is not currently subscribed. If it
does, then needs to be able to distinguish between an incorrect attribute data (i.e. an error) and an
actual attribute value. Method LastAttribRefWasLegal on classes SpObjProxy provides this
capability. This method is the second aspect of the proxy guard feature, and is shown below:

ShipProxyType *shipProxy = GetShipProxy(); // Grab proxy

// shipName will be NULL if not subscribed to ObjName:
const char *shipName = shipProxy->GetString("ObjName");

// Was the GetString call OK?
if (!shipProxy->LastAttribRefWasLegal()) {
RB_cout << "Cannot access ship name now" << endl;

}

As you might suspect, method LastAttribRefWasLegal refers only to the very last attribute ref-
erence, so it should be called right away, and certainly before making any function calls that might be
hiding proxy attribute references.

In order to alert the user, SPEEDES returns an error value of -1e20 if an attribute is accessed which
is not subscribed to. Nevertheless, it is probably best to keep track of attribute subscriptions and take
care not to access unsubscribed attributes; or else use LastAttribRefWasLegal to make sure your
reference was a legal one.

The following list provides the user with what to expect whenever an access is made to an unsubscribed
attribute:

� Pointers: Any proxy accessor returning a pointer will return NULL. The most important of these
are GetAttribute and Find. Others examples are: GetBinaryBuffer,GetList, Get-
ListName, GetDynamicObject,GetObjProxy, and GetString.

9.4. OBJECT PROXY USAGE DETAILED DESCRIPTION 161

� Doubles: Any proxy accessor that returns one or more doubles will return a double (or an array
of doubles) whose value is -1e20. Examples include GetFloat,GetPosition (which returns
an array of three doubles), GetDynamicPosition,GetDynamicFloat, etc.

� Integers: Any proxy accessor that returns an integer will return the hexadecimal number
0x8000000 (which equals 134,217,728). Examples include GetInt and GetDynamicInt.

� Booleans: Any proxy accessor that returns a boolean will return 0 whenever an unsubscribed
referenced is made. Examples include GetLogical and GetDynamicLogical.

Finally, we wish to direct your attention to two subtle points of the attribute level subscription system.
The system was designed to streamline the distribution of information by minimizing unnecessary up-
date events on subscriber objects. But because it is not practical to entirely eliminate such events, it is
possible that a small number of them will get through.

Another consequence of this streamlining is the opposite: it is possible for a subscriber not to receive
an update event even though the simulation object has changed state and its proxy has been altered to
reflect that. This may sound puzzling at first, but is easily explained.

The subscriber holds a pointer to a list of time stamped proxies representing the changing state of the
simulation object. When a subscriber requests a proxy, it receives the proxy reflecting the object’s state
at the subscriber’s current time. So, if an update for an object is in the subscriber’s future, there is no need
to bother interrupting him with an update event. The proxy list is just quietly updated. If, in the future,
the subscriber needs to reference the state of the object, the list simply returns the proxy corresponding
to that time. The only case in which it is necessary to schedule an update event on the subscriber is when
the subscriber’s logical time is ahead of the update time. Since he may have referenced superceded data
in a proxy, the subscriber must be rolled back to the time of the update; hence the need to schedule an
event on the subscriber.

9.4.5.2 Attribute Level Subscription and DDM

This section is included here for completeness. It depends on an understanding of DDM, which is
discussed in Chapter 11. Readers not yet acquainted with DDM or who do not intend to use it, can
safely skip this section.

The relationship between DDM and attribute level subscribing is simple: the latter acts as just another
level of filtering, but applied only to object updates, not to object discoveries. With DDM, an object
subscribing to a particular space discovers and receives updates for only those objects that fall within
the parameters defining the space; all other objects are filtered out. By subscribing to a set of attributes,
this object also filters out updates that do not pertain to attributes contained in the subscription set. The
latter has no effect the discover/undiscover aspect of DDM, only the updating.

To use individual attribute subscribing in conjunction with DDM, simply create an attribute subscription
set for each object class requiring this mode of update filtering (using the S SpHLA methods described
above). This can be done either before or after the DDM operations, and can be changed during the
course of the simulation. The result is an independent layer of filtering that allows only those update
events concerning attributes in the subscription set corresponding to the updated object’s class. Of
course, if no such subscription set exists, all updates get through.

162 CHAPTER 9. USING OBJECT PROXIES

9.4.6 Free Object Proxy

The final step to perform before using the object proxy system is to create the required implementation
of a class SpFreeObjProxy constructor. This file must be compiled and linked with your simulation.
This is required because SPEEDES uses free lists to streamline memory allocation. SpFreeObj-
Proxy implements the proxy free lists. Example 9.3 shows the implementation of SpFreeObjProxy
in its simplest form.

// Implementation for SpFreeObjProxy with no user-defined
// proxy classes:

#include "SpFreeObjProxy.H"

SpFreeObjProxy::SpFreeObjProxy(int n) {
set_ntypes(n);

}
Example 9.3: Free Object Proxy Implementation

Section 9.5.2 will describe how to define your own proxy classes, which inherit from SpObjProxy.
The reason for creating proxy classes is to provide subscribers with additional functionality beyond
what is available in a generic proxy. If you choose to define your own proxy classes, it will be necessary
to insert these proxies into the proxy framework. This is not shown in the example shown above.
Example 9.15 shows how to plug user-defined proxies into the proxy framework.

For now, the important thing to note is that SpFreeObjProxy.C must be written, compiled, and
linked with your simulation, and that the option exists to create specialized proxy classes. These spe-
cialized proxies correspond to classes defined in file Objects.par. Subscribers to these classes will
receive the specialized proxy instead of a generic one.

9.5 Proxies in Use (Examples)

In this section, three code examples are examined in detail. The first two examples highlight the differ-
ences between an implementation that uses object proxies and one that does not. The first shows how
attribute updates can be distributed to interested parties without the use of object proxies. The second
implements the same scenario, but uses object proxies to automate attribute updates, thus demonstrating
the advantages provided by this feature. The third example is a variation of the second, illustrating the
attribute level subscription capabilities of object proxies.

9.5.1 Non-Proxy Example: Manually Pushing Attribute Updates Without Proxies

The code shown in Examples 9.4 through 9.8 creates a small simulation consisting of three radars and
two airplanes. The radars are very powerful and “see” everything within a long range. Each radar
maintains a list of all objects that they have detected.

In general, there are two basic schemes for distributing the data around to the objects that need it. The
first choice is a “pull” mechanism, in which the objects that need data request or “pull” the data from the
objects that have it. This can result in poor performance if the object that contains the data is continually
getting rolled back due to requests for data in its past. Similarly, the requester could get rolled back as
well, if it moves forward in time (because of events scheduled on it) before the reply event has arrived.

9.5. PROXIES IN USE (EXAMPLES) 163

The second choice is a “push” mechanism where the objects that have the data send or “push” it auto-
matically to the objects that want the data. This has the disadvantage of possibly sending too much data.
However, this results in higher performance as long as the amount of extraneous data pushed is limited
and since the pusher is not rolled back. The example described below uses the “push” technique to dis-
tribute their location to the radar objects. Examples 9.4 and 9.5 show the definition and implementation
code for the F-15 aircraft.

// S_F15.H
#ifndef S_F15_H
#define S_F15_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_F15 : public SpSimObj {
public:
S_F15() {}
virtual ˜S_F15() {}

void Init();
void Move(double latDelta, double lonDelta, double altDelta);

private:
RB_double Lat;
RB_double Lon;
RB_double Alt;

};

DEFINE_SIMOBJ(S_F15, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_3_ARG(F15Move, S_F15, Move,

double, double, double);
#endif

Example 9.4: F-15 Definition (Manual Version)

// S_F15.C
#include "RB_SpRandom.H"
#include "S_F15.H"
#include "S_Radar.H"

void S_F15::Init() {
double x[3];
RB_SpRandom* rand = SpGetRandom();
double time = rand->GenerateDouble(0, 100.0);

rand->GenerateVector(x, 6378.145);
Lat = x[0];
Lon = x[1];
Alt = x[2];
rand->GenerateVector(x, time * 0.5);
SCHEDULE_F15Move(time, SpGetObjHandle(), x[0], x[1], x[2]);

}

void S_F15::Move(double latDelta, double lonDelta, double altDelta) {

164 CHAPTER 9. USING OBJECT PROXIES

int i;
double x[3];
SpSimTime schedTime = SpGetTime();
RB_SpRandom* rand = SpGetRandom();
double time = rand->GenerateDouble(0, 100.0);

Lat += latDelta;
Lon += lonDelta;
Alt += altDelta;
for (i = 0; i < S_Radar::GetNumRadars(); ++i) {
SpObjHandle objHandle = SpGetObjHandle("S_Radar_MGR", i);
SCHEDULE_RadarF15Move(SpGetTime(), objHandle,

SpGetObjHandle(), Lat, Lon, Alt);
}
rand->GenerateVector(x, time * 0.5);
schedTime += time;
SCHEDULE_F15Move(schedTime, SpGetObjHandle(), x[0], x[1], x[2]);

}
Example 9.5: F-15 Implementation (Manual Version)

The implementation file shows the usual Initmethod and a user-defined method called Move. Method
Init initializes its position and schedules method Move with its current position as input parameters.
When method Move executes, it updates it current position and schedules an event on each Radar
notifying the radar of its new position (i.e. “push”). It then schedules an event for itself so that the F-15
can “move” its position again.

Examples 9.6 and 9.7 show the definition and implementation code for the Radars.

// S_Radar.H
#ifndef S_Radar_H
#define S_Radar_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Radar : public SpSimObj {
public:
S_Radar() {}
virtual ˜S_Radar() {}

void Init() {}
void Scan();
void F15Move(SpObjHandle objHandle,

double lat, double lon, double alt);
static int GetNumRadars() {return 3;}

private:
RB_SpList ListOfObjectsInTrack;

};
DEFINE_SIMOBJ(S_Radar, S_Radar::GetNumRadars(), SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(RadarScan, S_Radar, Scan);
DEFINE_SIMOBJ_EVENT_4_ARG(RadarF15Move, S_Radar, F15Move,

SpObjHandle, double, double, double);
#endif

Example 9.6: Radar Definition (Manual Version)

9.5. PROXIES IN USE (EXAMPLES) 165

// S_Radar.C
#include "RB_SpDefineClass.H"
#include "RB_ostream.H"
#include "S_Radar.H"

class ObjHandleAndPos {
public:
SpObjHandle handle;
RB_double lat;
RB_double lon;
RB_double alt;
int operator ==(SpObjHandle& rhs) {

return ((handle.GetSimObjMgrId() == rhs.GetSimObjMgrId()) &&
(handle.GetNodeId() == rhs.GetNodeId()) &&
(handle.GetSimObjMgrId() == rhs.GetSimObjMgrId()));

}
};
RB_DEFINE_CLASS(ObjHandleAndPos);

void S_Radar::Scan() {
ObjHandleAndPos* obj =
(ObjHandleAndPos *) ListOfObjectsInTrack.GetFirstElement();

while (obj != NULL) {
RB_cout << GetName() << " sees object " << obj->handle.GetNodeId()

<< ", " << obj->handle.GetSimObjMgrId()
<< ", " << obj->handle.GetSimObjLocalId()
<< ", " << obj->lat
<< ", " << obj->lon
<< ", " << obj->alt << endl;

obj = (ObjHandleAndPos *) ListOfObjectsInTrack.GetNextElement();
}
if (ListOfObjectsInTrack.GetNumElements() != 0) {
SCHEDULE_RadarScan(SpGetTime() + 10.0, SpGetObjHandle());

}
}

void S_Radar::F15Move(SpObjHandle objHandle,
double lat, double lon, double alt) {

int newObjectFlag = 0;
ObjHandleAndPos* oHandle;

/*
* Search through the list of aircraft tracks looking for
* the correct aircraft that is being tracked.
*/

oHandle = (ObjHandleAndPos *) ListOfObjectsInTrack.GetFirstElement();
while (oHandle != NULL) {
if (*oHandle == objHandle) {

break;
}
oHandle = (ObjHandleAndPos *) ListOfObjectsInTrack.GetNextElement();

}
/*
* If we have a track on this aircraft, then oHandle will not be
* equal to NULL. If this is the first time we have seen this

166 CHAPTER 9. USING OBJECT PROXIES

* track then create a new data element for which to save the
* aircraft track parameters.
*/

if (oHandle == NULL){
oHandle = RB_NEW_ObjHandleAndPos();
oHandle->handle = objHandle;
newObjectFlag = 1;

}
/*
* Update the track information with the aircrafts new position.
*/

oHandle->lat = lat;
oHandle->lon = lon;
oHandle->alt = alt;
/*
* If the radar scan event is not running then start it.
*/

if (ListOfObjectsInTrack.GetNumElements() == 0) {
SCHEDULE_RadarScan(SpGetTime(), SpGetObjHandle());

}
/*
* Add track to list if this is a new track.
*/

if (newObjectFlag == 1) {
ListOfObjectsInTrack.Insert(oHandle);

}
}

Example 9.7: Radar Implementation (Manual Version)

With every F-15 position update, the F-15 schedules event RadarF15Move notifying the Radar of its
current object id and position. Event RadarF15Move gets the old track report off of the list List-
OfObjectsInTrack and, if not found, creates a new track report. The track report is updated with
the F-15 unique object id and position and added to the track list. If this is the first object that this Radar
has “seen”, then it starts the Radar scan cycle, event RadarScan.

On a side note, this example also shows how to use macro RB DEFINE CLASS (see Section 5.1 for
definition). This allows the Radar to rollbackably create and delete the track data. Since the position
data changes over time and since the Radar could be rolled back, the position data is maintained with
RB double types. Since the object id is initialized only once, there is no need to worry about roll
backs, hence the usage of the non-rollbackable type of SpObjHandle.

The final piece required for this example is main, which is shown in in Example 9.8

// Main.C
#include "S_F15.H"
#include "S_Radar.H"
#include "SpMainPlugIn.H"

int main(int argc, char** argv) {
PLUG_IN_SIMOBJ(S_F15);
PLUG_IN_SIMOBJ(S_Radar);

PLUG_IN_EVENT(RadarF15Move);
PLUG_IN_EVENT(RadarScan);
PLUG_IN_EVENT(F15Move);

9.5. PROXIES IN USE (EXAMPLES) 167

ExecuteSpeedes(argc, argv);
}

Example 9.8: main Function (Manual Version)

Implementing a push system for data distribution can be quite efficient and an excellent way of distribut-
ing data for smaller simulations. However, as the number of objects begins to grow, managing the lists
of subscribers can turn into a large and complex task. The SPEEDES built-in object proxy mechanism
provides simple interfaces for automating the process of distributing data and for filtering the lists of
recipients to only those objects that currently need the information.

9.5.2 Proxy Example: Automatically Pushing Attribute Updates With Proxies

The following example implements the previous “push” example using the built-in proxy mechanism.
This automates the F-15 data delivery to the Radar simulation objects. First, an Objects.par file
is needed to name the subscriber class, the publisher class, and to specify the public attributes. This is
shown in Figure 9.2.

F15 {
define double Latitude
define double Longitude
define double Altitude

}

Radar {
reference SUBSCRIBE F15

}

Figure 9.2: Objects.par File (Proxy Version)

Notice that the F-15’s position attributes are defined here. This will allow the Radar simulation object
access to the F-15’s position. The Radar also “subscribes” to the F-15s with line reference SUB-
SCRIBE F15 in its definition. Now all F-15 simulation object proxies will be delivered to and will be
available for the Radar to use.

Examples 9.9 and 9.10 show the definition and implementation code for the F-15 simulation objects.

// S_F15.H
#ifndef S_F15_H
#define S_F15_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_F15 : public S_SpHLA {
public:
S_F15() : S_SpHLA("F15") {}
virtual ˜S_F15() {}

void Init();
void Move(double latDelta, double lonDelta, double altDelta);

private:

168 CHAPTER 9. USING OBJECT PROXIES

DOUBLE_ATTRIBUTE Lat;
DOUBLE_ATTRIBUTE Lon;
DOUBLE_ATTRIBUTE Alt;

};

DEFINE_SIMOBJ(S_F15, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_3_ARG(F15Move, S_F15, Move,

double, double, double);
#endif

Example 9.9: F-15 Definition (Proxy Version)

// S_F15.C
#include "RB_SpRandom.H"
#include "S_F15.H"

void S_F15::Init() {
DEFINE_ATTRIBUTE(Lat, "Latitude");
DEFINE_ATTRIBUTE(Lon, "Longitude");
DEFINE_ATTRIBUTE(Alt, "Altitude");

double x[3];
RB_SpRandom* rand = SpGetRandom();
double time = rand->GenerateDouble(0, 100.0);

rand->GenerateVector(x, 6378.145);
Lat = x[0];
Lon = x[1];
Alt = x[2];
rand->GenerateVector(x, time * 0.5);
SCHEDULE_F15Move(time, SpGetObjHandle(), x[0], x[1], x[2]);

}

void S_F15::Move(double latDelta, double lonDelta, double altDelta) {
double x[3];
RB_SpRandom* rand = SpGetRandom();
SpSimTime schedTime = SpGetTime();

Lat += latDelta;
Lon += lonDelta;
Alt += altDelta;
double time = rand->GenerateDouble(0, 100.0);
rand->GenerateVector(x, time * 0.5);
schedTime += time;
SCHEDULE_F15Move(schedTime, SpGetObjHandle(), x[0], x[1], x[2]);

}
Example 9.10: F-15 Implementation (Proxy Version)

The definition for the F-15 is very similar to before. Notice that the F-15 simulation object now inherits
from class S SpHLA, rather than SpSimObj. The only other change is that this simulation object’s
attribute types of RB double have changed to DOUBLE ATTRIBUTE.

The F-15 implementation has changed a little bit more than the definition file. Notice that the con-
structor now passes the string “F15” to its base class S SpHLA, which is the same string name used in
Objects.par. As explained previously, this is a requirement. The Init method for this object is
the same as before, except that the attributes are defined using the DEFINE ATTRIBUTE macro. This

9.5. PROXIES IN USE (EXAMPLES) 169

example shows that the simulation object attribute name (e.g. Lat) does not have to match the string and
Objects.par file attribute name. Event F15Move now updates its position and reschedules itself at
the appropriate time so that it can continue to update its position. Notice that the F-15s do not know
about the Radar. The F-15s are no longer scheduling an event on the Radars, indicating that they have
changed their position. The Radars can now access the F-15s data via object proxies.

Since the F-15 has published attributes, subscribing objects will receive an SpObjProxy instance
representing the published object. Users can define classes that inherit from the SpObjProxy class to
create customized proxies geared to the needs of the particular classes in the simulation. One reason
to do this is to provide methods that simplify the retrieval of the attribute values. The code shown in
Example 9.11 illustrates what a user-defined proxy definition file looks like.

1 // F15Proxy.H
2 #ifndef F15Proxy_H
3 #define F15Proxy_H

4 #include "SpObjProxy.H"

5 class F15Proxy : public SpObjProxy {
6 public:
7 F15Proxy() {
8 LongitudeReference = GetReference("Longitude", "F15");
9 }

10 double GetLatitude() {return *(DOUBLE_ATTRIBUTE *) Find("Latitude");}
11 double GetLongitude() {return GetFloat(LongitudeReference);}
12 double GetAltitude() {return GetFloat("Altitude");}

13 private:
14 static int LongitudeReference;
15 };
16 #endif

Example 9.11: F-15 Object Proxy Definition

This proxy example shows three different methods for retrieving attributes from the proxy. Line 10
shows how to use the SpObjProxy method Find(char*). Since Find returns a pointer to a base
class, the return value must be casted to the correct type (a DOUBLE ATTRIBUTE* in this case) before
dereferencing.

Line 11 shows that the attributes can be looked up using type specific calls. This call is passed the
integer reference (i.e. a unique id) for the attribute of interest, which, in this case, is the reference value
for the Longitude attribute. The integer reference is constant for each proxy attribute and can be
calculated once. This is shown on lines 7 through 9 with the use of the GetReference call. Notice
that the GetReference name takes as inputs both the attribute and object string names, as defined in
Objects.par.

Finally, line 12 shows how to look them up by using type specific calls and passing in the name of
the attribute sought. This method of looking up attribute values is inherently slower than the integer
reference version, since string compares are used.

Examples 9.12 and 9.13 show the new definition and implementation files for the Radar simulation
object.

// S_Radar.H
#ifndef S_Radar_H

170 CHAPTER 9. USING OBJECT PROXIES

#define S_Radar_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Radar : public S_SpHLA {
public:
S_Radar() : S_SpHLA("Radar") {}
virtual ˜S_Radar() {}

void Init();
void Scan();

};

DEFINE_SIMOBJ(S_Radar, 3, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(RadarScan, S_Radar, Scan);
#endif

Example 9.12: Radar Definition (Proxy Version)

// S_Radar.C
#include "RB_SpDefineClass.H"
#include "RB_ostream.H"
#include "F_SpProxyItem.H"
#include "S_Radar.H"
#include "F15Proxy.H"

void S_Radar::Init() {
SCHEDULE_RadarScan(0.0, SpGetObjHandle());

}

void S_Radar::Scan() {
int i;
RB_queue* aircraftProxy;

aircraftProxy = GetRemoteObjectProxies();
F_SpProxyItem* pItem = (F_SpProxyItem *) aircraftProxy->get_top();
for (i = 0; i < aircraftProxy->get_length(); ++i){
F15Proxy* mProxy = (F15Proxy *) pItem->GetObjProxy();
RB_cout << GetName() << " sees object " << mProxy->GetProxyNode()

<< ", " << mProxy->GetProxySimObjMgrId()
<< ", " << mProxy->GetProxySimObjLocalId()
<< ", " << mProxy->GetLatitude()
<< ", " << mProxy->GetLongitude()
<< ", " << mProxy->GetAltitude()
<< endl;

pItem = (F_SpProxyItem *) pItem->get_link();
}
SCHEDULE_RadarScan(SpGetTime() + 10.0, SpGetObjHandle());

}
Example 9.13: Radar Implementation (Proxy Version)

As with the F-15 simulation object, the Radar simulation object now inherits from S SpHLA. The Radar
constructor initializes the S SpHLA constructor with the appropriate string for its class name, which
is “Radar” in this case. Also notice that method F15Move, attribute ListOfObjectsInTrack,

9.5. PROXIES IN USE (EXAMPLES) 171

and event RadarF15Move have all been removed. This is because there is no need for the F-15 to
manually “Push” or send its data to the Radar. The proxy mechanism will automatically delivery the
data (i.e. positions) to the Radar for use.

The Radar implementation file has changed quite a bit more. Class ObjHandleAndPos, which was
used to save the track data in the track list, has been deleted. This information is all available in the
proxy data. Hence, there is no need for the Radar simulation object to save the data. Method F15Move
has also been removed. Method Init has been added so that it can start event RadarScan at � � ����� .
Event RadarScan (i.e. method Scan) has also changed. Previously, this event went through each track
in its own internal track list and printed the contents of each track. Now, instead of iterating through its
own internal track list (which does not exist anyway), it now iterates through its proxy list (i.e. returned
via GetRemoteObjectProxies). Since it subscribes to F-15 types, all F-15 simulation objects will
be on this list (provided automatically by the proxy mechanism). Anytime a F-15 attribute changes,
these changes are automatically propagated to each Radar. Therefore, each Radar always has the correct
position for each F-15, regardless of attribute access time.

Function main also changed slightly, as shown in Example 9.14

// Main.C
#include "SpMainPlugIn.H"
#include "S_F15.H"
#include "S_Radar.H"
#include "F15Proxy.H"

void PlugInHLA();

int main(int argc, char **argv)
{

PLUG_IN_SIMOBJ(S_F15);
PLUG_IN_SIMOBJ(S_Radar);

PLUG_IN_EVENT(RadarScan);
PLUG_IN_EVENT(F15Move);

PlugInHLA(); // Required plugin with proxies

ExecuteSpeedes(argc, argv);
}

int F15Proxy::LongitudeReference;
Example 9.14: main Function (Proxy Version)

In main, the RadarF15Move event does not need to be plugged in anymore (and indeed must not,
since it is no longer defined) and a new call to PlugInHLA has been added. The latter call regis-
ters the events that provide the built-in proxy mechanism. For convenience, the definition of Mis-
sileProxy::LongitudeReference has been added to this file.

The final task to be completed for this example is to implement class SpFreeObjProxy. This is
shown in Example 9.15.

1 // SpFreeObjProxy.C
2 #include "SpFreeObjProxy.H"
3 #include "F15Proxy.H"

172 CHAPTER 9. USING OBJECT PROXIES

4 enum {
5 F15_PROXY_ID,
6 N_FREE_PROXIES
7 };

8 void* newF15Proxy(int quanity) {
9 return new F15Proxy[quanity];

10 }

11 SpFreeObjProxy::SpFreeObjProxy(int n) {
12 set_ntypes(n);
13 set_type("F15", F15_PROXY_ID, newF15Proxy, sizeof(F15Proxy), 4);
14 }

Example 9.15: SpFreeObjProxy Implementation

This class manages the free lists for allocating proxies on each node. First, each proxy type must be
assigned an unique integer id (lines 4 through 7). Then, an allocation function must be written for each
proxy class (lines 8 through 10). As shown above, this function simply allocates the specified number
of proxies.

The last step is to implement the constructor for class SpFreeObjProxy (lines 11 through 14).
Specifically, line 12, set ntypes, is always the first line in this class. This informs class SpFree-
ObjProxy how many proxy items are to be added. Line 13 adds the user-defined proxy for the F-15 to
SpFreeObjProxywith method set type. The API for this method is shown below:

set_type(char* name,
int id,
void* f(int n),
unsigned int size,
int nCreate)

9.5. PROXIES IN USE (EXAMPLES) 173

Parameter Description
name Name of the proxy. This string name must be identical to the name specified

in Objects.par.
id Unique integer id of this proxy type. Must be a number between 0 and the

number of proxies added.
f(int n) Function that returns an array of n proxies of this type.
size Size in bytes of a proxy of this type.
nCreate Number of proxies of this type to create at a time.

Table 9.2: Free Object Proxy set type API

9.5.3 Proxy Example: Using Attribute Level Subscription

In this section, the previous example will be varied slightly in order to demonstrate the attribute level
subscription capabilities. Suppose the F-15 object included an additional “Temperature” attribute in-
tended to model the heat given off by the engines. This might be used to estimate the plane’s vulner-
ability to detection by infrared sensors, but is not relevant for Radar objects, since they cannot detect
heat. Thus, a Radar object should not subscribe to the Temperature attribute, since this might cause the
scheduling of useless update events on it. Such events would result in wasted computations and could
roll back events that have already been processed on the Radar object (if the update time stamp is earlier
than these events). Therefore, the Radar code will be modified to ensure that it does not subscribe to
the Temperature attribute of the F-15 class. It will, however, discover all F-15 instances and receive all
F-15 position updates.

The first modification is to Objects.par, in order to add the new attribute to the F-15 class. This is shown
in Figure 9.3.

F15 {
define double Latitude
define double Longitude
define double Altitude

define double Temperature
}

// Radars still subscribe to the F15 class, but will remove
// the "Temperature" attribute from their attribute subscription set.
Radar {

reference SUBSCRIBE F15
}

Figure 9.3: Objects.par File (Attribute Subscription Version

The code shown in Example 9.16 shows the new definition for the F-15 class. A new data member,
Temperature, has been added, as well as a new method, called ChangeTemperature. Note that
method ChangeTemperature has been turned into an event called F15ChangeTemperature. It
will be scheduled every � ����� seconds to increment the Temperature attribute. Thus, there will be a
lot of update events generated by these changes. If the Radar objects do not remove the Temperature
attribute from their attribute subscription, they will receive many unnecessary update events.

174 CHAPTER 9. USING OBJECT PROXIES

// S_F15.H
#ifndef S_F15_H
#define S_F15_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_F15 : public S_SpHLA {
public:
S_F15() : S_SpHLA("F15") {}
virtual ˜S_F15() {}

void Init();
void Move(double latDelta, double lonDelta, double altDelta);
void ChangeTemperature();

private:
DOUBLE_ATTRIBUTE Lat;
DOUBLE_ATTRIBUTE Lon;
DOUBLE_ATTRIBUTE Alt;
DOUBLE_ATTRIBUTE Temperature; // <-- New attribute

};

DEFINE_SIMOBJ(S_F15, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_3_ARG(F15Move, S_F15, Move,

double, double, double);
DEFINE_SIMOBJ_EVENT_0_ARG(F15ChangeTemperature, S_F15, ChangeTemperature);
#endif

Example 9.16: F-15 Definition (Attribute Subscription Version)

The code shown in Example 9.17 shows the implementation for the F-15. In Init, there is an ex-
tra DEFINE ATTRIBUTE call for the new attribute. Also, Temperature is initialized and the first
F15ChangeTemperature event is scheduled. Finally, method ChangeTemperature is defined.

// S_F15.C
#include "RB_SpRandom.H"
#include "RB_ostream.H"
#include "S_F15.H"

void S_F15::Init() {
DEFINE_ATTRIBUTE(Lat, "Latitude");
DEFINE_ATTRIBUTE(Lon, "Longitude");
DEFINE_ATTRIBUTE(Alt, "Altitude");
DEFINE_ATTRIBUTE(Temperature, "Temperature");

double x[3];
RB_SpRandom* rand = SpGetRandom();
double time = rand->GenerateDouble(0, 100.0);

rand->GenerateVector(x, 6378.145);
Lat = x[0];
Lon = x[1];
Alt = x[2];

9.5. PROXIES IN USE (EXAMPLES) 175

rand->GenerateVector(x, time * 0.5);
SCHEDULE_F15Move(time, SpGetObjHandle(), x[0], x[1], x[2]);

/*
* Initialize Temperature and start chain of
* F15ChangeTemperature events.
*/

Temperature = 100.0;
SCHEDULE_F15ChangeTemperature(0.0, SpGetObjHandle());

}

void S_F15::Move(double latDelta, double lonDelta, double altDelta) {
double x[3];
RB_SpRandom* rand = SpGetRandom();
SpSimTime schedTime = SpGetTime();

Lat += latDelta;
Lon += lonDelta;
Alt += altDelta;
double time = rand->GenerateDouble(0, 100.0);
rand->GenerateVector(x, time * 0.5);
schedTime += time;
SCHEDULE_F15Move(schedTime, SpGetObjHandle(), x[0], x[1], x[2]);

}

// Increment the Temperature attribute and reschedule ChangeTemperature
void S_F15::ChangeTemperature() {

double currTime = SpGetTime();
Temperature++;

// Change Temperature every 20.0 secs.
SpSimTime nextTime = currTime + 20.0;

SCHEDULE_F15ChangeTemperature(nextTime, SpGetObjHandle());

int numUpdates = int(Temperature - 100.0);
RB_cout << "F15#" << GetSimObjGlobalId() << ": New temp= "

<< int(Temperature) << " #Updates done= " << numUpdates
<< " at t= " << currTime << endl;

}

Example 9.17: F-15 Implementation (Attribute Subscription Version)

Next, we will look at the changes to the Radar class. This is where the key revisions occur, since the
Radar does the subscribing and is, therefore, the place where attribute subscriptions take place. Ex-
ample 9.18 shows the Radar class definition, which contains only two changes: the addition of the
CheckForSubscriptionChange and the EqualTime methods. The first of these performs var-
ious changes to the attribute subscription at specified times in order to demonstrate the attribute level
subscription capabilities. The second method is just a utility that checks if two simulation times are
“close enough” to be considered equal.

176 CHAPTER 9. USING OBJECT PROXIES

// S_Radar.H
#ifndef S_Radar_H
#define S_Radar_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Radar : public S_SpHLA {
public:
S_Radar() : S_SpHLA("Radar") {}
virtual ˜S_Radar() {}

void Init();
void Scan();

private:
void CheckForSubscriptionChange(double currTime);
int EqualTime(double t0, double t1);

};

DEFINE_SIMOBJ(S_Radar, 3, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(RadarScan, S_Radar, Scan);
#endif

Example 9.18: Radar Definition (Attribute Subscription Version)

Finally, the code shown in Example 9.19 shows the implementation for the F-15 simulation object.

1 // S_Radar.C
2 #include "RB_SpDefineClass.H"
3 #include "RB_ostream.H"
4 #include "F_SpProxyItem.H"
5 #include "S_Radar.H"
6 #include "F15Proxy.H"

7 void S_Radar::Init() {
8 const int numAtts = 3;
9 char* attNames[numAtts];

10 attNames[0] = "Latitude";
11 attNames[1] = "Longitude";
12 attNames[2] = "Altitude";

13 // Make attribute subscription set. { Latitude, Longitude, Altitude }
14 SubscribeByAttribute("F15", numAtts, attNames);

15 SCHEDULE_RadarScan(0.0, SpGetObjHandle());
16 }

17 void S_Radar::Scan() {
18 int i;
19 RB_queue* aircraftProxy;
20 double currTime;

21 currTime = double(SpGetTime());

9.5. PROXIES IN USE (EXAMPLES) 177

22 /*
23 * If we are not subscribed to F15 "Latitude" attribute,
24 * the radar is ON; otherwise, it is OFF.
25 */
26 int radarOn = CurrentlySubscribedToAtt("F15", "Latitude");

27 if (radarOn != 0) {
28 aircraftProxy = GetRemoteObjectProxies();
29 F_SpProxyItem* pItem = (F_SpProxyItem *) aircraftProxy->get_top();
30 for (i = 0; i < aircraftProxy->get_length(); ++i){
31 F15Proxy* mProxy = (F15Proxy *) pItem->GetObjProxy();
32 RB_cout << "t= " << currTime << ": "
33 << GetName() << " sees object " << mProxy->GetProxyNode()
34 << ", " << mProxy->GetProxySimObjMgrId()
35 << ", " << mProxy->GetProxySimObjLocalId()
36 << ", " << mProxy->GetLatitude()
37 << ", " << mProxy->GetLongitude()
38 << ", " << mProxy->GetAltitude();

39 double temp = mProxy->GetFloat("Temperature");
40 /*
41 * Above attribute reference was "legal" if subscribed
42 * to Temperature.
43 */
44 if (mProxy->LastAttribRefWasLegal()) {
45 RB_cout << ", Temp= " << temp;
46 }
47 else {
48 /*
49 * Proxy disallows access to unsubscribed attributes; thus
50 * GetFloat() should have returned an "error" value (e.g. -1e20).
51 */
52 RB_cout << " Temp not subscribed to";
53 }
54 RB_cout << endl;

55 pItem = (F_SpProxyItem *) pItem->get_link();
56 }
57 }
58 else { // Radar is OFF
59 RB_cout << "t= " << currTime << ": "
60 << GetName() << " radar is OFF." << endl;
61 }
62 /*
63 * Check if it is time for a subscription change. If so, make
64 * the change.
65 */
66 CheckForSubscriptionChange(currTime);

67 SCHEDULE_RadarScan(SpGetTime() + 10.0, SpGetObjHandle());
68 }

69 void S_Radar::CheckForSubscriptionChange(double currTime) {
70 const double FirstChangeTime = 1000.0; // Time of 1st change
71 const double LastChangeTime = 2400.0; // Time of last change

178 CHAPTER 9. USING OBJECT PROXIES

72 const int numAtts = 1; // #Attributes added or removed
73 char* attNames[numAtts]; // Names of attribs added or
74 // removed

75 // Return if outside interval of changes:
76 if ((currTime < (FirstChangeTime - 1.0)) ||
77 (currTime > (LastChangeTime + 1.0))) {
78 return;
79 }

80 /*
81 * ------- CHANGE #1: Subscribe to Temperature attribute -------
82 * Add Temperature attribute to subscription. We will get more update
83 * events, but will have correct current Temperature:
84 */
85 if (EqualTime(currTime, FirstChangeTime)) {
86 attNames[0] = "Temperature";

87 AddAttributeSubscription("F15", numAtts, attNames);
88 RB_cout << "**** " << GetName() << " subscribed to Temperature "
89 << "attribute at t= " << currTime << " ****" << endl;
90 return;
91 }

92 /*
93 * ------- CHANGE #2: Unsubscribe to Temperature attribute -------
94 */
95 if (EqualTime(currTime, 1200.0)) {
96 attNames[0] = "Temperature";

97 RemoveAttributeSubscription("F15", numAtts, attNames);
98 RB_cout << "**** " << GetName() << " UN-subscribed to Temperature "
99 << "attribute at t= " << currTime << " ****" << endl;

100 return;
101 }

102 /*
103 * ------- CHANGE #3: Turn OFF Radar -------
104 * Unsubscribe all attributes so Radar does not "see" any updates:
105 */
106 if (EqualTime(currTime, 1500.0)) {
107 UnSubscribeAllAttributes("F15");
108 RB_cout << "**** " << GetName() << " UN-subscribed ALL "
109 << "attributes at t= " << currTime << " ****" << endl;
110 return;
111 }

112 /*
113 * ------- CHANGE #4: Turn Radar back ON -------
114 * Subscribe to {Latitude, Longitude, Altitude} in a different way:
115 */
116 if (EqualTime(currTime, LastChangeTime)) {
117 SubscribeAllAttributes("F15");

118 attNames[0] = "Temperature";

9.5. PROXIES IN USE (EXAMPLES) 179

119 RemoveAttributeSubscription("F15", numAtts, attNames);
120 RB_cout << "**** " << GetName() << " RE-subscribed to (lat,lon,alt) "
121 << "attributes at t= " << currTime << " ****" << endl;
122 return;
123 }
124 }

125 /*
126 * Return 1 if t0 and t1 are close enough to be considered equal
127 * simulation time:
128 */
129 int S_Radar::EqualTime(double t0, double t1) {
130 return(fabs(t1 - t0) < 0.01); // close enough for our purposes
131 }

Example 9.19: S Radar Implementation (Attribute Subscription Version)

First, take note of the Init method. To avoid Temperature updates, SubscribeByAttribute
is invoked so that only attributes Latitude, Longitude, and Altitude are subscribed. It is still
necessary to subscribe to the F-15 class, and this is done automatically because of the reference
SUBSCRIBE F15 line in Objects.par. Had that line not been there, it would have been necessary
to call Subscribe("F15"), since SubscribeByAttribute does not subscribe to the class, it
just defines the attribute subscription filter.

Next, examine the Scan method. As in the previous version, Scan schedules itself periodically, and
prints out data contained in its proxy list. There are several changes in the simulation, but the basic
concept of the revised version is this: initially, the Radar object is subscribed to attributes Latitude,
Longitude, and Altitude. Then it adds in the Temperature attribute for an interval. Then it
turns the Radar off for an interval (i.e. unsubscribes all attributes). Finally, it resubscribes to the original
three attributes for the rest of the simulation. All the subscription changes are performed in the method
CheckForSubscriptionChange. This method checks to see if the current time is one of the times
in its schedule of subscription changes. If so, it performs the change.

When the radar is turned off, it unsubscribes to all attributes. Thus, we can determine if the radar is
on by seeing if attribute Latitude is currently on the subscription list. This is done by using method
CurrentlySubscribedToAtton line 26. If it is on, then information from the proxy list is printed;
otherwise, it prints a message saying that the radar is off.

On line 39, an attempt to access the Temperature attribute is made. If the object is currently sub-
scribed to that attribute, the access will be “legal”. This is checked by calling LastAttribRef-
WasLegal on line 44. If the reference was legal, the current value of Temperature is printed.
Otherwise, an the message “Temp not subscribed to” is printed.

The last method to be explained is CheckForSubscriptionChange. This method contains a
schedule of four subscription changes to be performed. These demonstrate the use of various attribute
level subscription methods.

Recall that Init subscribed to Latitude, Longitude, and Altitude attributes (and only these).
The first subscription change (beginning on line 85) adds the Temperature attribute to the subscrip-
tion using the AddAttributeSubscriptionmethod. This increases the number of update events
scheduled on the subscriber, and also allows access to the Temperature attribute during the time
interval when the object is subscribed to that attribute. Although only one attribute is added, AddAt-
tributeSubscription permits an arbitrary number.

The second subscription change (beginning on line 95) unsubscribes the Temperature attribute by us-
ing RemoveAttributeSubscription. This returns the object’s attribute subscription to the initial

180 CHAPTER 9. USING OBJECT PROXIES

set of three attributes. Although only one attribute is removed, RemoveAttributeSubscription
permits an arbitrary number.

The third subscription change (beginning on line 106) unsubscribes all F-15 attributes using method
UnSubscribeAllAttributes. Throughout the interval during which it is not subscribed to any
F-15 attributes, the subscriber will not receive any attribute update events, and cannot access any F-15
attributes in its proxies. It can, however, discover F-15 instances should any be dynamically created.

The fourth (and last) subscription change (beginning on line 100) resubscribes to attributes Latitude,
Longitude, and Altitude, but does so in a different way than was done in Init. First, it subscribes
to all F-15 attributes using SubscribeAllAttributes. Then, it removes the Temperature
attribute with RemoveAttributeSubscription, thus achieving the desired attribute subscription.

9.6 Tips, Tricks, and Potholes

� Inheriting from S SpHLA is required for all objects that wish to participate in the SPEEDES
built-in publication or subscription services. However, it is not necessary to have all objects in a
simulation inherit from S SpHLA or from SpSimObj exclusively. There can be a mix of both
types in a simulation, and they will work together. But only the objects inheriting from S SpHLA
have the ability to automatically share their attributes.

Chapter 10

Proxy Attributes

The previous chapter introduced HLA simulation objects and object proxies. This chapter discusses all
of the built-in types that can be used as state variables when building HLA classes. The SPEEDES built-
in attribute classes are fully rollbackable and provide automated proxy update capability. The previous
chapter primarily showed these attributes from the publisher’s perspective, but these attribute types are
also used by the subscriber. Proxies delivered to subscribers contain these attributes. Therefore, it
is necessary for subscribers to understand them, at least to the extent that is necessary to extract the
received proxy data. This information is provided below with each attribute type description.

The attribute classes can be divided into two groups: static and dynamic attribute types. Static attributes
are like the built-in data types in most programming languages. They are assigned a particular value (or
values) and retain that state until reassigned. A dynamic attribute, on the other hand, contains a function,
� � � � , specifying the values of the attribute over a period of time.

10.1 Static Attribute Types

These are the simple attribute types that provide basic capabilities similar to the built-in types available
in C++. Besides automating updates, all the static attribute classes are rollbackable. Finally, all static
attributes provide a virtual method called outstream for writing the attribute to an ostream. This
means that each attribute type knows how to send a printable representation of itself to a file or the
terminal and the fact that outstream is virtual means that it can be redefined in derived classes, if
necessary.

10.1.1 Integer Numbers

Class INT ATTRIBUTE is for attributes that take on integer values. It mimics the C++ int type and
can be used in expressions just like an int. For example:

INT_ATTRIBUTE k = 12;
INT_ATTRIBUTE m = 41;

k = 3 * k + 5 * m - 27;
k++;
--m;
k += 117;

181

182 CHAPTER 10. PROXY ATTRIBUTES

Specifically, the following operators have been overloaded to make the INT ATTRIBUTE behave just
like a C++ integer: int(), =, ++ (prefix and postfix), -- (prefix and postfix), +=, -=, *=,
/=, %=, >>=, <<=, ˆ=, &=, and |=.

10.1.2 Floating Point Numbers

Class DOUBLE ATTRIBUTE is for attributes that take on double precision floating point values. It
mimics the C++ double type and can be used in expressions just like a double. For example:

DOUBLE_ATTRIBUTE x = 3.14;
DOUBLE_ATTRIBUTE y = -11.347;
double z = 33.33;

x *= (4.77 / y) + z;
y = (x + 4.2) * z;
z += x * x - y / 1.2;

Specifically, the following operators have been overloaded to make the DOUBLE ATTRIBUTE behave
like a C++ double: double(), =, ++ (prefix and postfix), -- (prefix and postfix), +=, -=, *=,
and /=.

10.1.3 Booleans

Class LOGICAL ATTRIBUTE is for boolean attributes, similar to the C++ bool type. It mimics the
bool type when used in expressions. SPEEDES defines the enum values LOGICAL FALSE and
LOGICAL TRUE for use with the LOGICAL ATTRIBUTE, which can take on the values of 0 and 1,
respectively. For example:

LOGICAL_ATTRIBUTE ready(LOGICAL_TRUE);
LOGICAL_ATTRIBUTE willing;
LOGICAL_ATTRIBUTE able = LOGICAL_TRUE;

if (ready != LOGICAL_TRUE) {
cout << "Program is NOT ready to accept input" << endl;

}

willing = able || ready;
if (ready && willing && able) {
getBusy();

}

Operators int() and = have been overloaded for class LOGICAL ATTRIBUTE.

10.1.4 Character Strings

Class STRING ATTRIBUTE is used for character strings, similar to a char array in C++. This class
allocates its own memory to store the assigned string. Thus, in the following example, the over-
loaded = operator allocates storage and does a string copy into this storage; it does not merely copy
a char pointer. This frees the user from having to keep track of the string storage assigned to a
STRING ATTRIBUTE.

10.1. STATIC ATTRIBUTE TYPES 183

// Characters are copied into attribute.
STRING_ATTRIBUTE BlimpName = "Hindenburg";

Available operators include =, ==, !=, and const char*(). The last of these converts the
STRING ATTRIBUTE into a const char* pointing to the allocated storage, thus allowing many
of the usual string operations available in C++. The only operation that automatically sends updates
and is rollbackable is the = operator. Note that casting away the const of the const char*() op-
erator allows many additional C++ string operations. However, doing this results in non-rollbackable
modifications to the STRING ATTRIBUTE and, therefore, is not recommended.

10.1.5 Objects as Attributes

HLA simulation objects can have attributes which consists of another object (non-simulation). These at-
tribute classes can then be composed of other proxy attributes. These user-defined attribute classes must
inherit from OBJECT ATTRIBUTE class. By using this class, users can create objects, which can then
become an attribute of a HLA simulation object just like an INT ATTRIBUTE,DOUBLE ATTRIBUTE,
etc.

The process of defining a child class of OBJECT ATTRIBUTE is very similar to the process of defining
a publishable HLA simulation object.

1. Describe the class in Objects.par and create a corresponding C++ class. This class will
inherit from OBJECT ATTRIBUTE (not S SpHLA).

2. Declare the attribute type name by using the SetClassName method in the class constructor.
As an alternative, the class name can be specified as a constructor input to OBJECT ATTRIBUTE.

3. Use macro DEFINE ATTRIBUTE to define all of the proxy attributes in the class.

4. Implement the virtual method GetSize for this class and all classes that may inherit from this
new object class. Method GetSize should return the size of the class in bytes.

As an example, suppose we had a Car HLA simulation object and it contains an Engine, which will
be an ENGINE ATTRIBUTE inheriting from OBJECT ATTRIBUTE. The ENGINE ATTRIBUTE it-
self will have proxy attributes on it (e.g. NumCylinders, RPMs, Temperature), which could
contain additional object attributes. This allows for an indefinite number of recursive layers, in which
an object could contain an object attribute, which itself contains an object attribute, etc. all of which
must inherit from OBJECT ATTRIBUTE. Figure 10.1 shows the Objects.par file for this Car and
Engine example. The Garage simulation object has been added in order to show how a subscriber object
accesses the all of the proxies that it receives.

// Define the Car’s attributes, including an Engine sub-object:
Car {

define string ModelName
define double Speed
define object Engine

}

// Define the Engine’s attributes:
Engine {

184 CHAPTER 10. PROXY ATTRIBUTES

define int NumCylinders
define int RPMs
define double Displacement
define double Temperature

}

Garage {
reference SUBSCRIBE Car

}

Figure 10.1: Objects.par File for OBJECT ATTRIBUTE Example

Example 10.1 shows the code for the new ENGINE ATTRIBUTE.

// ENGINE_ATTRIBUTE.H
#ifndef ENGINE_ATTRIBUTE_H
#define ENGINE_ATTRIBUTE_H

#include "SpObjProxy.H"
#include "SpExportAttribute.H"

class ENGINE_ATTRIBUTE : public OBJECT_ATTRIBUTE {
public:
ENGINE_ATTRIBUTE() : OBJECT_ATTRIBUTE("Engine") {

if (SpPoDataBase::DoNotAllocateMemoryInConstructor == 1) {
return;

}
/*
* Hook attributes into proxy system.
* Second argument is Objects.par name, not data member name!
*/

DEFINE_ATTRIBUTE(NumCylinders, "NumCylinders");
DEFINE_ATTRIBUTE(RevsPerMin, "RPMs");
DEFINE_ATTRIBUTE(EngineSize, "Displacement");
DEFINE_ATTRIBUTE(Temperature, "Temperature");

NumCylinders = 6;
RevsPerMin = 0;
EngineSize = 3.4;
Temperature = 20.2;

}

// NOTE: GetSize *MUST* be defined as follows.
virtual int GetSize(void) {return sizeof(*this);}

// Other methods can be defined.
void SetRevsPerMin(double rmp) {RevsPerMin = rmp;}
int GetRevsPerMin(void) {return RevsPerMin;}

void SetTemperature(double temp) {Temperature = temp;}
double GetTemperature(void) {return Temperature;}

private:
INT_ATTRIBUTE NumCylinders;
INT_ATTRIBUTE RevsPerMin;

10.1. STATIC ATTRIBUTE TYPES 185

DOUBLE_ATTRIBUTE EngineSize;
DOUBLE_ATTRIBUTE Temperature;

};
#endif

Example 10.1: ENGINE ATTRIBUTE Definition

This example shows the basic elements required when designing a user-defined attribute. The first
step is that the attribute must inherit from OBJECT ATTRIBUTE. When defining the attribute, pass
its name must be passed OBJECT ATTRIBUTE constructor. The name used here must be identical
to the name used for the object definition in Objects.par. In this example, the string “Engine”
is used. The next three lines are required, in order for the new attribute to be initialized correctly.
Part of checkpoint/restart allocates and deallocates objects. Since this phase is not part of the proxy
initialization, steps need to be taken to ensure that the proxy code is not executed, which is the purpose
of SpPoDataBase::DoNotAllocateMemoryInConstructor.

The DEFINE ATTRIBUTE is identical to what is used when defining attributes on an HLA object. Each
attribute in the new object attribute requires this. Once again, the first argument in DEFINE ATTRI-
BUTE is the name of the attribute found in this class. The second argument is the string name for this
attribute, as defined in Objects.par. The only other required entry for a user-defined attribute is the
definition of method GetSize.

Not shown in this example is the method outstream on OBJECT ATTRIBUTE. The default method
for outstream prints the data contained within the proxy. This includes the proxy name, the attribute
names, and the attribute values. Since outstream is a virtual method, users can override their object
attribute classes and customize their printed output.

The proxy definition file is fairly simple. It provides accessor methods to the engine proxy data for use
by subscribers.

// EngineProxy.H
#ifndef EngineProxy_H
#define EngineProxy_H

#include "SpObjProxy.H"

class EngineProxy : public SpObjProxy {
public:
EngineProxy() {

NumCylindersRef = GetReference("NumCylinders", "Engine");
RPMsRef = GetReference("RPMs", "Engine");
DisplacementRef = GetReference("Displacement", "Engine");
TemperatureRef = GetReference("Temperature", "Engine");

}
int GetNumCylinders() {return GetInt(NumCylindersRef);}
int GetRPMs() {return GetInt(RPMsRef);}
double GetDisplacement() {return GetFloat(DisplacementRef);}
double GetTemperature() {return GetFloat(TemperatureRef);}

private:
static int NumCylindersRef;
static int RPMsRef;
static int DisplacementRef;
static int TemperatureRef;

};
#endif

Example 10.2: Engine Proxy Definition

186 CHAPTER 10. PROXY ATTRIBUTES

Examples 10.3 and 10.4 show definition and implementation code for the Car simulation object (the
methods for that car have been broken out into separate files so that additional methods can easily be
added in later sections).

// S_Car.H
#ifndef S_Car_H
#define S_Car_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "ENGINE_ATTRIBUTE.H"

class S_Car : public S_SpHLA {
public:
S_Car(char* objClassName = "Car") : S_SpHLA(objClassName) {}

void Init() {
AddObjectAttributes();

}
void AddObjectAttributes();

private:
STRING_ATTRIBUTE ModelName;
DOUBLE_ATTRIBUTE Speed;
ENGINE_ATTRIBUTE Engine;

};
DEFINE_SIMOBJ(S_Car, 2, SCATTER);
#endif

Example 10.3: Car HLA Simulation Object Definition

// S_Car_AddObjectAttibutes.C
#include "SpGlobalFunctions.H"
#include "S_Car.H"
#include "CarProxy.H"
#include "EngineProxy.H"

int CarProxy::ModelNameRef;
int CarProxy::SpeedRef;
int CarProxy::EngineRef;

int EngineProxy::NumCylindersRef;
int EngineProxy::RPMsRef;
int EngineProxy::DisplacementRef;
int EngineProxy::TemperatureRef;

void S_Car::AddObjectAttributes() {
char name[64];

DEFINE_ATTRIBUTE(ModelName, "ModelName");
DEFINE_ATTRIBUTE(Speed, "Speed");
DEFINE_ATTRIBUTE(Engine, "Engine");

sprintf(name, "Car number %d", SpGetSimObjKindId());
ModelName = name;

10.1. STATIC ATTRIBUTE TYPES 187

Speed = 30.0 * (1 + SpGetSimObjKindId());
Engine.SetTemperature(20.1 * (1 + SpGetSimObjKindId()));
Engine.SetRevsPerMin(1000 * (1 + SpGetSimObjKindId()));

}
Example 10.4: Car HLA Simulation Object AddObjectAttributes Method

The definition and implementation for the Car simulation object should look fairly familiar. The only
new item introduced here is shown in Example 10.3, a user-defined attribute called ENGINE ATTRI-
BUTE. Example 10.4 initializes all of the attributes found on the Car.

Example 10.5 shows the code for the user-defined proxy for the ENGINE ATTRIBUTE.

// CarProxy.H
#ifndef CarProxy_H
#define CarProxy_H

#include "SpObjProxy.H"
#include "ENGINE_ATTRIBUTE.H"
#include "EngineProxy.H"

class CarProxy : public SpObjProxy {
public:
CarProxy() {

ModelNameRef = GetReference("ModelName", "Car");
SpeedRef = GetReference("Speed", "Car");
EngineRef = GetReference("Engine", "Car");

}
const char* GetModelName() {return GetString(ModelNameRef);}
double GetSpeed() {return GetFloat(SpeedRef);}
EngineProxy* GetEngine() {

ENGINE_ATTRIBUTE* engineAtt = (ENGINE_ATTRIBUTE *) Find(EngineRef);
return (EngineProxy *) engineAtt->GetObjProxy();

}

private:
static int ModelNameRef;
static int SpeedRef;
static int EngineRef;

};
#endif

Example 10.5: Car Proxy Definition

As usual, the car proxy provides accessors for the different attributes on the car. No new concepts are
introduced here except for the retrieval of the ENGINE ATTRIBUTE. This can be confusing because
the retrieval of a user-defined object attribute is a two-step process. The first step requires the use of
the Find method with the type casting of its return value to its appropriate user-defined object attribute
type (i.e. ENGINE ATTRIBUTE in this case). Once the object attribute has been found, then method
GetObjProxy must be called on that attribute in order to get its proxy (e.g. engine attribute proxy
shown in Example 10.2).

Example 10.6 and 10.7 show the code for the Garage definitions and implementation files, respectively.

// S_Garage.H
#ifndef S_Garage_H
#define S_Garage_H

188 CHAPTER 10. PROXY ATTRIBUTES

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Garage : public S_SpHLA {
public:
S_Garage(char* objClassName = "Garage") : S_SpHLA(objClassName) {}

void Init();
void Display();

};
DEFINE_SIMOBJ(S_Garage, 1, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(Garage_Display, S_Garage, Display);
#endif

Example 10.6: Garage HLA Simulation Object Definition

// S_Garage.C
#include "F_SpProxyItem.H"
#include "S_Garage.H"
#include "CarProxy.H"
#include "EngineProxy.H"

void S_Garage::Init() {
SCHEDULE_Garage_Display(0.0, SpGetObjHandle());

}

void S_Garage::Display() {
int i;
RB_queue* remoteProxyList; // Car Proxies in this case.

RB_cout << SpGetTime() << endl;
remoteProxyList = GetRemoteObjectProxies();
F_SpProxyItem* proxyItem = (F_SpProxyItem *) remoteProxyList->get_top();
for (i = 0; i < remoteProxyList->get_length(); ++i) {
CarProxy* carProxy = (CarProxy *) proxyItem->GetObjProxy();
EngineProxy* engProxy = carProxy->GetEngine();
RB_cout << carProxy->GetModelName() << endl

<< "Car:Speed= " << carProxy->GetSpeed() << endl
<< "Eng:Cylinders= " << engProxy->GetNumCylinders() << endl
<< "Eng:Displacement= " << engProxy->GetDisplacement() << endl
<< "Eng:RPMs= " << engProxy->GetRPMs() << endl
<< "Eng:Temperature= " << engProxy->GetTemperature() << endl
<< endl;

proxyItem = (F_SpProxyItem *) proxyItem->get_link();
}
RB_cout << endl;
SCHEDULE_Garage_Display(SpGetTime() + 1000.0, SpGetObjHandle());

}
Example 10.7: Garage HLA Simulation Object Implementation

The Garage simulation object shows how a subscribing object accesses its received proxies. This object
has one event called Garage Display that executes at � � ����� and every

� � � ����� seconds thereafter.
As explained in the previous section, the subscribing object gains access to the objects that it subscribed
to though its remote proxy list. Each proxy is pulled of the remote proxy list to be examined. For this

10.1. STATIC ATTRIBUTE TYPES 189

example, the Garage only received Car proxies. If it had subscribed to other object types, then it would
have to apply the appropriate type cast to each returned proxy. In this case, the returned proxy was type
cast to a CarProxy pointer at which time the convenience methods provided for the Car proxy can be
use to access its contents.

The final two files necessary to complete this example are shown in Examples 10.8 and 10.9.

// SpFreeObjProxy.C
#include "SpFreeObjProxy.H"
#include "CarProxy.H"
#include "EngineProxy.H"

enum {
CAR_PROXY_ID,
ENGINE_PROXY_ID,
N_FREE_PROXIES

};

void* newCarProxy(int quanity) {
return new CarProxy[quanity];

}
void* newEngineProxy(int quanity) {

return new EngineProxy[quanity];
}

SpFreeObjProxy::SpFreeObjProxy(int n) {
set_ntypes(n);
set_type("Car", CAR_PROXY_ID, newCarProxy,

sizeof(CarProxy), 4);
set_type("Engine", ENGINE_PROXY_ID, newEngineProxy,

sizeof(EngineProxy), 4);
}

Example 10.8: Free Object Proxy Implementation for Object Attribute Example

// Main.C
#include "SpMainPlugIn.H"
#include "S_Car.H"
#include "S_Garage.H"

void PlugInHLA();

int main(int argc, char **argv) {
PLUG_IN_SIMOBJ(S_Car);
PLUG_IN_SIMOBJ(S_Garage);

PLUG_IN_EVENT(Garage_Display);

PlugInHLA(); // Required plugin with proxies

ExecuteSpeedes(argc, argv);
}

Example 10.9: Main Implementation for Object Attribute Example

Since this example created two proxies, the implementation for SpFreeObjProxymust call method
set type for each proxy. The simulation object and event plug-ins are called by main.

190 CHAPTER 10. PROXY ATTRIBUTES

10.1.6 Lists

Class LIST ATTRIBUTE can be used to create unordered lists of objects. More precisely, this attribute
class stores an unordered list of pointers to objects attributes, all of which must have inherited from
the OBJECT ATTRIBUTE. The following methods or operator overloads are available for navigating
through a list and inserting or removing items from a list:

class LIST_ATTRIBUTE {
public:

int GetNumElements();
void* GetFirstElement();
void* GetLastElement();
void* operator ++ ();
void* operator -- ();
void operator +=(OBJECT_ATTRIBUTE* item);
void operator -=(OBJECT_ATTRIBUTE* item);

};

� GetNumElements:
Returns the number of items on the lists.

� GetFirstElement:
Returns the first item on the list. The return value must be type casted to its appropriate object
attribute type.

� GetLastElement:
Returns the last item on the list. The return value must be type casted to its appropriate object
attribute type.

� ++:
Gets the next element on the list. Its return value must be type casted to its appropriate object
attribute type.

� --:
Gets the previous item on the list. Its return value must be type casted to its appropriate object
attribute type.

� +=:
Inserts the item onto the list.

� -=:
Removes the item from the list.

The list attribute is a non-ordered list of objects which have inherited from OBJECT ATTRIBUTE.
These lists can only be traversed one element at a time in either a forward or reverse direction. As each
element is accessed, it must be type casted to its appropriate type.

The Car example has been modified to show how to create a list, modify and remove elements on the
list, and how a subscriber can examine the contents of the list. A list of Fuses has been added to this
example. Figure 10.2 shows the new Objects.par file.

// Define the Car’s attributes, including an Engine sub-object:
Car {

10.1. STATIC ATTRIBUTE TYPES 191

define string ModelName
define double Speed
define object Engine
define list FuseList

}

// Define the Engine’s attributes:
Engine {

define int NumCylinders
define int RPMs
define double Displacement
define double Temperature

}

// Define the Fuse’s attributes:
Fuse {

define int IdNumber
define logical State
define int Amperage

}

Garage {
reference SUBSCRIBE Car

}

Figure 10.2: Objects.par File for LIST ATTRIBUTE Example

The Car object in Objects.par has a new attribute on it called list. Notice that this is a generic
list of items (i.e. no type specification for items on the list). A new Fuse object has been added. The
Fuse object contains three attributes. These Fuse objects will be created and added to the list.

Examples 10.10 and 10.11 show the code for the Fuse object and the Fuse proxy, respectively.

// Fuse.H
#ifndef Fuse_H
#define Fuse_H

#include "SpObjProxy.H"
#include "SpExportAttribute.H"

class Fuse : public OBJECT_ATTRIBUTE {
public:
Fuse() : OBJECT_ATTRIBUTE("Fuse") {

if (SpPoDataBase::DoNotAllocateMemoryInConstructor == 1) {
return;

}
/*
* Hook attributes into proxy system:
* Second argument is Objects.par name, not data member name!
*/

DEFINE_ATTRIBUTE(IdNumber, "IdNumber");
DEFINE_ATTRIBUTE(State, "State");
DEFINE_ATTRIBUTE(Amperage, "Amperage");

IdNumber = -1;

192 CHAPTER 10. PROXY ATTRIBUTES

State = LOGICAL_TRUE;
Amperage = -2;

}

// NOTE: GetSize *MUST* be defined as follows:
virtual int GetSize(void) {return sizeof(*this);}

// Other methods can be defined:
void SetId(int id) {IdNumber = id;}
void SetState(int inState) {State = inState;}
void SetAmperage(int amp) {Amperage = amp;}

private:
INT_ATTRIBUTE IdNumber;
LOGICAL_ATTRIBUTE State; // 0 - Bad; 1 - Good
INT_ATTRIBUTE Amperage;

};
#endif

Example 10.10: Fuse Definition

// FuseProxy.H
#ifndef FuseProxy_H
#define FuseProxy_H

#include "SpObjProxy.H"

class FuseProxy : public SpObjProxy {
public:
FuseProxy() {

IdNumberRef = GetReference("IdNumber", "Fuse");
StateRef = GetReference("State", "Fuse");
AmperageRef = GetReference("Amperage", "Fuse");

}
int GetId() {return GetInt(IdNumberRef);}
int GetState() {return GetLogical(StateRef);}
int GetAmperage() {return GetInt(AmperageRef);}

private:
static int IdNumberRef;
static int StateRef;
static int AmperageRef;

};
#endif

Example 10.11: Fuse Proxy Definition

As stated earlier, any object that is inserted onto a LIST ATTRIBUTE must be derived from an OB-
JECT ATTRIBUTE. As shown above, the Fuse object is following this rule. As usual, the name of the
Fuse object is passed to the OBJECT ATTRIBUTE constructor, which is the same name found in the
Objects.par file. The three attributes defined in the Objects.par are also defined in this class
definition.

The proxy for the Fuse is shown in Example 10.11. This proxy definition is not presenting any new proxy
concepts. It simply is providing convenience accessor methods for the proxy data to subscriber(s).

Changes to the Car object are shown in Examples 10.12 through 10.14.

10.1. STATIC ATTRIBUTE TYPES 193

// S_Car.H
#ifndef S_Car_H
#define S_Car_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"
#include "ENGINE_ATTRIBUTE.H"

class S_Car : public S_SpHLA {
public:
S_Car(char* objClassName = "Car") : S_SpHLA(objClassName) {}

void Init() {
AddObjectAttributes();
AddListAttributes();

}
void AddObjectAttributes();
void AddListAttributes();
void RemoveFuseItem();

private:
STRING_ATTRIBUTE ModelName;
DOUBLE_ATTRIBUTE Speed;
ENGINE_ATTRIBUTE Engine;
LIST_ATTRIBUTE FuseList;

};
DEFINE_SIMOBJ(S_Car, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(Car_RemoveFuseItem, S_Car, RemoveFuseItem);
#endif

Example 10.12: Car HLA Simulation Object Definition

#include "SpGlobalFunctions.H"
#include "S_Car.H"
#include "Fuse.H"
#include "CarProxy.H"
#include "FuseProxy.H"

int CarProxy::FuseListRef;

int FuseProxy::IdNumberRef;
int FuseProxy::StateRef;
int FuseProxy::AmperageRef;

void S_Car::AddListAttributes() {
int i;
Fuse* fuseObj;
RB_SpRandom* random = SpGetRandom();

DEFINE_ATTRIBUTE(FuseList, "FuseList");

for (i = 0; i < 5; ++i) {
fuseObj = new Fuse;
fuseObj->SetId(i);

194 CHAPTER 10. PROXY ATTRIBUTES

fuseObj->SetState(random->GenerateInt(0, 1));
fuseObj->SetAmperage(5 * ((i + 1) + SpGetSimObjKindId()));
FuseList += fuseObj;

}
}

Example 10.13: Car HLA Simulation Object AddListAttributes Method

// S_Car_RemoveFuseItem.C
#include "SpGlobalFunctions.H"
#include "S_Car.H"
#include "Fuse.H"

void S_Car::RemoveFuseItem() {
int i = 0;
Fuse *fuseItem = (Fuse *) FuseList.GetFirstElement();
Fuse *tmpFuseItem;
while (fuseItem != NULL) {
if (3 == ++i) {

tmpFuseItem = fuseItem;
}
if (5 == i) {

fuseItem->SetAmperage(100);
}
fuseItem = (Fuse *) ++FuseList;

}
FuseList -= tmpFuseItem;

}
Example 10.14: Car HLA Simulation Object RemoveFuseItem Method

The Car class definition has two changes worth mentioning. The first is that the FuseList attribute has
been added to this class. The second change is the two methods added called AddListAttributes
and RemoveFuseItem. Method AddListAttributes adds the FuseList attribute to the proxy
framework and initializes the list. Method RemoveFuseItem will be turned into an event by the
DEFINE SIMOBJ EVENT macro. This method is used to show how to remove an item from the list
and how to modify an item on the list.

Example 10.13 shows the DEFINE ATTRIBUTE being used to add attribute FuseList to the proxy
framework. Afterwards, five Fuses are added to the list. Notice that each Fuse is allocated individually
on the heap with its own new call. The LIST ATTRIBUTE destructor runs through its list and calls
delete on each pointer (not delete[]). Therefore, if any of the items in the list were allocated as
part of an array (e.g. new Fuse[n]), or is not part of the heap (i.e. global, static, or local storage),
then the proxy memory manager will become corrupted. This usually results in the application running
incorrectly, perhaps even coring. Each Fuse is then initialized and added to the list by using the += list
operator.

Method RemoveFuseItem has been turned into event Car RemoveFuseItem, which will execute
at � � � � ����� . This method shows how to search through a list. List method GetFirstElement to
get the first item on the list. Then, each item on the list is examined in the while loop. The third
item is removed by the list operator -= and the fifth item is modified with methods on the Fuse. The
list operator ++ gets the next item on the list. The point of interest here is that the Car simulation
object (publisher) uses the actual methods on the Fuse object attribute to modify its contents and not the
method on the Fuse’s object proxy.

Code for the subscriber (i.e. Garage) is shown in Example 10.15.

10.1. STATIC ATTRIBUTE TYPES 195

// S_Garage.C
#include "F_SpProxyItem.H"
#include "S_Garage.H"
#include "CarProxy.H"
#include "EngineProxy.H"
#include "Fuse.H"
#include "FuseProxy.H"

void S_Garage::Init() {
SCHEDULE_Garage_Display(0.0, SpGetObjHandle());

}

void S_Garage::Display() {
int i;
RB_queue* remoteProxyList; // Car Proxies in this case.

RB_cout << SpGetTime() << endl;
remoteProxyList = GetRemoteObjectProxies();
F_SpProxyItem* proxyItem = (F_SpProxyItem *) remoteProxyList->get_top();
for (i = 0; i < remoteProxyList->get_length(); ++i) {
CarProxy* carProxy = (CarProxy *) proxyItem->GetObjProxy();
EngineProxy* engProxy = carProxy->GetEngine();
LIST_ATTRIBUTE* fuseList = carProxy->GetFuseList();
Fuse* fuseItem;
FuseProxy* fuseProxy;
RB_cout << carProxy->GetModelName() << endl

<< "Car:Speed= " << carProxy->GetSpeed() << endl
<< "Eng:Cylinders= " << engProxy->GetNumCylinders() << endl
<< "Eng:Displacement= " << engProxy->GetDisplacement() << endl
<< "Eng:RPMs= " << engProxy->GetRPMs() << endl
<< "Eng:Temperature= " << engProxy->GetTemperature() << endl;

fuseItem = (Fuse *) fuseList->GetFirstElement();
while (fuseItem != NULL) {

fuseProxy = (FuseProxy *) fuseItem->GetObjProxy();
RB_cout

<< "Fuse:Id= " << fuseProxy->GetId() << endl
<< "Fuse:State= " << fuseProxy->GetState() << endl
<< "Fuse:Amperage= " << fuseProxy->GetAmperage() << endl;

fuseItem = (Fuse *) ++(*fuseList);
}
RB_cout << endl;

proxyItem = (F_SpProxyItem *) proxyItem->get_link();
}
RB_cout << endl;
SCHEDULE_Garage_Display(SpGetTime() + 1000.0, SpGetObjHandle());

}
Example 10.15: Garage HLA Simulation Object Implementation

The code for displaying the previously defined Car and Engine attributes remained the same. New
code has been added for displaying the Fuse attribute. The first step is to get the pointer to the list
which contains the Fuses. This is done with the proxy convenience method GetFuseList. Once
the list is retrieved, the first item on the list is retrieved with list method GetFirstElement. Next,
a while loop is entered, which allows the Garage to access each item in the list. Since the Fuse is
an object attribute (i.e. a derived class from OBJECT ATTRIBUTE), method GetObjProxy must be

196 CHAPTER 10. PROXY ATTRIBUTES

called on the Fuse attribute in order to get the Fuse proxy (i.e. FuseProxy). Once this is done, then
the attributes on the Fuse’s proxy can be accessed by using the Fuse’s convenience accessor methods. It
is worth noting here that the subscriber cannot access the Fuse’s attributes directly with methods on the
fuse. Users must get the proxy for the fuse.

Also, not shown here is the implementation for class SpFreeObjProxy or main. The Fuse proxy
(i.e. FuseProxy) has been added to SpFreeObjProxy and event Car RemoveFuseItem has
been plugged into the SPEEDES framework in main.

When this example executes at � � ����� the Garage prints out all of the Car attributes, including the
values for the five Fuses. At � � � � ����� , the third Fuse is removed and the fifth item Amperage was
changed to 100. At � � � � � ����� and all subsequent displays by the Garage, the Fuse list only contains
four Fuse’s. The Amperage for the fourth Fuse (was fifth) will now display 100.

10.1.7 Binary Buffer Data (Character Pointer to Non-String Data)

Class BINARY BUFFER ATTRIBUTEworks on raw buffer of data. This attribute is ideal for use with
images, compressed files, specially formatted message data, etc. The following methods are available
on the BINARY BUFFER ATTRIBUTE:

void CopyIntoBuffer(char* srcBuff, int srcBytes)
const char* GetBuffPtr()
int GetBuffSize()

� CopyIntoBuffer:
Copies raw byte data into the attribute. Parameter srcBuff is a pointer to data that contains
srcBytes of data. It then allocates storage and copies the data into the new buffer. This method
is rollbackable and sends automatic updates to subscribers. The code below shows an example of
how to set data in a BINARY BUFFER ATTRIBUTE.

BINARY_BUFFER_ATTRIBUTE secretMsgBuff;
int msgBytes;

// Encrypts msgData and returns number of bytes via msgBytes arg.
char* msg = encryptSecretMsg(msgData, &msgBytes);

// Rollbackably change attribute; distribute to subscribers.
secretMsgBuff.CopyIntoBuffer(msg, msgBytes);

� GetBuffPtr:
Returns a character pointer to the data in the buffer.

� GetBuffSize:
Returns the size of the data in the buffer in bytes.

Subscribers retrieve the data with method GetBuffPtr. It is assumed that the receiver knows how to
interpret the raw data. Therefore, the buffer pointer and buffer size are the only information that class
BINARY BUFFER ATTRIBUTE provides. The code below shows an example of how to retrieve data
in a BINARY BUFFER ATTRIBUTE.

BINARY_BUFFER_ATTRIBUTE* msgBuff;

10.1. STATIC ATTRIBUTE TYPES 197

msgBuf = (BINARY_BUFFER_ATTRIBUTE *)
spyObjProxy->Find("SecretMsgBuff");

char* encryptedMsg = msgBuf->GetBuffPtr();
int msgBytes = msgBuf->GetBuffSize();

char* plainText = decryptSecretMsg(encryptedMsg, msgBytes);

The same warning regarding the STRING ATTRIBUTE applies to this attribute: if the publisher obtains
a pointer into the attribute’s data and alters the data, these changes will not be distributed to subscribers,
nor will they be rollbackable. The only operation that automatically performs these tasks is method
CopyIntoBuffer.

10.1.8 Static Positions

Class POSITION ATTRIBUTE provides storage for a fixed object’s position (i.e. a position that does
not move), typically described by a latitude, longitude, and altitude triplicate. By “fixed” we do not
mean that this attributes value must remain constant and can never change throughout a simulation.
They can be changed and all changes will be sent to the appropriate subscribers. However, if the object
is going to have a continuous motion, it is better to use the DYNAMIC POSITION ATTRIBUTE (see
Section 10.2.4).

The POSITION ATTRIBUTE has three modes, corresponding to the three coordinate systems it can
work with. The default is called EARTH coordinates. In this mode, you set the position by passing
the latitude, longitude, and altitude into method SetEARTH. The units are radians for latitude and
longitude, and kilometers (km) above sea level for altitude. SetEARTH is a rollbackable operation and,
when used, causes attribute updates to be sent out to all subscribers. The GetEARTH method retrieves
the current latitude, longitude, and altitude.

The current mode (i.e. coordinate system) can be retrieved from a POSITION ATTRIBUTE by the
method GetPositionType. The three possible return values are EARTH, ECI, or ECR (defined
constants). As already defined, EARTH corresponds to a latitude, longitude, and altitude triplicate. ECI
and ECR correspond to “Earth Centered Inertial” and “Earth Centered Rotating” coordinate systems.
These are Cartesian coordinate systems whose origin is at the center of the earth. ECI is a coordinate
system that is fixed in space (i.e. never moves) with its z axis pointing through the North Pole. Earth is
then rotating around the z axis. Therefore, a fixed position on earth ECI coordinates are always changing
as time increases. ECR is a coordinate system that is fixed to earth with its z axis also pointing through
the North Pole. However, as the earth rotates, the ECR coordinate system rotates, as well. Therefore, a
fixed position on a rotating earth never has its coordinates change as time advances. The units used in
the ECR and ECI coordinate systems are km. EARTH is similar to ECR in that the coordinate system is
fixed to earth.

The POSITION ATTRIBUTE has methods for inserting or extracting the position in any of the three
coordinate systems. The SetEARTH method takes latitude, longitude, and altitude arguments and in-
serts them into the attribute. It also sets the position type to EARTH. The SetECR and SetECI take
x, y, and z arguments, inserts them into the attribute, and sets the position type to ECR or ECI, re-
spectively. Positions can be extracted in any of the three forms, regardless of the current setting of
the coordinate system or position type. If the requested coordinate system is different from the current
form, a conversion is done automatically. Thus, GetEARTH, GetECR, or GetECI, can be invoked
at anytime and the position will be retrieved in the correct frame of reference. The GetECI method
requires a time argument (seconds past midnight) in order to do the conversion. See the SPEEDES
API Reference Manual for additional details explanation). Obviously, it is most efficient to store and

198 CHAPTER 10. PROXY ATTRIBUTES

extract position in the same coordinate system, since then no conversion is needed. Also, whenever the
current coordinate system is ECI, you must provide a time argument to GetEARTH or GetECR since
the EARTH or ECR coordinate systems vary with time, relative to the ECI system. The units on the time
argument are seconds past midnight.

The set and get methods on a POSITION ATTRIBUTE are shown below:

void SetEARTH(double lat, double lon, double alt)
void SetECI(double position[3])
void SetECR(double position[3])
void GetEARTH(double& lat, double& lon, double& alt, double t = 0.0)
void GetECI(double position[3], double t = 0.0)
void GetECR(double position[3], double t = 0.0)

Parameter Description
lat Latitude element for the simulation object position.
lon Longitude element for the simulation object position.
alt Altitude element for the simulation object position.
position Simulation object position triplicate, corresponding to the ���������	��
 position of the

object.
t Time past midnight for which the position is to be returned.

Table 10.1: Static Position Get and Set Methods

The Car example has been expanded to include attribute types of BINARY BUFFER ATTRIBUTE and
POSITION ATTRIBUTE. Figure 10.3 shows the new Objects.par file.

// Define the Car’s attributes, including an Engine sub-object:
Car {

define string ModelName
define double Speed
define object Engine
define list FuseList
define binary_buffer Message
define position StaticPosition

}

// Define the Engine’s attributes:
Engine {

define int NumCylinders
define int RPMs
define double Displacement
define double Temperature

}

// Define the Fuse’s attributes:
Fuse {

define int IdNumber
define logical State
define int Amperage

}

Garage {

10.1. STATIC ATTRIBUTE TYPES 199

reference SUBSCRIBE Car
}

Figure 10.3: Objects.par File for BINARY BUFFER ATTRIBUTE and POSITION ATTRIBUTE

The Objects.par file shows two new attributes on the Car object called Message and Static-
Position. The new code to support these two attributes is shown in Examples 10.16 and 10.17.

// S_Car.H
#ifndef S_Car_H
#define S_Car_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"
#include "ENGINE_ATTRIBUTE.H"

class S_Car : public S_SpHLA {
public:
S_Car(char* objClassName = "Car") : S_SpHLA(objClassName) {}

void Init() {
AddObjectAttributes();
AddListAttributes();
AddPositionAttributes();

}
void AddObjectAttributes();
void AddListAttributes();
void AddPositionAttributes();
void RemoveFuseItem();

private:
STRING_ATTRIBUTE ModelName;
DOUBLE_ATTRIBUTE Speed;
ENGINE_ATTRIBUTE Engine;
LIST_ATTRIBUTE FuseList;
BINARY_BUFFER_ATTRIBUTE Message;
POSITION_ATTRIBUTE StaticPosition;

};
DEFINE_SIMOBJ(S_Car, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(Car_RemoveFuseItem, S_Car, RemoveFuseItem);
#endif

Example 10.16: Car HLA Simulation Object Definition

// S_Car_AddPositionAttributes.C
#include "SpGlobalFunctions.H"
#include "S_Car.H"

#include "CarProxy.H"

int CarProxy::MessageRef;
int CarProxy::StaticPositionRef;

void S_Car::AddPositionAttributes() {

200 CHAPTER 10. PROXY ATTRIBUTES

char tempString[] = "Test Binary Attribute Data";
double position[3] = {1.0, 2.0, 3.0};

DEFINE_ATTRIBUTE(Message, "Message");
DEFINE_ATTRIBUTE(StaticPosition, "StaticPosition");

Message.CopyIntoBuffer(tempString, strlen(tempString) + 1);
StaticPosition.SetECR(position);

}
Example 10.17: Car HLA Simulation Object AddPositionAttributes Method

The Car definition file adds attributes Message and StaticPosition as types BINARY BUFFER-
ATTRIBUTE and POSITION ATTRIBUTE, respectively. Method AddPositionAttributes is

new to this class. It is responsible for initializing the two new attributes.

Method AddPositionAttributes has been added to Init (not shown here) so that the new
attributes are initialized. This method registers the attributes Message and StaticPosition to
the proxy framework. The binary buffer is initialized with the string “Test Binary Attribute
Data”. Since this is a string, the string attribute would have been more appropriate. However, for
demonstration purposes, the binary attribute was initialized to a string. This method also initializes the
Car’s static position to � � ��� � � ��� �� ����� .
Next, the Car’s proxy needs to be modified, as shown in Example 10.18.

// CarProxy.H
#ifndef CarProxy_H
#define CarProxy_H

#include "SpObjProxy.H"
#include "ENGINE_ATTRIBUTE.H"
#include "EngineProxy.H"

class CarProxy : public SpObjProxy {
public:
CarProxy() {

ModelNameRef = GetReference("ModelName", "Car");
SpeedRef = GetReference("Speed", "Car");
EngineRef = GetReference("Engine", "Car");
FuseListRef = GetReference("FuseList", "Car");
MessageRef = GetReference("Message", "Car");
StaticPositionRef = GetReference("StaticPosition", "Car");

}
const char* GetModelName() {return GetString(ModelNameRef);}
double GetSpeed() {return GetFloat(SpeedRef);}
EngineProxy* GetEngine() {

ENGINE_ATTRIBUTE* engineAtt = (ENGINE_ATTRIBUTE *) Find(EngineRef);
return (EngineProxy *) engineAtt->GetObjProxy();

}
LIST_ATTRIBUTE* GetFuseList() {return GetList(FuseListRef);}
const char* GetBinaryBuffer(int& size) {

BINARY_BUFFER_ATTRIBUTE* msgBuff = (BINARY_BUFFER_ATTRIBUTE *)
Find(MessageRef);

size = msgBuff->GetBuffSize();
return msgBuff->GetBuffPtr();

}

10.1. STATIC ATTRIBUTE TYPES 201

void GetEARTH(double pos[3], double time = 0.0) {
GetPosition(StaticPositionRef, pos, EARTH, time);

}
void GetECR(double pos[3], double time = 0.0) {

GetPosition(StaticPositionRef, pos, ECR, time);
}
void GetECI(double pos[3], double time = 0.0) {

GetPosition(StaticPositionRef, pos, ECI, time);
}

private:
static int ModelNameRef;
static int SpeedRef;
static int EngineRef;
static int FuseListRef;
static int MessageRef;
static int StaticPositionRef;

};
#endif

Example 10.18: Car Proxy Definition

This example illustrates how to extract binary data from a BINARY BUFFER ATTRIBUTE using its
method GetBuffPtr. This example also has three methods for getting the object’s static position, one
for each coordinate system of EARTH, ECR, and ECI.

The last step shown here is to add code to the Garage simulation object so that it can print the values for
its received message and position. The new implementation for the Garage is shown in Example 10.19.

// S_Garage.C
#include "F_SpProxyItem.H"
#include "S_Garage.H"
#include "CarProxy.H"
#include "EngineProxy.H"
#include "Fuse.H"
#include "FuseProxy.H"

void S_Garage::Init() {
SCHEDULE_Garage_Display(0.0, SpGetObjHandle());

}

void S_Garage::Display() {
int i;
RB_queue* remoteProxyList; // Car Proxies in this case.
const char* msg;
int msgSize;
double position[3];

RB_cout << SpGetTime() << endl;
remoteProxyList = GetRemoteObjectProxies();
F_SpProxyItem* proxyItem = (F_SpProxyItem *) remoteProxyList->get_top();
for (i = 0; i < remoteProxyList->get_length(); ++i) {
CarProxy* carProxy = (CarProxy *) proxyItem->GetObjProxy();
EngineProxy* engProxy = carProxy->GetEngine();
LIST_ATTRIBUTE* fuseList = carProxy->GetFuseList();
Fuse* fuseItem;
FuseProxy* fuseProxy;

202 CHAPTER 10. PROXY ATTRIBUTES

RB_cout << carProxy->GetModelName() << endl
<< "Car:Speed= " << carProxy->GetSpeed() << endl
<< "Eng:Cylinders= " << engProxy->GetNumCylinders() << endl
<< "Eng:Displacement= " << engProxy->GetDisplacement() << endl
<< "Eng:RPMs= " << engProxy->GetRPMs() << endl
<< "Eng:Temperature= " << engProxy->GetTemperature() << endl;

fuseItem = (Fuse *) fuseList->GetFirstElement();
while (fuseItem != NULL) {

fuseProxy = (FuseProxy *) fuseItem->GetObjProxy();
RB_cout

<< "Fuse:Id= " << fuseProxy->GetId() << endl
<< "Fuse:State= " << fuseProxy->GetState() << endl
<< "Fuse:Amperage= " << fuseProxy->GetAmperage() << endl;

fuseItem = (Fuse *) ++(*fuseList);
}
msg = carProxy->GetBinaryBuffer(msgSize);
carProxy->GetECR(position);
RB_cout << "Car:Message= " << msg << endl

<< "Car:Position[0]= " << position[0] << endl
<< "Car:Position[1]= " << position[1] << endl
<< "Car:Position[2]= " << position[2] << endl;

RB_cout << endl;

proxyItem = (F_SpProxyItem *) proxyItem->get_link();
}
RB_cout << endl;
SCHEDULE_Garage_Display(SpGetTime() + 1000.0, SpGetObjHandle());

}
Example 10.19: Garage HLA Simulation Object Implementation

New code for printing the binary buffer and position attribute data was added after the Fuse output
section. Since these items are attributes of the Car, the Car proxy must be used when accessing these
data values.

When the example executes, in addition to the previously explained output data, the message is printed
out (i.e. “Test Binary Attribute Data”) and the ECR position of � � ��� � � ��� �� ����� .

10.2 Dynamic Attribute Types

As opposed to the static attribute type discussed in the preceding sections, dynamic attributes can be
preprogrammed to take different values as simulation time advances. This allows dynamic attribute
types to be specified as a function, � � � � , that defines the values attributes can take on over intervals of
time (i.e. � � ��������� �	��
������� � � � � � ��� ��������� ��� �������).

There are dynamic attribute type equivalents for integers, booleans, doubles, and positions. Perhaps
the most important of these attributes is the dynamic position attribute. If a simulation object updated
its position at regular time intervals and the position consisted of �� �"! ��# � components for position,
velocity, and acceleration, then all subscribers would receive these updated position when they were
made. This would cause publisher to have to constantly update their position, and subscribers would
constantly receive these position updates causing them to rollback. If the simulation object path is known
in advance, then the positions can be preprogrammed during initialization as a position equation as a
function of time. This preprogrammed equation could then be delivered to all of the subscribers through
the proxy delivery system. Now, whenever a subscriber wants to know the position of a simulation object

10.2. DYNAMIC ATTRIBUTE TYPES 203

for which it has its proxy, it can simply ask for the position at some point in time, thus not causing any
rollbacks.

For example, consider an integer step function, 	 � � � , over the interval � ����� � � ����� defined as follows:

	 � � ���
��� ��

� � ����� � � � � ���
� � � ��� � � � � � �
� � � � � � � � � ���

This equation specifies the value of 	 � � � over three different time intervals. In general, users that create
dynamic attributes determine the value (or equation) of the output data during specific time intervals.
Once this is determined, the data for each time interval is added to the dynamic attribute.

10.2.1 Basic Concepts

The basic dynamic attribute consists of a list of values or an equation of values. When a request is made
for the attribute at a certain time, the list is searched for the interval that is specified by the requested
time, and the data value at this time is returned. For example, consider the equation 	 � � � above. For
this example, three entries (i.e. dynamic items) have to be made in order to specify all of the data for
this equation. These values are 10 between the range of ����� � � � � ��� , 15 between the range of

� ��� � � � � � � , and 50 between the range of � � � � � � � ��� . Once the dynamic attribute is defined,
then its value can be queried at a certain time. For example, if 	 � � � is queried at 1.5, then the dynamic
attribute would return 10 for its value.

All dynamic attribute’s inheritance chain, consist of a class called BASE DYNAMIC ATTRIBUTE,
which then inherits from LIST ATTRIBUTE. Therefore, all dynamic attributes have the same API as
list attribute. Dynamic attributes use the list attribute += and -= operators to add and remove dynamic
items from the list. Class BASE DYNAMIC ATTRIBUTE adds some additional functionality, which is
shown below:

class BASE_DYNAMIC_ATTRIBUTE : LIST_ATTRIBUTE {
public:

SpDynItem* FindDynamicItem(double time);
SpDynItem* FindDynamicItem(int id);
double GetStartTime();
double GetEndTime();
void GetTimeInterval(double& startTime, double& endTime);
void outstream(ostream& out, int indentLevel);

};

� FindDynamicItem:
Returns a pointer to the dynamic item. The item returned will be based on if there is an interval
defined for the time specified, otherwise, NULL is returned. If an integer id is supplied, then the
item with this id is returned, otherwise, NULL is returned.

� GetStartTime:
Returns the minimum start time of all dynamic items loaded onto the dynamic attribute list.

� GetEndTime:
Returns the maximum end time of all dynamic items loaded onto the dynamic attribute list.

204 CHAPTER 10. PROXY ATTRIBUTES

� GetTimeInterval:
Returns the minimum and maximum times for which the attribute contains data. That is start-
Time will be set to GetStartTime, and endTime will be set to GetEndTime.

� outstream:
This virtual method prints out the list of dynamic items contained on the dynamic attribute list.
The indentLevel argument controls the indentation level (five spaces per level).

Dynamic items are added to the dynamic attribute list. Each built-in dynamic attribute has one or more
dynamic items which can be used to build the behavior of the dynamic attribute. All dynamic items
inherit from the SpDynItem. This class essentially consists of a start time, end time, and an integer id.
All dynamic items have the following API.

class SpDynItem {
public:

virtual void SetStartTime(double startTime);
double GetStartTime();

virtual void SetEndTime(double endTime);
double GetEndTime();
int GetCountId();

};

� SetStartTime:
Sets this dynamic item’s start time to startTime.

� GetStartTime:
Returns the start time for this dynamic item.

� SetEndTime:
Sets this dynamic item’s end time to endTime.

� GetEndTime:
Returns the end time for this dynamic item.

� GetCountId:
Returns the id for the dynamic item.

As shown in Section 10.1.6, items to be inserted on lists, in general, are allocated from memory with
new and deallocated with delete. Allocating and deallocating memory during run time can be an
expensive operation. In order to minimize these affects, all dynamic attributes are preallocated and saved
on a dynamic attributes free list (i.e. SpFreeDynAttributes). Free lists contain two functions that
are used to retrieve and return items from the free list called:

C_ITEM* RB_FREE_NEW (C_FREE_LIST* freelist, int type)
void RB_FREE_DELETE (C_FREE_LIST* freelist, C_ITEM* object)

� RB FREE NEW:
This function returns an item off of the freelist as specified by type. In the case of the
dynamic attribute free list, it returns a dynamic attribute (which was derived from SpDynItem
which was derived from C ITEM).

10.2. DYNAMIC ATTRIBUTE TYPES 205

� RB FREE DELETE:
Returns the dynamic attribute back to the free list.

Dynamic attributes are built by placeing dynamic attribute items onto the attribute. Dynamic attribute
items are retrieved and returned from SpFreeDynAttributesusing RB FREE NEW and RB FREE-
DELETE, respectively. Table 10.2 shows a list of built-in dynamic attribute items and their respective

enumeration identifier. The first column specifies the available types, which are discuss in more detail
in the following sections. The second column specifies what dynamic attribute types are available
in SPEEDES. These items are initialized and inserted onto the dynamic attribute. The third column
specifies the name to use with the dynamic attribute free list in order to retrieve the desired dynamic
attribute item.

206 CHAPTER 10. PROXY ATTRIBUTES

Attribute
Type Dynamic Attribute Item Free List Identifier type

integer DYNAMIC INT CONSTANT DYNAMIC INT CONSTANT ID
double DYNAMIC DOUBLE CONSTANT DYNAMIC DOUBLE CONSTANT ID
boolean DYNAMIC DOUBLE CONSTANT DYNAMIC LOGICAL CONSTANT ID
one DYNAMIC POLY 1 DYNAMIC POLY 1 ID
dimensional DYNAMIC POLY 2 DYNAMIC POLY 2 ID
functions DYNAMIC POLY 3 DYNAMIC POLY 3 ID

DYNAMIC POLY 4 DYNAMIC POLY 4 ID
DYNAMIC POLY 5 DYNAMIC POLY 5 ID
DYNAMIC POLY 6 DYNAMIC POLY 6 ID
DYNAMIC POLY 7 DYNAMIC POLY 7 ID
DYNAMIC POLY 8 DYNAMIC POLY 8 ID
DYNAMIC POLY 9 DYNAMIC POLY 9 ID
DYNAMIC POLY 10 DYNAMIC POLY 10 ID
DYNAMIC SPLINE 3 DYNAMIC SPLINE 3 ID
DYNAMIC SPLINE 6 DYNAMIC SPLINE 6 ID
DYNAMIC COMPLEX EXPONENTIAL DYNAMIC COMPLEX EXPONENTIAL ID
DYNAMIC EXPONENTIAL DYNAMIC EXPONENTIAL ID
DYNAMIC EXTRAPOLATE DYNAMIC EXTRAPOLATE ID
SPLINE3 MOTION SPLINE3 MOTION ID
SPLINE6 MOTION SPLINE6 MOTION ID

position POLY 1 MOTION POLY 1 MOTION ID
POLY 2 MOTION POLY 2 MOTION ID
POLY 3 MOTION POLY 3 MOTION ID
POLY 4 MOTION POLY 4 MOTION ID
POLY 5 MOTION POLY 5 MOTION ID
POLY 6 MOTION POLY 6 MOTION ID
POLY 7 MOTION POLY 7 MOTION ID
POLY 8 MOTION POLY 8 MOTION ID
POLY 9 MOTION POLY 9 MOTION ID
POLY 10 MOTION POLY 10 MOTION ID
GREAT CIRCLE GREAT CIRCLE ID
RHUMB LINE RHUMB LINE ID
Elliptical Elliptical ID
CIRCULAR ORBIT CIRCULAR ORBIT ID
CONSTANT MOTION ID CONSTANT MOTION ID
LOITER MOTION ID LOITER MOTION ID
EXTRAPOLATE MOTION ID EXTRAPOLATE MOTION ID

Table 10.2: Dynamic Attribute Identifiers

10.2.2 Dynamic Integers, Doubles and Booleans

When an integer, double, or boolean data values change in a predetermined or scripted fashion over time,
then these behaviors can be modeled by using one of the built-in types of DYNAMIC INT ATTRIBUTE,
DYNAMIC DOUBLE ATTRIBUTE, or DYNAMIC LOGICAL ATTRIBUTE. The basic method for using
any of these attributes is the same. Therefore, only the procedure for using an integer is described below
and if another type is desired (i.e. double or boolean), simply exchange “INTEGER” with “DOUBLE”
or “LOGICAL”.

1. Add an attribute whose type is dynamic int to the appropriate class definition in file Ob-

10.2. DYNAMIC ATTRIBUTE TYPES 207

jects.par. For doubles or booleans, add dynamic double or dynamic logical, re-
spectively (e.g. lines 3, 4, and 5 in Figure 10.4).

2. Create a DYNAMIC INT ATTRIBUTE type attribute on the simulation object.

3. Use DEFINE ATTRIBUTE to associate the simulation object with the proxy framework in the
simulation object’s Init method.

4. Use type DYNAMIC INT CONSTANT ID to retrieve a DYNAMIC INT CONSTANT from the free
dynamic attribute list.

5. Initialize the dynamic attribute by:

(a) Set the data value for DYNAMIC INT CONSTANT. Use method Set.

(b) Set the start time for DYNAMIC INT CONSTANT. Use method SetStartTime.

(c) Set the end time for DYNAMIC INT CONSTANT. Use method SetEndTime.

6. Insert the DYNAMIC INT CONSTANT onto the DYNAMIC INT ATTRIBUTE list with += oper-
ator.

7. Repeat steps 4 through 6 for each data point to be added to the dynamic integer.

For example, consider the previous 	 � � � example repeated below for convenience:

	 � � ���
��� ��

� � ����� � � � � ���
� � � ��� � � � � � �
� � � � � � � � � ���

The built-in type of DYNAMIC INT ATTRIBUTEwould be a perfect fit for this type of equation. Three
DYNAMIC INT CONSTANT items are retrieved from the free dynamic attribute list (i.e. FreeDy-
namicAttributes). Each DYNAMIC INT CONSTANT is initialized with its appropriate magnitude,
start, and end times. Insert the DYNAMIC INT CONSTANT into the DYNAMIC INT ATTRIBUTE list
using the += operator.

Notice at time 1.8 and 3.2, that there is a discontinuity in 	 � � � . What would happen if users asked for
the value of 	 � � � at � � � ��� . The current behavior of the dynamic attribute is undefined at this point. In
the case of step functions, this is problematic. In other cases, such as motion types, it is possible and
often wise to define the dynamic attribute values such that the end point of one dynamic attribute item
is the starting point of the next dynamic attribute item.

Also, what happens if the time intervals overlap or there are gaps? Behavior in regions whose intervals
overlap is undefined and the returned data value is indeterminate. Attributes whose definitions contain
gaps will produce an error if access is attempted in a gap.

As with static attributes, proxies convenience methods can be created to assist the subscribers when ac-
cessing the data on their received proxies. Accessing the remote proxy list and retrieving each proxy on
the list is identical to what has already been described. Examples showing how to use the attribute types
of DYNAMIC INT ATTRIBUTE, DYNAMIC DOUBLE ATTRIBUTE, and DYNAMIC LOGICAL AT-
TRIBUTE are shown below.

The Car and Garage simulation objects have been modified to show the usage of DYNAMIC INT-
ATTRIBUTE, DYNAMIC DOUBLE ATTRIBUTE, and DYNAMIC LOGICAL ATTRIBUTE. The new
Objects.par file is shown in Figure 10.4.

208 CHAPTER 10. PROXY ATTRIBUTES

1 Car {
2 define string ModelName
3 define dynamic_int Speed
4 define dynamic_double RadioFrequency
5 define dynamic_logical IgnitionState
6 }

7 Garage {
8 reference SUBSCRIBE Car
9 }

Figure 10.4: Objects.par File for Dynamic Base Type Example

Each of the previously discussed dynamic attribute is represented here. This example builds dynamic
attributes in � � ����� second intervals. The Garage simulation object examines each car object’s attributes,
and prints out their values. The Garage does not examine the attributes at the interval transition points.
Examples 10.20 through 10.22 show the definition and implementation for the Car simulation object.

// S_Car.H
#ifndef S_Car_H
#define S_Car_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Car : public S_SpHLA {
public:
S_Car(char* objClassName = "Car") : S_SpHLA(objClassName) {}

void Init() {
InitDynamicBaseTypes();

}
void InitDynamicBaseTypes();
void ChangeDynamicBaseTypes();

private:
STRING_ATTRIBUTE ModelName;
DYNAMIC_INT_ATTRIBUTE Speed;
DYNAMIC_DOUBLE_ATTRIBUTE RadioFrequency;
DYNAMIC_LOGICAL_ATTRIBUTE IgnitionState;

};
DEFINE_SIMOBJ(S_Car, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(Car_ChangeDynamicBaseTypes,

S_Car, ChangeDynamicBaseTypes);
#endif

Example 10.20: Car HLA Simulation Object Definition

The class definition creates three attributes, which will be used to illustrate how to create and use dy-
namic attributes. Method InitDynamicBaseTypes will be used to initialize the attributes on this
class. Method ChangeDynamicBaseTypes is turned into event Car ChangeDynamicBase-
Types. This event is used to illustrate how items on a dynamic attribute are removed and modified.

10.2. DYNAMIC ATTRIBUTE TYPES 209

// S_Car_InitDynamicBaseTypes.C
#include "SpGlobalFunctions.H"
#include "SpFreeDynAttributes.H"
#include "RB_SpFrameworkFuncs.H"
#include "SpDynObjs.H"
#include "S_Car.H"
#include "CarProxy.H"

int CarProxy::ModelNameRef;
int CarProxy::SpeedRef;
int CarProxy::RadioFrequencyRef;
int CarProxy::IgnitionStateRef;

void S_Car::InitDynamicBaseTypes() {
char name[64];
int speed;
double rFreq;
double i;
double stepSize = 300.0;
DYNAMIC_INT_CONSTANT* intItem;
DYNAMIC_DOUBLE_CONSTANT* doubleItem;
DYNAMIC_LOGICAL_CONSTANT* logicalItem;

DEFINE_ATTRIBUTE(ModelName, "ModelName");
DEFINE_ATTRIBUTE(Speed, "Speed");
DEFINE_ATTRIBUTE(RadioFrequency, "RadioFrequency");
DEFINE_ATTRIBUTE(IgnitionState, "IgnitionState");

sprintf(name, "Car number %d", SpGetSimObjKindId());
ModelName = name;
speed = 30 * (1 + SpGetSimObjKindId());
rFreq = 100.0;
for (i = 50.0; i < 3700.0; i = i + stepSize) {
/*
* Retrieve a dynamic integer from dynamic attribute free list.
* Initialize its value.
*/

intItem = (DYNAMIC_INT_CONSTANT *)
RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_INT_CONSTANT_ID);

intItem->Set(speed % 60);
intItem->SetStartTime(i);
intItem->SetEndTime(i + stepSize);
Speed += intItem;

/*
* Retrieve a dynamic double from dynamic attribute free list.
* Initialize its value.
*/

doubleItem = (DYNAMIC_DOUBLE_CONSTANT *)
RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_DOUBLE_CONSTANT_ID);

doubleItem->Set((double) (((int) rFreq) % 100));
doubleItem->SetStartTime(i);
doubleItem->SetEndTime(i + stepSize);
RadioFrequency += doubleItem;

210 CHAPTER 10. PROXY ATTRIBUTES

logicalItem = (DYNAMIC_LOGICAL_CONSTANT *)
RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_LOGICAL_CONSTANT_ID);

/*
* Retrieve a dynamic logical from dynamic attribute free list.
* Initialize its value.
*/

logicalItem->Set(1);
if (speed % 60 == 0) {

logicalItem->Set(0);
}
logicalItem->SetStartTime(i);
logicalItem->SetEndTime(i + stepSize);
IgnitionState += logicalItem;

speed = speed + 10;
rFreq = rFreq + 10.0 + SpGetSimObjKindId();

}

SCHEDULE_Car_ChangeDynamicBaseTypes(1750.0, SpGetObjHandle());
}

Example 10.21: Car HLA Simulation Object InitDynamicBaseTypes Method

Method Init performs performs the usual initializations for simulation objects. In this case method
Init calls method InitDynamicBaseTypes. Each dynamic attribute is pulled off of the free list
(i.e. FreeDynamicAttributes) according to the specified type. Once a dynamic item has been
retrieved, its value, start, and end times are initialized. Notice that there are no overlaps or gaps in the
time intervals. This allows subscribers to access the values for this attribute anywhere within the valid
range, except for exactly on an interval transition point. Also, notice that the first interval starts at time
� � � ����� . The Garage will access these attributes at � � ����� and display the results for uninitialized
dynamic attributes (i.e. � �

, � � ��� � � , and � �
, respectively).

1 // S_Car_ChangeDynamicBaseTypes.C
2 #include "SpGlobalFunctions.H"
3 #include "SpFreeDynAttributes.H"
4 #include "RB_SpFrameworkFuncs.H"
5 #include "SpDynObjs.H"
6 #include "SpList.H"
7 #include "S_Car.H"

8 void S_Car::ChangeDynamicBaseTypes() {
9 double baseTime = SpGetTime();

10 double endTime;
11 double stepSize = 100.0;
12 int currentSpeed = -1;
13 DYNAMIC_INT_CONSTANT* speedItem;
14 DYNAMIC_LOGICAL_CONSTANT* ignitionItem;
15 SpList speedItemsList;
16 SpList ignitionItemsList;
17 /*
18 * Remove all of the items on the last whose time is after "now".
19 * Save all of these items on a list. We cannot remove the item
20 * from the list immediately since this would invalidate internal
21 * the dynamic pointers. This would cuase a side affect of having
22 * to restart the search. Therefore all items to be removed will

10.2. DYNAMIC ATTRIBUTE TYPES 211

23 * be saved.
24 */
25 speedItem = (DYNAMIC_INT_CONSTANT *)
26 Speed.GetFirstElement();
27 ignitionItem = (DYNAMIC_LOGICAL_CONSTANT *)
28 IgnitionState.GetFirstElement();
29 while (speedItem != NULL) {
30 endTime = speedItem->GetEndTime();
31 /*
32 * Should this item be removed?
33 */
34 if (endTime > baseTime) {
35 /*
36 * If the current car velocity has not been locally saved,
37 * then save it now.
38 */
39 if (currentSpeed == -1) {
40 /*
41 * Data values for dynamic attributes must be passed a time
42 * so that the time within the correct interval can be
43 * extracted.
44 */
45 currentSpeed = (*speedItem)(baseTime);
46 }
47 speedItemsList.Insert(speedItem);
48 ignitionItemsList.Insert(ignitionItem);
49 }
50 speedItem = (DYNAMIC_INT_CONSTANT *) ++Speed;
51 ignitionItem = (DYNAMIC_LOGICAL_CONSTANT *) ++IgnitionState;
52 }
53 /*
54 * Now remove all the dynamic items off of the dynamic
55 * attributes (list).
56 */
57 speedItem = (DYNAMIC_INT_CONSTANT *)
58 speedItemsList.GetFirstElement();
59 ignitionItem = (DYNAMIC_LOGICAL_CONSTANT *)
60 ignitionItemsList.GetFirstElement();
61 while (speedItem != NULL) {
62 Speed -= speedItem;
63 IgnitionState -= ignitionItem;
64 RB_FREE_DELETE(FreeDynamicAttributes, speedItem);
65 RB_FREE_DELETE(FreeDynamicAttributes, ignitionItem);
66 speedItem = (DYNAMIC_INT_CONSTANT *)
67 speedItemsList.GetNextElement();
68 ignitionItem = (DYNAMIC_LOGICAL_CONSTANT *)
69 ignitionItemsList.GetNextElement();
70 }
71 /*
72 * Now retreive new dynamic items, initializa them and add them
73 * to the dynamic attribute.
74 */
75 while (baseTime <= 3600.0) {
76 speedItem = (DYNAMIC_INT_CONSTANT *)
77 RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_INT_CONSTANT_ID);
78 speedItem->Set(currentSpeed % 60);

212 CHAPTER 10. PROXY ATTRIBUTES

79 speedItem->SetStartTime(baseTime);
80 speedItem->SetEndTime(baseTime + stepSize);
81 Speed += speedItem;

82 ignitionItem = (DYNAMIC_LOGICAL_CONSTANT *)
83 RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_INT_CONSTANT_ID);
84 ignitionItem->Set(1);
85 if (currentSpeed % 60 == 0) {
86 ignitionItem->Set(0);
87 }
88 ignitionItem->SetStartTime(baseTime);
89 ignitionItem->SetEndTime(baseTime + stepSize);
90 IgnitionState += ignitionItem;

91 currentSpeed = currentSpeed - 10 - SpGetSimObjKindId();
92 if (currentSpeed < 0) {
93 currentSpeed = currentSpeed + 60;
94 }
95 baseTime = baseTime + stepSize;
96 }
97 }

Example 10.22: Car HLA Simulation Object ChangeDynamicBaseTypes Method

Method ChangeDynamicBaseTypes will execute at � � � � � ����� . This method modifies attributes
Speed and IgnitionState. Currently, these attributes contain data starting at time � � � ����� to
��� � � � ����� . This method will remove all of the data from ��� � � � ����� to � � � � � ����� and replace it with
new data.

The first while loop (line 29) finds all of the dynamic items that are within the removal time inter-
val. Notice that all items that match are saved on an SpList. If the dynamic items would have been
removed immediately (operator -=), then the dynamic attribute list would have been immediately mod-
ified. This would have changed the next dynamic item retrieved off of the dynamic attribute list, giving
the loop incorrect results. In short, after items are inserted or removed from a dynamic attribute list,
then the search must restart at the beginning. With this approach, the items are not immediately deleted,
but rather they are saved so that they can be deleted at a later time.

The second while loop (line 61) deletes all of the dynamic items previously saved in lists speed-
ItemList and ignitionItemList. When this is done, there are no dynamic items on the dynamic
attributes between the time of

� � � ����� to � � � ����� .

The third while loop (line 75) adds new DYNAMIC INT CONSTANT items in
� � ����� second intervals

onto the Speed attribute. This time, the speed is decreased in each time interval. For anytime interval
for which the speed is equal to � , then the IgnitionState attribute is set to off (0).

The code shown in Example 10.23 shows the Car proxy.

// CarProxy.H
#ifndef CarProxy_H
#define CarProxy_H

#include "SpObjProxy.H"

class CarProxy : public SpObjProxy {
public:
CarProxy() {

10.2. DYNAMIC ATTRIBUTE TYPES 213

ModelNameRef = GetReference("ModelName", "Car");
SpeedRef = GetReference("Speed", "Car");
RadioFrequencyRef = GetReference("RadioFrequency", "Car");
IgnitionStateRef = GetReference("IgnitionState", "Car");

}
const char* GetModelName() {return GetString(ModelNameRef);}
int GetSpeed(double time) {

return GetDynamicInt(SpeedRef, time);
}
double GetRadioFrequency(double time) {

return GetDynamicFloat(RadioFrequencyRef, time);
}
int GetIgnitionState(double time) {

return GetDynamicLogical(IgnitionStateRef, time);
}

private:
static int ModelNameRef;
static int SpeedRef;
static int RadioFrequencyRef;
static int IgnitionStateRef;

};
#endif

Example 10.23: Car Proxy Definition

The proxy for the Car shows how to use methods GetDynamicInt,GetDynamicFloat, and Get-
DynamicLogical to retrieve data values from the dynamic attributes. As with the static attributes,
an integer index is used to find the appropriate data value. However, unlike the static attributes, an addi-
tional parameter must be supplied, which is time. The dynamic attribute’s proxy is searched for the data
which falls within the specified time. The data value for this time is returned to the caller.

The code for the Garage simulation object, SpFreeObjProxy, and main are not shown here. The
code for the Garage is exactly like the code previously shown. The Garage gets its remote proxy list,
gets each proxy off the list, type casts the proxy to a Car, and then examines the proxy data. SpFree-
ObjProxy plugs the Car proxy into the proxy framework and main plugs the simulation objects and
their events into the SPEEDES framework.

10.2.3 One Dimensional Functions

So far, dynamic integers, doubles, and logical have been discussed. The types all have one thing in
common, their output values remain constant over their time interval. While this can useful, in reality
their behavior can easily be modeled with their static attribute types counterparts.

However, there are more interesting built-in SPEEDES dynamic attributes that can be used to model
continuous curves. These attributes allow users to access their data values at any point along their
defined curve. The first type of functions explained below are for one-dimensional functions, which are
a special type of DYNAMIC DOUBLE ATTRIBUTE. The last type of dynamic attribute to be discussed
is a three-dimensional position vector. This type of attribute is discussed later in Section 10.2.4.

The procedure for creating a DYNAMIC DOUBLE ATTRIBUTE remains the same as discussed in Sec-
tion 10.2.2. The dynamic item is pulled off the FreeDynamicAttributes free list. However,
methods Set, SetStartTime, and SetEndTime are replaced with methods which are specific for
each different type of function. These functions are explained in more detail in the following sections.

214 CHAPTER 10. PROXY ATTRIBUTES

10.2.3.1 Polynomial Items

The most basic dynamic item types are the polynomial types used to fit curves over a time interval. The
built-in polynomial dynamic items range from first degree polynomial (i.e. linear), to a tenth degree
polynomial. All these items inherit from the DYNAMIC POLY N class. The essential idea is that a ���

�

degree polynomial can be determined from a list of � �
�

or more points. If there are � �
�

points,
the polynomial is uniquely determined (e.g. two points determine a first degree polynomial, three points
determine a second degree polynomial, etc). If there are more than � �

�
points, a “best-fit” ���

�
degree

polynomial is calculated.

As with all dynamic attribute items, dynamic polynomials are retrieved from the dynamic attribute free
list. Once a dynamic attribute item is retrieved, it is initialized with method AddPoints. The API for
AddPoints is:

void AddPoints(double startTime,
double endtime,
double time,
double x,
double variance,
...
)

Parameter Description
startTime Interval start time.
endTime Interval end time.
time Time for point x.
x Magnitude of data point at �����	��
� .
variance Sigma squared for that position must be greater than 0. The variance has to do with

curve fitting, so it is ignored in all uniquely determined cases (i.e. ����� points pro-
vided for an ����� degree polynomial), except that it must not be zero or negative.

... Additional ���	��
������ ���������	�! #"$�
 triplets.

Table 10.3: Polynomial AddPoint Initialization Method

Method AddPoints is always terminated with END POLY. This indicates that no additional data is
to be input. The number of � ���&% � � �(' � ��� � ��) � � triplets used in method AddPoints is one more that
the order of the polynomial in use (i.e. N + 1). For example, DYNAMIC POLY 1 takes two triplets,
DYNAMIC POLY 2 takes three triples, etc. After the polynomial item has been initialized with its input
parameters, method MakePoly is called on the polynomial item which calculates the best fit line to the
input data.

Consider the case of a uniquely determined polynomial. The simplest of these is the first degree poly-
nomial, � � � ���*% � � � , which is uniquely specified by two points. The DYNAMIC POLY 1 class is the
type of dynamic item provided for linear equations. The basic procedure is to first load two points into
the DYNAMIC POLY 1 object, and then have it construct a first-degree polynomial. Once this has been
done, the linear function can be evaluated at any point within the interval associated with the item.

Example 10.24 shows an an example of how to use DYNAMIC POLY 1. Attribute Temperature,
whose type is DYNAMIC DOUBLE ATTRIBUTE, has been added to the Car simulation object with
its appropriate Objects.par file entry of Temperature defined as a dynamic double. The
temperature of the Car will start at 10 degrees at � � ����� and will increase linearly to 20 degrees at
� � � � � ����� . Then, at time � � � � � ����� , the car starts to warm up faster in a linear fashion until it

10.2. DYNAMIC ATTRIBUTE TYPES 215

reaches 100 degrees at time � � � � � ����� . This will require that two DYNAMIC POLY 1 items be added
to attribute Temperature.

1 // S_Car_InitPolynomial.C
2 #include "SpFreeDynAttributes.H"
3 #include "RB_SpFrameworkFuncs.H"
4 #include "SpDynObjs.H"
5 #include "S_Car.H"
6 #include "CarProxy.H"

7 int CarProxy::TemperatureRef;

8 void S_Car::InitPolynomial() {
9 DYNAMIC_DOUBLE_CONSTANT* doubleItem;

10 DYNAMIC_POLY_1* polyItem;

11 DEFINE_ATTRIBUTE(Temperature, "Temperature");

12 /*
13 * Define an equation for temperature. The equation will be a simple
14 * equation in the form of f(t) = mt + b. Add two points for ranges
15 * between 0.0 to 1800.0 seconds and 1800.0 to 3600.0. Since end
16 * points are undefined user can add a constant double at the end
17 * points to that valid data can be retrieved at these points (i.e.
18 * 0.0 and 3600.0). The two equations are:
19 * f1(t) = 1/180(t) + 10
20 * f2(t) = 2/45(t) + 60
21 * At 1800 f1(t) = f2(t). This corresponds to a straight line being
22 * drawn between points (0.0, 10) to (1800.0 20) and (1800.0, 20) to
23 * (3600.0, 100). First add the constant double.
24 */
25 doubleItem = (DYNAMIC_DOUBLE_CONSTANT *)
26 RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_DOUBLE_CONSTANT_ID);
27 doubleItem->Set(10.0);
28 doubleItem->SetStartTime(-10.0);
29 doubleItem->SetEndTime(0.0);
30 Temperature += doubleItem;
31 /*
32 * Add f1(t) = 1/180t + 10
33 */
34 polyItem = (DYNAMIC_POLY_1 *)
35 RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_POLY_1_ID);
36 polyItem->AddPoints(0.0, 1800.0,
37 0.0, 10.0, 1.0,
38 1800.0, 20.0, 1.0,
39 END_POLY);
40 polyItem->MakePoly();
41 Temperature += polyItem;
42 /*
43 * Add f2(t) = 1/45t -60
44 */
45 polyItem = (DYNAMIC_POLY_1 *)
46 RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_POLY_1_ID);
47 polyItem->AddPoints(1800.0, 3600.0,
48 1800.0, 20.0, 1.0,

216 CHAPTER 10. PROXY ATTRIBUTES

49 3600.0, 100.0, 1.0,
50 END_POLY);
51 polyItem->MakePoly();
52 Temperature += polyItem;
53 /*
54 * Add a constant 100 after time 3600.0
55 */
56 doubleItem = (DYNAMIC_DOUBLE_CONSTANT *)
57 RB_FREE_NEW(FreeDynamicAttributes, DYNAMIC_DOUBLE_CONSTANT_ID);
58 doubleItem->Set(100.0);
59 doubleItem->SetStartTime(3600.0);
60 doubleItem->SetEndTime(3700.0);
61 Temperature += doubleItem;
62 }

Example 10.24: Car HLA Simulation Object InitPolynomial method

Lines 25 through 41 initialize the function for the temperature for the time interval of ����� � � � � � � ����� .
Notice, that lines 25 through 30 are actually initializing a DYNAMIC DOUBLE CONSTANT and adding
this to the Temperature attribute. Why do this? The valid range for the attribute will be from ����� �
� � � � � ����� . Therefore, the Temperature attribute is undefined for ��� ����� causing a discontinuity
at � � ����� . By adding DYNAMIC DOUBLE CONSTANT to the dynamic attribute, the discontinuity
is removed since the dynamic items for both intervals contain the same value at � � ����� . Lines 25
through 30 defines a temperature value of 10 from � � ����� � � � ����� . Lines 34 through 41 initialize
the DYNAMIC POLY 1 item and adds the item the attribute Temperature. Since both of these items
have the same magnitude at � � ����� , the discontinuity has been removed and queries at � � ����� can be
performed.

Lines 45 through 61 initialize the function for the temperature for the time interval
� � � ����� � � � � � � ����� .

Since both this dynamic polynomial item and the previous interval dynamic polynomial item have the
same value at � � � � � ����� , there is not discontinuity at this data point. Also, the discontinuity at
� � � � � ����� has been eliminated by adding the dynamic double constant item.

10.2.3.2 Overdetermined Polynomial Items

What happens when a polynomial item of degree � is given more than � �
�

data points? They will
not necessarily all lie on the same curve, so the item must attempt to find the curve that “best” fits the
data. The typical way of doing this is to find the “least square” ���

�
degree polynomial. This minimizes

the sum of the squared distance of each point from the curve.

The polynomial items have generalized this concept, so they can do a normal least square fit and more.
As shown above, the AddPoints method accepts a list of � ����% � � �(' � ��� � ��) � � triplets (among other
items). The � ���&% � � � pair specifies a point, and the ' � ��� � ��) � tells MakePoly how far to allow the
polynomial to deviate from that point; the smaller the variance, the smaller the deviation of the poly-
nomial from the point (note that the variance must be greater than 0). Thus, MakePoly determines
the polynomial that minimizes the sum of the weighted squared distance of each point from the curve
(where points whose variance is smaller are more heavily weighted). If each point has the same variance
(e.g. all are 1.0), then this scheme reduces to an ordinary least squares fit.

10.2.3.3 Exponential Items

This attribute defines equations of the form � � � � � ���
�����
���#���	�
� , where � is the amplitude parameter, �

is the transcendental real � �
� � � � � � � � , � is the parameter usually referred to as “lambda”, and �� is the

10.2. DYNAMIC ATTRIBUTE TYPES 217

phase shift parameter, which equals the starting time of the interval associated with this attribute. Thus,
by assigning the parameters � , � , and � � , the exponential equation will be fully defined and then can
be evaluated for arbitrary values of � . Since this attribute inherits from SpDynItem, its interval can
be set using methods SetStartTime and SetEndTime. Since � � refers to the starting time, when
you call SetStartTime(x), � � will be assigned the value x. Use SetAmplitude to specify the �
parameter (and GetAmplitude to probe it). Use the SetLambda and GetLambdamethods for the
lambda parameter. Alternately, there is a Set method for assigning both the amplitude and lambda at
once.

Once the parameters and the intervals have been set, the parentheses operator can be used to evaluate
the function at time � . Also, the parentheses operator has been overloaded to accept two or three argu-
ments. In the first case, the second argument is an out parameter that returns the first derivative of the
exponential function, evaluated at the given time (always the first argument). In the second case, there
are two out parameters, one that returns the first derivative, and one that returns the second derivative.
Suppose a DYNAMIC EXPONENTIAL pointer called dynExp had been retrieved from SpFreeDyn-
Attributes. The following code shows an example of usage:

dynExp->SetStartTime(10.0); // Sets t0 and interval starting time
dynExp->SetEndTime(50.0); // Interval end time
dynExp->SetAmplitude(-3.5); // Set amplitude parameter
dynExp->SetLambda(1.25); // Set lambda parameter

double time = 12.22;
double x = (*dynExp)(time); // Evaluate f(12.22)

double deriv1; // First derivative
double deriv2; // Second derivatives

time = 25.0;
// Returns f(25.0) and f’(25.0):
double y = (*dynExp)(time, deriv1);

time = 47.7;
// Returns f(47.7), f’(47.7), and f’’(47.7):
double z = (*dynExp)(time, deriv1, deriv2);

10.2.3.4 Other Dynamic Attribute Items

There are four other dynamic items that can be inserted into a DYNAMIC DOUBLE ATTRIBUTE. These
items are DYNAMIC COMPLEX EXPONENTIAL, DYNAMIC EXTRAPOLATE, DYNAMIC SPLINE 3,
and the DYNAMIC SPLINE 6.

The DYNAMIC COMPLEX EXPONENTIAL item specifies the following equation over a given interval:
� � � � � � �

� � � �
���#��� � . In this equation, � is the amplitude, � is the transcendental real number � �

� � � � � � � � ,
� �

�
� �

, � is a parameter, and � � is the interval starting time. See the SPEEDES API Reference
Manual for the details of how to use this item.

The DYNAMIC SPLINE 3 item creates a cubic polynomial for the given interval. Given the initial
position and velocity, and the ending position and velocity, the cubic polynomial is uniquely determined
over the entire interval. This polynomial is also known as a Hermite interpolant. See the SPEEDES API
Reference Manual for the details of how to use this item.

218 CHAPTER 10. PROXY ATTRIBUTES

The DYNAMIC SPLINE 6 item creates a fifth-degree polynomial for the given interval. Given the
initial position, velocity, and acceleration, and the ending position, velocity, and acceleration, a fifth-
degree polynomial is uniquely determined over the entire interval. See the SPEEDES API Reference
Manual for the details of how to use this item.

The DYNAMIC EXTRAPOLATE item performs extrapolation of the position based on an initial position
and velocity. Additionally, the initial acceleration and jerk (third derivative) can be specified as well.
See the SPEEDES API Reference Manual for the details of how to use this item.

10.2.4 Dynamic Position Attributes

The DYNAMIC POSITION ATTRIBUTE specifies position as a function of time (equation of motion).
As long as the object sticks to this scripted motion plan, subscribers can use this attribute to calculate
the object’s position, velocity, and acceleration for anytime within the interval. This reduces message
traffic and also helps to spread the computational load across the number of execution nodes. If the
object deviates from its motion plan, subscribers receive updates that provide new equations of motion.

The dynamic position attribute works similarly to DYNAMIC DOUBLE ATTRIBUTE: dynamic items
are inserted into the attribute; each dynamic item specifies the equation of motion that applies over that
interval. There are several different types of dynamic items to choose from, each of which defines a
different motion type. Table 10.4 shows the built-in dynamic position items available:

Item Description
POLY N MOTION Defines an � ��� order polynomial as a weighted least squares fit to at least

� � � points where � ��� ��� ������� � ��� .
GREAT CIRCLE The shortest route between two points on the earth.
RHUMB LINE The shortest route between two points on the earth, proceeding with a fixed

bearing.
CIRCULAR ORBIT Defines a circular orbit around the earth.
Elliptical Defines an elliptical orbit around the earth.
EXTRAPOLATE MOTION Extrapolates the current position, velocity, acceleration, and jerk (set the

latter two to zero if unknown) to find future positions.
LOITER MOTION Defines a constant altitude circular motion about a fixed point on the surface

of the earth.
SPLINE3 MOTION Defines a third order polynomial based on known initial and final position

and velocity.
SPLINE6 MOTION Defines a fifth order polynomial based on known initial and final position,

velocity, and acceleration.
CONSTANT MOTION A fixed position over the interval.

Table 10.4: Dynamic Positions Items

These dynamic items are similar to the POSITION ATTRIBUTE in that there are three different co-
ordinate systems that can be used: EARTH, ECI, or ECR. See Section 10.1.8 for descriptions of these
coordinate systems. Refer to the SPEEDES API Reference Manual for the exact procedure on how
to initialize each dynamic item. Item POLY N MOTION is similar to items DYNAMIC POLY N in that
method AddPoints is used to initialize the dynamic item data points. Since POLY N MOTION items
represent a three-dimensional position, each data point is represented by � ���&% � � �"! ��# �(' � ��� � ��) � � , as
opposed to � ����% � � �(' � ��� � ��) � � in the one-dimensional case.

For a final example, a dynamic position has been added to the Car simulation. Figure 10.5 shows the
new Objects.par file. The dynamic double added in the example described in Section 10.2.3.1 is
also shown.

10.2. DYNAMIC ATTRIBUTE TYPES 219

Car {
define string ModelName
define dynamic_int Speed
define dynamic_double RadioFrequency
define dynamic_logical IgnitionState
define dynamic_double Temperature
define dynamic_position Position

}

Garage {
reference SUBSCRIBE Car

}

Figure 10.5: Objects.par File for Dynamic Attribute Example

This Objects.par file shows the usage of dynamic double and dynamic position. Exam-
ples 10.25 and 10.26 show the Car definition file and the initialization for the dynamic position attribute.

// S_Car.H
#ifndef S_Car_H
#define S_Car_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Car : public S_SpHLA {
public:
S_Car(char* objClassName = "Car") : S_SpHLA(objClassName) {}

void Init() {
InitDynamicBaseTypes();
InitPolynomial();
InitPosition();

}
void InitDynamicBaseTypes();
void InitPolynomial();
void InitPosition();
void ChangeDynamicBaseTypes();

private:
STRING_ATTRIBUTE ModelName;
DYNAMIC_INT_ATTRIBUTE Speed;
DYNAMIC_DOUBLE_ATTRIBUTE RadioFrequency;
DYNAMIC_LOGICAL_ATTRIBUTE IgnitionState;
DYNAMIC_DOUBLE_ATTRIBUTE Temperature;
DYNAMIC_POSITION_ATTRIBUTE Position;

};
DEFINE_SIMOBJ(S_Car, 2, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(Car_ChangeDynamicBaseTypes,

S_Car, ChangeDynamicBaseTypes);
#endif

Example 10.25: Car HLA Simulation Object Definition

220 CHAPTER 10. PROXY ATTRIBUTES

// S_Car_InitPolynomial.C
#include "SpFreeDynAttributes.H"
#include "RB_SpFrameworkFuncs.H"
#include "SpGreatCircle.H"
#include "S_Car.H"
#include "CarProxy.H"

int CarProxy::PositionRef;

void S_Car::InitPosition() {

DEFINE_ATTRIBUTE(Position, "Position");
/*
* The DYNAMIC_POSITION_ATTRIBUTE will be defined to contain two
* GREAT_CIRCLE item intervals. The first GREAT_CIRCLE item will be
* defined using the constant known velocity method.
*/

GREAT_CIRCLE* greatCircleItem;
double latStart = 10.0;
double lonStart = 50.0;
double altStart = 5.0;
double latEnd = 5.0;
double lonEnd = 25.0;
double altEnd = 2.0;
double startTime = 0.0;
double endTime;
double kmPerSec = 5.0;

greatCircleItem = (GREAT_CIRCLE *)
RB_FREE_NEW(FreeDynamicAttributes, GREAT_CIRCLE_ID);

endTime = greatCircleItem->init_Vconstant(
latStart, lonStart, altStart, startTime,
latEnd, lonEnd, altEnd, kmPerSec);

Position += greatCircleItem;
/*
* The next GREAT_CIRCLE item will be defined using the constant fixed
* start and end point method. First, set the start points of the new
* position item to the end points of the last item.
*/

latStart = latEnd;
lonStart = lonEnd;
altStart = altEnd;
latEnd = 89.0;
lonEnd = 45.0;
altEnd = 0.0;

greatCircleItem = (GREAT_CIRCLE *)
RB_FREE_NEW(FreeDynamicAttributes, GREAT_CIRCLE_ID);

kmPerSec = greatCircleItem->init_Tconstant(
latStart, lonStart, altStart, endTime,
latEnd, lonEnd, altEnd, 3600.0);

Position += greatCircleItem;
}

Example 10.26: Car HLA Simulation Object InitPosition Method

10.2. DYNAMIC ATTRIBUTE TYPES 221

The code in Example 10.26 shows an example of how to initialize a dynamic position attribute. Initial-
ization of a dynamic position attribute is very similar to the dynamic attribute initialization shown in
Example 10.24. This example is initializing a GREAT CIRCLE item. Two items are retrieved from the
dynamic attribute free list. The two items are initialized by using the constant velocity method and by
using the start and end point method. They are initialized such that there is no discontinuity at the point
where the intervals cross over from the first item to the second item.

Example 10.27 shows the new proxy for this example.

// CarProxy.H
#ifndef CarProxy_H
#define CarProxy_H

#include "SpObjProxy.H"

class CarProxy : public SpObjProxy {
public:
CarProxy() {

ModelNameRef = GetReference("ModelName", "Car");
SpeedRef = GetReference("Speed", "Car");
RadioFrequencyRef = GetReference("RadioFrequency", "Car");
IgnitionStateRef = GetReference("IgnitionState", "Car");
TemperatureRef = GetReference("Temperature", "Car");
PositionRef = GetReference("Position", "Car");

}
const char* GetModelName() {return GetString(ModelNameRef);}
int GetSpeed(double time) {

return GetDynamicInt(SpeedRef, time);
}
double GetRadioFrequency(double time) {

return GetDynamicFloat(RadioFrequencyRef, time);
}
int GetIgnitionState(double time) {

return GetDynamicLogical(IgnitionStateRef, time);
}
double GetTemperature(double time) {

return GetDynamicFloat(TemperatureRef, time);
}

void GetEARTHPosition(double time,
double pos[3],
double vel[3],
double acc[3]) {

GetDynamicPosition(PositionRef, pos, vel, acc, EARTH, time);
}

private:
static int ModelNameRef;
static int SpeedRef;
static int RadioFrequencyRef;
static int IgnitionStateRef;
static int TemperatureRef;
static int PositionRef;

};

222 CHAPTER 10. PROXY ATTRIBUTES

#endif
Example 10.27: Car HLA Simulation Object InitPosition Method

The same technique used to retrieve the data stored on a dynamic attribute is used to extract the data
dynamic position attribute. The integer reference for the attribute is first calculated. Next, method
GetEARTHPosition has been defined on the Car proxy. This calls method GetDynamicPosi-
tion. Separate methods for ECI and ECR could have been defined or the Getmethod could have been
designed which takes EARTH, ECI, and ECR as input parameters.

The code shown in Example 10.28 shows the new Garage implementation.

// S_Garage.C
#include "F_SpProxyItem.H"
#include "S_Garage.H"
#include "CarProxy.H"

void S_Garage::Init() {
SCHEDULE_Garage_Display(0.0, SpGetObjHandle());

}

void S_Garage::Display() {
int i;
double pos[3];
double vel[3];
double acc[3];
RB_queue* remoteProxyList; // Car Proxies in this case.

RB_cout << SpGetTime() << endl;
remoteProxyList = GetRemoteObjectProxies();
F_SpProxyItem* proxyItem = (F_SpProxyItem *) remoteProxyList->get_top();
for (i = 0; i < remoteProxyList->get_length(); ++i){
CarProxy* carProxy = (CarProxy *) proxyItem->GetObjProxy();
carProxy->GetEARTHPosition(SpGetTime(), pos, vel, acc);
RB_cout << carProxy->GetModelName() << endl

<< "Car:Speed= " << carProxy->GetSpeed(SpGetTime()) << endl
<< "Car:Radio Freq= " << carProxy->GetRadioFrequency(SpGetTime())
<< endl
<< "Car:Ignition= " << carProxy->GetIgnitionState(SpGetTime())
<< endl
<< "Car:Temperature= " << carProxy->GetTemperature(SpGetTime())
<< endl
<< "Car:Pos= " << pos[0] << " " << pos[1] << " " << pos[2]
<< endl
<< endl;

proxyItem = (F_SpProxyItem *) proxyItem->get_link();
}
RB_cout << endl;
SCHEDULE_Garage_Display(SpGetTime() + 300.0, SpGetObjHandle());

}
Example 10.28: Garage HLA Simulation Object Implementation

The Garage used the same techniques previously discussed to get the proxies on its remote proxy list
and examining the contents of the proxy.

As with the DYNAMIC DOUBLE ATTRIBUTE, different dynamic item types can be used within the
same DYNAMIC POSITION ATTRIBUTE. See the SPEEDES API Reference Manual for the details
of how to use these and other dynamic motion types.

10.3. TIPS, TRICKS, AND POTHOLES 223

10.3 Tips, Tricks, and Potholes

� All of the examples in this Chapter used integer ids to look up each attribute on the proxy. Integer
ids provide the fastest mechanism when doing these look ups. However for each proxy Get
method the string name for the attribute could have been used as well. See the SPEEDES API
Reference Manual for additional details.

224 CHAPTER 10. PROXY ATTRIBUTES

Chapter 11

Data Distribution Management (DDM)

The object proxy code provides a powerful method for distributing portions of simulation objects to
other nodes in a time-ordered fashion. The previous two sections discussed object proxies and their
delivery, which only uses the DM portion of the SPEEDES framework. The drawback to DM is that
any required filtering must be done by the receiving object (e.g. a sensor sees all objects, not just ob-
jects within its sensor range). All publications of an object are received by the subscribing simulation
object when only DM is used. In order to improve performance, it would be preferable if only the
proxies of simulation objects within a valid or correct range would be delivered to the subscribing sim-
ulation objects. The SPEEDES framework provides a built-in capability that allows users to specify the
valid ranges for different attributes of publishing objects and, if the attributes are within this range, the
subscribing object receives the publishing object’s proxy. This level of filtering is called DDM.

This chapter will introduce the various types of DDM provided in the SPEEDES framework. First, we
will present a simple example of not using DDM and then, we will take this example and enhance it
with differing levels of DDM. We will first examine dynamic class type filter specification rather than
static class type filters that are offered by DM. Next, we will present methods for filtering on enumerated
types, ranges of doubles, and range-based filtering.

11.1 Declaration Management Simulation Example

Before diving into the DDM specifics of the SPEEDES framework, let us examine a simulation that
uses only DM for filtering. When using DM, a simulation will receive all proxies for any simulation
object for which it has subscribed to. Each receiving simulation object will then have to examine each
received proxy to determine if the data on that proxy is within its desired range (e.g. distance, frequency,
velocity, etc.).

The code shown in Examples 11.1 through 11.5 contains four simulation objects consisting of three
ships and one submarine. The simulation is set up on a rectangular 50 km by 50 km grid. Ship 0 will be
moving from right to left starting at � � � � ��� at � � ����� and ending at the location � � � � � ��� at ��� � � � �����
seconds. Ship 1 will be moving from top to bottom starting at � � � � ��� at � � ����� and ending at the
location � � � � � ��� at � � � � � ����� seconds. Ship 2 will be moving from upper left to bottom right starting
at � � � � � � ��� at � � ����� and ending at the location � � � � � � ��� at � � � � � ����� seconds. The submarine will
be stationary at � � � � � � � � . Ships 0, 1, and 2 will have an active radar with detection ranges of 10, 15,
and 0 km, respectively. The submarine will have a passive detection device that can detect other ships
at a range of 20 km.

225

226 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

Figure 11.1 shows the current positions of the simulation objects at � �
�
� ����� . The circles shown in the

figure are the detection ranges for each simulation object. Since all proxies are delivered to all simulation
objects, each simulation object will have to examine each proxy to determine if the received proxy is
within range of its sensor. If it is within range, then it can detect the object, otherwise it cannot. This is
a polling technique, which in our case, starts at � � ����� and goes to � � � � � ����� . Each simulation object
has an event that will execute every

� ����� seconds examining its received proxies. This event will print
out the distance to the other ships (i.e range, country and radar frequency), if the other ships are within
range of its sensors (range-based filtering). In addition, the submarine will print out the frequency of
the other ship’s radars and their country of origin. Each event must examine all three proxies on its list
in order to determine if each object is within range. Many of these calculations are done for objects that
are out of range. Hence, wasted effort was expended during the simulation. Use of DDM can reduce the
number of proxies on the object’s proxy list, thereby reducing the amount of unnecessary calculation,
thus improving simulation run-time performance.

10 km

10 km 20 km 30 km-30 km -20 km -10 km

20 km

30 km

-30 km

-20 km

-10 km

10 km

15 km

Ship #1

Ship #0

20 km

Submarine

Ship #2

Figure 11.1: DM only Ship Simulation Layout

11.1. DECLARATION MANAGEMENT SIMULATION EXAMPLE 227

Examples 11.1 and 11.2 show the definition and implementation code for the Ship simulation object.
The simulation object’s radar frequency, country, position, and radar search event (i.e. ShipSen-
sorSearch) are initialized in method S Ship::Init. Event ShipSensorSearch executes ev-
ery

� ����� seconds, examining every proxy which has been delivered to it. If it finds an object within
range, then it outputs data to the terminal.

// S_Ship.H
#ifndef S_SHIP_H
#define S_SHIP_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Ship : public S_SpHLA {
public:
S_Ship() : S_SpHLA("Ship") {}
˜S_Ship() {}

void Init();
void SensorSearch();
void ChangeRadarFrequency();

private:
DOUBLE_ATTRIBUTE RadarFrequency; // Gigahertz
INT_ATTRIBUTE Country; // Country
DYNAMIC_POSITION_ATTRIBUTE Position; // Ship Position
double RadarRange; // Kilometers

void ProcessShipProxy(SpObjProxy* proxy);
void ProcessSubmarineProxy(SpObjProxy* proxy);
void PrintDistance(SpObjProxy* proxy, double difference[3]);

};

DEFINE_SIMOBJ(S_Ship, 3, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(ShipSensorSearch, S_Ship, SensorSearch);
DEFINE_SIMOBJ_EVENT_0_ARG(ShipChangeRadarFrequency, S_Ship,

ChangeRadarFrequency);
#endif

Example 11.1: DM Ship Simulation Object Definition

// S_Ship.C
#include "SpGlobalFunctions.H"
#include "SpSchedule.H"
#include "RB_ostream.H"
#include "SpObjProxy.H"
#include "SpPolyMotion.H"
#include "SpConstantPosition.H"
#include "SpFreeDynAttributes.H"
#include "F_SpProxyItem.H"
#include "S_Ship.H"

void S_Ship::Init() {
DEFINE_ATTRIBUTE(RadarFrequency, "RadarFrequency");

228 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

DEFINE_ATTRIBUTE(Country, "Country");
DEFINE_ATTRIBUTE(Position, "Position");

POLY_1_MOTION* line = (POLY_1_MOTION *)
FreeDynamicAttributes->new_object(POLY_1_MOTION_ID);

line->SetECR();
if (SpGetSimObjKindId() == 0) {
line->AddPoints(0.0, 3600.0,

0.0, 6400.0, 40.0, 0.0, 1.0,
3600.0, 6400.0, -60.0, 0.0, 1.0,
END_POLY_MOTION);

Country = 0;
RadarFrequency = 5;
RadarRange = 10;

}
else {
if (SpGetSimObjKindId() == 1) {

line->AddPoints(0.0, 3600.0,
0.0, 6400.0, 0.0, 50.0, 1.0,
3600.0, 6400.0, 0.0, -50.0, 1.0,
END_POLY_MOTION);

Country = 1;
RadarFrequency = 8;
RadarRange = 15;

}
else {

line->AddPoints(0.0, 3600.0,
0.0, 6400.0, -40.0, 40.0, 1.0,
3600.0, 6400.0, 50.0, -50.0, 1.0,
END_POLY_MOTION);

Country = 2;
RadarFrequency = 11;
RadarRange = 0;

}
}
line->MakePoly();
Position += line;

SCHEDULE_ShipSensorSearch(5.0, SpGetObjHandle());
SCHEDULE_ShipChangeRadarFrequency(10.0, SpGetObjHandle());

}

void S_Ship::SensorSearch() {
int i;
static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
static int submarineMgrId = SpGetSimObjMgrId("S_Submarine_MGR");
F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
GetRemoteObjectProxies()->get_top();

for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
SpObjProxy* proxy = testProxyItem->GetObjProxy();

if (proxy->GetProxySimObjMgrId() == shipMgrId) {
ProcessShipProxy(proxy);

}

11.1. DECLARATION MANAGEMENT SIMULATION EXAMPLE 229

if (proxy->GetProxySimObjMgrId() == submarineMgrId) {
ProcessSubmarineProxy(proxy);

}
testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();

}
SCHEDULE_ShipSensorSearch(SpGetTime() + 10.0, SpGetObjHandle());

}

void S_Ship::ChangeRadarFrequency() {
RadarFrequency = RadarFrequency + 0.5;
if (RadarFrequency > 5.0 + 3 * SpGetSimObjKindId() + 1.0) {
RadarFrequency = 5.0 + 3 * SpGetSimObjKindId() - 1.0;

}
SCHEDULE_ShipChangeRadarFrequency(SpGetTime() + 10.0, SpGetObjHandle());

}

void S_Ship::ProcessShipProxy(SpObjProxy* proxy) {
double myECR[3];
double remoteECR[3];
double difference[3];
static int refPosition =
proxy->GetReference("Position", "Ship");

Position(SpGetTime(), ECR, &myECR[0]);
proxy->GetDynamicPosition(refPosition, remoteECR,

ECR, SpGetTime());
Difference(myECR, remoteECR, difference);
PrintDistance(proxy, difference);

}

void S_Ship::ProcessSubmarineProxy(SpObjProxy* proxy){
double MyECR[3];
double RemoteECR[3];
double difference[3];
static int refPosition =
proxy->GetReference("Position", "Submarine");

Position(SpGetTime(), ECR, &MyECR[0]);
proxy->GetPosition(refPosition, RemoteECR,

ECR, SpGetTime());
Difference(MyECR, RemoteECR, difference);
PrintDistance(proxy, difference);

}

void S_Ship::PrintDistance(SpObjProxy* proxy, double difference[3]) {
double euclidDistance = Magnitude(difference);
if (euclidDistance < RadarRange) {

RB_cout << "Ship " << SpGetSimObjKindId()
<< " is " << euclidDistance
<< " km from " << proxy->GetProxyName()
<< " at time " << (double) SpGetTime()
<< " seconds." << endl;

}
}

Example 11.2: DM Ship Simulation Object Implementation

230 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

Examples 11.3 and 11.4 show the definition and implementation code for the Submarine simulation
object. The submarine has a receiver that can detect radar signals. The ship receives all ship proxies and
examines each proxy to determine if it is within its radar detector’s range, emitting radar frequency, and
country of origin.

// S_Submarine.H
#ifndef S_Submarine_H
#define S_Submarine_H

#include "S_SpHLA.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_Submarine : public S_SpHLA {
public:
S_Submarine() : S_SpHLA("Submarine") {}
˜S_Submarine() {}

void Init();
void SensorSearch();

private:
INT_ATTRIBUTE Country; // Country
POSITION_ATTRIBUTE Position; // Submarine position

};

DEFINE_SIMOBJ(S_Submarine, 1, SCATTER);
DEFINE_SIMOBJ_EVENT_0_ARG(SubSensorSearch, S_Submarine, SensorSearch);
#endif

Example 11.3: DM Submarine Simulation Object Definition

// S_Submarine.C
#include "SpGlobalFunctions.H"
#include "SpSchedule.H"
#include "RB_ostream.H"
#include "SpObjProxy.H"
#include "SpExportAttribute.H"
#include "F_SpProxyItem.H"
#include "S_Submarine.H"

void S_Submarine::Init() {
DEFINE_ATTRIBUTE(Country, "Country");
DEFINE_ATTRIBUTE(Position, "Position");

Country = 2;
double pos[3] = {6400.0, -10.0, -6.0};
Position.SetECR(pos);
SCHEDULE_SubSensorSearch(0.0, SpGetObjHandle());

}

void S_Submarine::SensorSearch() {
int i;
double MyECR[3];
double RemoteECR[3];

11.1. DECLARATION MANAGEMENT SIMULATION EXAMPLE 231

double difference[3];

static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
GetRemoteObjectProxies()->get_top();

for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
SpObjProxy* proxy = testProxyItem->GetObjProxy();
static int refCountry =

proxy->GetReference("Country", "Ship");
static int refRadarFrequency =

proxy->GetReference("RadarFrequency", "Ship");
static int refPosition =

proxy->GetReference("Position", "Ship");

int targetCountry = proxy->GetInt(refCountry);
double targetFrequency = proxy->GetFloat(refRadarFrequency);
/*
* Print Ship’s Country and Radar Frequency
*/

RB_cout << "Submarine " << SpGetSimObjKindId()
<< " detects " << proxy->GetProxyName()
<< " from country " << targetCountry
<< " emitting radar frequency at " << targetFrequency
<< " GHz at time " << (double) SpGetTime()
<< endl;

/*
* Range base filtering
*/

Position.GetECR(&MyECR[0], SpGetTime());
proxy->GetDynamicPosition(refPosition, RemoteECR,

ECR, SpGetTime());
Difference(MyECR, RemoteECR, difference);
double euclidDistance = Magnitude(difference);
if (20.0 > euclidDistance) {

RB_cout << "Submarine " << SpGetSimObjKindId()
<< " is " << euclidDistance
<< " km from " << proxy->GetProxyName()
<< " at time " << (double) SpGetTime()
<< " seconds." << endl;

}
testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();

}
SCHEDULE_SubSensorSearch(SpGetTime() + 10.0, SpGetObjHandle());

}
Example 11.4: DM Submarine Simulation Object Implementation

The main for this object is shown in Example 11.5. As usual, main is used to plug in all simulation
objects and events, and is followed by a call to ExecuteSpeedes.

// Main.C
#include "SpMainPlugIn.H"
#include "SpFreeObjProxy.H"
#include "S_Ship.H"
#include "S_Submarine.H"

232 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

void PlugInHLA();

int main(int argc, char **argv) {
PLUG_IN_SIMOBJ(S_Ship);
PLUG_IN_SIMOBJ(S_Submarine);

PLUG_IN_EVENT(ShipSensorSearch);
PLUG_IN_EVENT(ShipChangeRadarFrequency);
PLUG_IN_EVENT(SubSensorSearch);

PlugInHLA();
ExecuteSpeedes(argc, argv);

}

SpFreeObjProxy::SpFreeObjProxy(int n) { set_ntypes(n); }
Example 11.5: DM main

Finally, since the Ship and Submarine objects inherit from class S SpHLA, there must be an Ob-
jects.par file. Figure 11.2 shows the Objects.par for the Ship simulation example.

Ship {
reference SUBSCRIBE Ship
reference SUBSCRIBE Submarine
define float RadarFrequency // Gigahertz
define int Country // 0 - Blue

// 1 - Green
// 2 - White

define dynamic_position Position // Ships can move
}

Submarine {
reference SUBSCRIBE Ship
define int Country // 0 - Blue

// 1 - Green
// 2 - White

define position Position // Static Position
}

Figure 11.2: DM Example Objects.par

This example schedules events that examine all proxies that have been received to determine if any data
is ready to be processed (i.e. polling design). Obviously, in the case of our example, there is time wasted
checking to see if the other ship is within range of our ship’s radar. It would be preferable if only the
proxies for the ships that are within range of our sensor are on our proxy list. If this was true, then this
would eliminate the time spent on the verification of data for objects which are out of range. This is the
purpose of DDM, the elimination of data which is outside of the desired subscription range(s).

The goal of DDM is to reduce the number of proxies that an object receives, so that the amount of effort
that is expended is greatly reduced and polling is eliminated whenever possible. Additionally, if an
object has subscribed to fewer objects, there are fewer internal SPEEDES framework TOUCH PROXY
events that are executed whenever a proxy is changed. This results in a greater potential for parallelism,
as well as fewer rollbacks and a greater potential for more performance gains. The following sections
will enhance this small model, making incremental improvements which allow for much improved
performance.

11.2. SPACES, REGIONS AND DIMENSIONS 233

11.2 Spaces, Regions and Dimensions

In order to understand DDM and how it is used in SPEEDES, you must first understand three SPEEDES
DDM terms: Region, Dimension, and Space. Regions are used to specify areas which define a simu-
lation object’s publishing or subscription data areas (i.e. area in which a simulation object is producing
data or has interest). Within each Region, simulation objects define the exact range of data for which
they plan to produce or consume data in. These are called Dimensions. Figure 11.3 shows two objects
in one Region with their respective Dimensions. The overlap represents the common area for the two
simulation objects in this Region.

Region
Object A
Dimension

Object B
Dimension

Dimension
Overlap

Figure 11.3: DDM Regions and Dimensions Definition

For example, the Region represented here could be frequency, with Object A producing frequencies in
the range of 2 to 10 gigahertz (GHz), while Object B is looking for frequencies in the range of 8 to
15 GHz. We can set up our simulation stating that Object A is publishing frequency data in the 2 to
10 GHz range and Object B is subscribing to data in the 8 to 15 GHz range. By doing this, Object A’s
proxy will only be on Objects B’s proxy list if the frequency is in the correct range. Hence, polling is
unnecessary.

Spaces are made up of one or more Regions. For example, two different Regions could be defined
with Objects A and B having areas of interest in both Regions. A Space could then be defined as
containing these two Regions. This type of configuration would form an “OR” type of Region. An object
subscribing to this Space would receive the proxy if the data in either Region was valid. Figure 11.4
shows two Regions defined to make up a Space. Of course, a Space can be defined with any number
of Regions, and any object that publishes data in the subscriber’s area of interest, will have its proxy
delivered to the subscriber.

For example, Region 1 could describe the same frequency region as previously discussed. Region 2
could describe an Identify Friend or Foe area. Once again, Object A would publish its affiliation and
Object B would subscribe to its area of interest (Friend, Foe or both, depending on use). With this setup,
Object B would receive Object A’s proxy data if either the frequency or country were within the defined
ranges.

Alternatively, a subscribing object could set up two Dimensions in one Region (e.g. frequency and
country). With this configuration, the frequency and country subscription in one Region would form an
“AND” condition. In this case, both frequency and country must be within the specified valid range in
order for the proxy to be delivered to the subscribing object.

234 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

Region 1
Object A
Dimension

Object B
Dimension

Dimension
Overlap

Region 2
Object A
Dimension

Object B
Dimension

Dimension
Overlap

Space

Figure 11.4: DDM Space, Regions and Dimensions Definitions

In summary, Spaces are made of Regions and Regions have well-defined Dimensions. The Space shown
in Figure 11.4 contains two Regions that are used to form an “OR” subscription area. Therefore, sub-
scription data that is in the correct data range, in either Region, will be delivered to the subscribing
simulation object. Alternatively, the Space could contain one Region which contains both sets of Di-
mensions. This configuration would represent an “AND” subscription area, indicating that the data must
be valid in both Dimensions in order for the data to be delivered to the subscriber.

11.3 Built-In DDM Classes and Methods

In order to use DDM, one or more Spaces must be defined. Spaces form the basis of the filtering rules
used for DDM. Within each Space, one or more Regions can be defined. When more than one Region
is defined, then any data which is true in any region will cause the subscriber to receive the proxy
(i.e. “OR”). For each defined Region, zero or more Dimensions can be defined. Therefore, Dimension
is an optional field for Regions. When more than one Dimension is defined in a Region, then all of the
data in each Dimension must be true in order for the subscriber to receive the proxy (i.e. “AND”).

The first required step for using DDM is to have simulation objects (i.e. children of S SpHLA) define
their publication and subscription Spaces. Class S SpHLA provides two methods for Space publication
and subscription called:

SpPublishSpace* PublishSpace (const SpSimTime& time,
const char* spaceName)

SpSubcribeSpace* SubscribeSpace (const SpSimTime& time,
const char* spaceName)

Additional methods on class S SpHLA allow users to unpublish, unsubscribe, and search for spaces:

11.3. BUILT-IN DDM CLASSES AND METHODS 235

Parameter Description
time Represents the time at which the object will start publishing or subscribing to a space.
spaceName The string name for the space.

Table 11.1: DDM Space Publication and Subscription API

int SpUnpublishSpace (char* spaceName)
int SpUnsubscribeSpace (char* spaceName)
SpPublishSpace* GetPublishSpace (const char* spaceName)
SpSubcribeSpace* GetSubscribeSpace (const char* spaceName)

When using DDM, an additional parameter file called InterestSpaces.par is required (in addition
to Objects.par). The format for InterestSpaces.parwill be specified in each DDM filtering
type in later sections. This file defines the basic structure for Spaces, Regions, and Dimensions. The
reason for introducing this file now is to let the user know that the string names used for defining Spaces
must have a corresponding entry in this file.

Once the Spaces have been created, Regions can be added, deleted, and searched on within each Space
by using classes SpPublishSpace and SpSubscribeSpace. These classes have the following
API:

class SpPublishSpace : public SpDDMSpace {
public:

SpPublishRegion* CreateRegion (const char* regionName);
SpPublishRegion* FindRegion (const char* regionName);
void DeleteRegion (const char* regionName);
void Update();
...

};

class SpSubscribeSpace : public SpDDMSpace {
public:

SpSubscribeRegion* CreateRegion (const char* regionName);
SpSubscribeRegion* FindRegion (const char* regionName);
void DeleteRegion (const char* regionName);
void Update();
...

};

Parameter regionName specifies the user-defined string name for the Region defined in the Space.
This string can be any name and does not have a corresponding entry in InterestSpaces.par.

Finally, the Dimensions for the Region must be initialized. Classes SpPublishRegion and SpSub-
scribeRegion provide the following methods for manipulating Dimensions:

// Enumeration dimension modifier
void CreateDimension(const char* dimName, const char* enumName, ...)

// Double dimension modifier
void CreateDimension(const char* dimName, double lo, double hi, ...)

SpDDMDim* FindDimension (const char *dimName)
void DeleteDimension (const char *dimName)

236 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

// The following methods are available on SpSubscribeRegion only
void AddClass (const char *className, ...)
void RemoveClass (const char *className, ...)

Parameter Description
dimName This is the name of the Dimension which must have a corresponding entry in In-

terestSpaces.par. This name must be defined in the Space section in Inter-
estSpaces.par.

enumName A name within an enumeration Space. This name must exist within the enumeration Dimen-
sion, as specified in the InterestSpaces.par.

lo The lower boundary value for a double Dimension. The value specified here must be between
the Lo and Hi values specified for this Dimension in InterestSpaces.par.

hi The upper boundary value for a double Dimension. The value specified here must be between
the Lo and Hi values specified for this Dimension in InterestSpaces.par.

className For the AddClass and RemoveClass methods, class names must be supplied that match
the names of classes, as specified in Objects.par.

... The ellipse operator indicating that these methods accept variable length argument list. The
list can be one or more of the previously defined argument(s). In the case of the double
Dimension methods, the input argument must be specified in Lo and Hi input pairs.

Table 11.2: DDM Dimension Publication and Subscription API

This completes the description of the classes and methods required to use DDM. In summary, the basic
steps required to use DDM are:

1. Define the publication and subscription Spaces

2. Define the publication and subscription Regions.

3. Define the publication and subscription Dimension. This step is required for Class Type filtering.

4. Call method Update on the publication and subscription Spaces.

In order to better understand how DDM works within the constructs of SPEEDES, let us reexamine the
ship and submarine example previously introduced and apply different filtering techniques to it. The
following sections will show how to perform class type, enumeration, double, and range-based filtering.

11.4 Class Type Filtering

DM provides basic filtering for objects on a class-by-class basis. This type of filtering is set in either
Objects.par or can be set by DM services found in S SpHLA during run time. This is useful when
the number of objects is quite small or when subscription of this type really is necessary. However,
when simulations begin to grow or the subscriptions are not always necessary, a finer version of class
based subscription can be very useful.

DDM allows for subscription and publication to be performed dynamically on a class-by-class ba-
sis. When using class S SpHLA as the base class for simulation objects, users must supply an Ob-
jects.par as introduced previously. When using DDM, there is an additional required parameter file
called InterestSpaces.par. For the Ship and Submarine example, the InterestSpaces.par
file will contain one Space called “Ocean”, as shown in Figure 11.5.

11.4. CLASS TYPE FILTERING 237

InterestSpaces {
reference Space Ocean // Space called "Ocean"

}

Ocean {
}

Figure 11.5: InterestSpaces.par for Class Type Filtering

Example 11.6 shows the new Ship implementation file. The changes made to this file are shown on lines
52 through 59. Specifically, lines 52 through 54 register this object’s publication Space called “Ocean”
with SPEEDES at � � ����� (i.e. dynamic subscription). Lines 55 through 59 create a subscription space
at � � ����� .

The strings used when defining the publication and subscription regions can be any user-defined string.
The names defined in InterestSpaces.par and the Region names used in the source code have no
relationship to each other. The Ship simulation objects use method AddClass on line 58 to add class
types “Ship” and “Submarine” to its class type subscription list (i.e. all Ship and Submarine proxies
will be delivered to the Ship simulation object). Notice that the names “Ship” and “Submarine” used in
method AddClass are the same names defined in Objects.par.

1 // S_Ship.C
2 #include "SpGlobalFunctions.H"
3 #include "SpSchedule.H"
4 #include "RB_ostream.H"
5 #include "SpObjProxy.H"
6 #include "SpPolyMotion.H"
7 #include "SpConstantPosition.H"
8 #include "SpFreeDynAttributes.H"
9 #include "F_SpProxyItem.H"

10 #include "S_Ship.H"

11 #include "SpPublishSpace.H"
12 #include "SpSubscribeSpace.H"
13 #include "SpDDMRegion.H"

14 void S_Ship::Init() {
15 DEFINE_ATTRIBUTE(RadarFrequency, "RadarFrequency");
16 DEFINE_ATTRIBUTE(Country, "Country");
17 DEFINE_ATTRIBUTE(Position, "Position");

18 POLY_1_MOTION* line = (POLY_1_MOTION *)
19 FreeDynamicAttributes->new_object(POLY_1_MOTION_ID);

20 line->SetECR();
21 if (SpGetSimObjKindId() == 0) {
22 line->AddPoints(0.0, 3600.0,
23 0.0, 6400.0, 40.0, 0.0, 1.0,
24 3600.0, 6400.0, -60.0, 0.0, 1.0,
25 END_POLY_MOTION);
26 Country = 0;
27 RadarFrequency = 5;
28 RadarRange = 10;
29 }

238 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

30 else {
31 if (SpGetSimObjKindId() == 1) {
32 line->AddPoints(0.0, 3600.0,
33 0.0, 6400.0, 0.0, 50.0, 1.0,
34 3600.0, 6400.0, 0.0, -50.0, 1.0,
35 END_POLY_MOTION);
36 Country = 1;
37 RadarFrequency = 8;
38 RadarRange = 15;
39 }
40 else {
41 line->AddPoints(0.0, 3600.0,
42 0.0, 6400.0, -40.0, 40.0, 1.0,
43 3600.0, 6400.0, 50.0, -50.0, 1.0,
44 END_POLY_MOTION);
45 Country = 2;
46 RadarFrequency = 11;
47 RadarRange = 0;
48 }
49 }
50 line->MakePoly();
51 Position += line;

52 SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
53 pubSpace->CreateRegion("Ship_Publication_Region");
54 pubSpace->Update();

55 SpSubscribeSpace* subSpace = SubscribeSpace(0.0, "Ocean");
56 SpSubscribeRegion* subRegion =
57 subSpace->CreateRegion("Ship_Subscription_Region");
58 subRegion->AddClass("Ship", "Submarine", NULL);
59 subSpace->Update();

60 SCHEDULE_ShipSensorSearch(5.0, SpGetObjHandle());
61 SCHEDULE_ShipChangeRadarFrequency(10.0, SpGetObjHandle());
62 }

63 void S_Ship::SensorSearch() {
64 int i;
65 static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
66 static int submarineMgrId = SpGetSimObjMgrId("S_Submarine_MGR");
67 F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
68 GetRemoteObjectProxies()->get_top();

69 for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
70 SpObjProxy* proxy = testProxyItem->GetObjProxy();

71 if (proxy->GetProxySimObjMgrId() == shipMgrId) {
72 ProcessShipProxy(proxy);
73 }

74 if (proxy->GetProxySimObjMgrId() == submarineMgrId) {
75 ProcessSubmarineProxy(proxy);
76 }
77 testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();
78 }

11.4. CLASS TYPE FILTERING 239

79 SCHEDULE_ShipSensorSearch(SpGetTime() + 10.0, SpGetObjHandle());
80 }

81 void S_Ship::ChangeRadarFrequency() {
82 RadarFrequency = RadarFrequency + 0.5;
83 if (RadarFrequency > 5.0 + 3 * SpGetSimObjKindId() + 1.0) {
84 RadarFrequency = 5.0 + 3 * SpGetSimObjKindId() - 1.0;
85 }
86 SCHEDULE_ShipChangeRadarFrequency(SpGetTime() + 10.0, SpGetObjHandle());
87 }

88 void S_Ship::ProcessShipProxy(SpObjProxy* proxy) {
89 double myECR[3];
90 double remoteECR[3];
91 double difference[3];
92 static int refPosition =
93 proxy->GetReference("Position", "Ship");

94 Position(SpGetTime(), ECR, &myECR[0]);
95 proxy->GetDynamicPosition(refPosition, remoteECR,
96 ECR, SpGetTime());
97 Difference(myECR, remoteECR, difference);
98 PrintDistance(proxy, difference);
99 }

100 void S_Ship::ProcessSubmarineProxy(SpObjProxy* proxy){
101 double MyECR[3];
102 double RemoteECR[3];
103 double difference[3];
104 static int refPosition =
105 proxy->GetReference("Position", "Submarine");

106 Position(SpGetTime(), ECR, &MyECR[0]);
107 proxy->GetPosition(refPosition, RemoteECR,
108 ECR, SpGetTime());
109 Difference(MyECR, RemoteECR, difference);
110 PrintDistance(proxy, difference);
111 }

112 void S_Ship::PrintDistance(SpObjProxy* proxy, double difference[3]) {
113 double euclidDistance = Magnitude(difference);
114 if (euclidDistance < RadarRange) {
115 RB_cout << "Ship " << SpGetSimObjKindId()
116 << " is " << euclidDistance
117 << " km from " << proxy->GetProxyName()
118 << " at time " << (double) SpGetTime()
119 << " seconds." << endl;
120 }
121 }

Example 11.6: Class Type Filter Modifications to S Ship

Example 11.7 shows the new Submarine implementation file. The submarine publishes itself on lines
18 through 20 and subscribes to Ships on lines 21 through 25. Notice on line 21 that the Submarine is
subscribing to the Ocean Space at � ��� � ����� . Now data will not be delivered to the Submarine until
� ��� � ����� . Lines 80 through 84 show how to unsubscribe from a Space. After � � � � � ����� , all proxy

240 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

items on the Submarine proxy list will be removed. Hence, there will be no more data displayed on the
screen.

1 // S_Submarine.C
2 #include "SpGlobalFunctions.H"
3 #include "SpSchedule.H"
4 #include "RB_ostream.H"
5 #include "SpObjProxy.H"
6 #include "SpExportAttribute.H"
7 #include "F_SpProxyItem.H"
8 #include "S_Submarine.H"

9 #include "SpPublishSpace.H"
10 #include "SpSubscribeSpace.H"
11 #include "SpDDMRegion.H"

12 void S_Submarine::Init() {
13 DEFINE_ATTRIBUTE(Country, "Country");
14 DEFINE_ATTRIBUTE(Position, "Position");

15 Country = 2;
16 double pos[3] = {6400.0, -10.0, -6.0};
17 Position.SetECR(pos);

18 SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
19 pubSpace->CreateRegion("Submarine_Publication_Region");
20 pubSpace->Update();

21 SpSubscribeSpace* subSpace = SubscribeSpace(500.0, "Ocean");
22 SpSubscribeRegion* subRegion =
23 subSpace->CreateRegion("Submarine_Subscription_Region");
24 subRegion->AddClass("Ship", NULL);
25 subSpace->Update();

26 SCHEDULE_SubSensorSearch(0.0, SpGetObjHandle());
27 SCHEDULE_SubModifySubscriptions(0.0, SpGetObjHandle());
28 }

29 void S_Submarine::SensorSearch() {
30 int i;
31 double MyECR[3];
32 double RemoteECR[3];
33 double difference[3];

34 static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
35 F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
36 GetRemoteObjectProxies()->get_top();

37 for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
38 SpObjProxy* proxy = testProxyItem->GetObjProxy();
39 static int refCountry =
40 proxy->GetReference("Country", "Ship");
41 static int refRadarFrequency =
42 proxy->GetReference("RadarFrequency", "Ship");
43 static int refPosition =

11.4. CLASS TYPE FILTERING 241

44 proxy->GetReference("Position", "Ship");

45 int targetCountry = proxy->GetInt(refCountry);
46 double targetFrequency = proxy->GetFloat(refRadarFrequency);
47 /*
48 * Print Ship’s Country and Radar Frequency
49 */
50 RB_cout << "Submarine " << SpGetSimObjKindId()
51 << " detects " << proxy->GetProxyName()
52 << " from country " << targetCountry
53 << " emitting radar frequency at " << targetFrequency
54 << " GHz at time " << (double) SpGetTime()
55 << endl;
56 /*
57 * Range base filtering
58 */
59 Position.GetECR(&MyECR[0], SpGetTime());
60 proxy->GetDynamicPosition(refPosition, RemoteECR,
61 ECR, SpGetTime());
62 Difference(MyECR, RemoteECR, difference);
63 double euclidDistance = Magnitude(difference);
64 if (20.0 > euclidDistance) {
65 RB_cout << "Submarine " << SpGetSimObjKindId()
66 << " is " << euclidDistance
67 << " km from " << proxy->GetProxyName()
68 << " at time " << (double) SpGetTime()
69 << " seconds." << endl;
70 }
71 testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();
72 }
73 SCHEDULE_SubSensorSearch(SpGetTime() + 10.0, SpGetObjHandle());
74 }

75 void S_Submarine::ModifySubscriptions() {
76 /*
77 * If simulation time has reached 2400.0 seconds then unsubscribe
78 * (i.e. delete) Region "Submarine_Subscription_Region".
79 */
80 if (2400.0 == SpGetTime()) {
81 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
82 subSpace->DeleteRegion("Submarine_Subscription_Region");
83 subSpace->Update();
84 }
85 SCHEDULE_SubModifySubscriptions(SpGetTime() + 300.0, SpGetObjHandle());
86 }

Example 11.7: Class Type Filter Modifications to S Submarine

Finally, Example 11.8 and Figure 11.6 show the new main and Objects.par files, respectively. The
DDM functionality is added in main on line 7 with the call to PlugInDDM. PlugInDDM has to
be called after PlugInHLA. Notice also that in Objects.par the reference SUBSCRIBE lines
were removed, which turns DM off.

1 // Main.C
2 #include "SpMainPlugIn.H"
3 #include "SpFreeObjProxy.H"

242 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

4 #include "S_Ship.H"
5 #include "S_Submarine.H"

6 void PlugInHLA();
7 void PlugInDDM();

8 int main(int argc, char **argv) {
9 PLUG_IN_SIMOBJ(S_Ship);

10 PLUG_IN_SIMOBJ(S_Submarine);

11 PLUG_IN_EVENT(ShipSensorSearch);
12 PLUG_IN_EVENT(ShipChangeRadarFrequency);
13 PLUG_IN_EVENT(SubSensorSearch);
14 PLUG_IN_EVENT(SubModifySubscriptions);

15 PlugInHLA();
16 PlugInDDM();
17 ExecuteSpeedes(argc, argv);
18 }

19 SpFreeObjProxy::SpFreeObjProxy(int n) { set_ntypes(n); }
Example 11.8: Class Type Filter Modifications to main

Ship {
define float RadarFrequency // Gigahertz
define int Country // 0 - Blue

// 1 - Green
// 2 - White

define dynamic_position Position // Ships can move
}

Submarine {
define int Country // 0 - Blue

// 1 - Green
// 2 - White

define position Position // Static Position
}

Figure 11.6: Objects.par for Class Type Filtering Example

When this example is executed, notice that the Submarine does not output any data until � � � � ����� ,
and it stops outputting data at � � � � � ����� . Even though data is not being output, the event SubSen-
sorSearch continues to execute every

� ����� seconds, which is, essentially, wasted processing time.
Notice that the first output displayed by the Submarine is at � ��� � ����� and not at � ��� � ����� . This is due
to the fact that the priority fields of the proxy events have a lower priority (i.e. executes first) than the
event for subscription. By using SPEEDES built-in event handlers, these problems can be significantly
reduced. This is described in section 11.5.

11.4.1 Attribute Level Filtering

Although not technically part of the DDM system, attribute level subscription is another form of update
filtering worth mentioning here. Above, we showed how DDM could be used to filter by object class.
The next obvious step is to filter updates based on a subset of attributes in the class. That is, the

11.5. DDM EVENT HANDLERS OPTIMIZATION 243

subscriber specifies a subset of attributes within a class, and update events are sent to the subscriber
only if one or more attributes in the subset has changed. This subset is called the attribute subscription
for the class. Note that this filtering applies only to object updates and not to discover or undiscover
events.

Attribute level subscription is an independent filtering system that can be used in conjunction with DDM
(or DM). Refer to Section 9.4.5 for an explanation of how to define an attribute subscription for a given
class.

11.5 DDM Event Handlers Optimization

SPEEDES contains four built-in event handlers that can be used in conjunction with DM and DDM.
The names and descriptions of these event handlers are shown in Table 11.3.

Handler Name Description
Discover Object Handlers added for this trigger respond when a new proxy is delivered.
Reflect Attributes Handlers added for this trigger respond when a proxy is changed.
Update Attributes Handlers added for this trigger respond when an object’s own proxy is changed.
UnDiscover Object Handlers added for this trigger respond when a proxy is removed.

Table 11.3: DM and DDM Built-In Event Handler

For event handlers, the proxy being modified is available by calling function SpGetMsgData and
type casting the returned value to a F SpProxyItem pointer. These event handlers are used by reg-
istering the named event handler trigger string with SPEEDES (i.e. define the handler using macro
DEFINE SIMOBJ HANDLER and register it with SPEEDES using method AddHandler).

Returning to the Ship and Submarine example, Examples 11.9 and 11.10 show the new code for the
Submarine simulation object. Other than a new header file, lines 16, 17, 21, and 28 through 31 have
been added to the Submarine.Hfile. The Submarine implementation file has been changed as follows:

1. Line 12 added include file SpProc.H.

2. Lines 29 through 31, initialize the counter semaphore to 0 and adds event handlers Discover
Object and UnDiscover Object.

3. Turned the code in lines 33 through 85 from a point-to-point event into a process model event. The
primary points of interest are on lines 45 and 82. The WAIT FOR process model construct waits
until the semaphore has been set. In this example, it will be set when a proxy has been delivered,
to this simulation object (handler Discover Object sets the semaphore). The WAIT process
model construct waits

� ����� seconds.

4. Lines 98 through 100 implement Discover Object event handlers.

5. Lines 101 implements UnDiscover Object event handlers.

1 // S_Submarine.H
2 #ifndef S_Submarine_H
3 #define S_Submarine_H

4 #include "S_SpHLA.H"
5 #include "SpDefineSimObj.H"

244 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

6 #include "SpDefineEvent.H"
7 #include "SpDefineHandler.H"
8 #include "SpProcSem.H"

9 class S_Submarine : public S_SpHLA {
10 public:
11 S_Submarine() : S_SpHLA("Submarine") {}
12 ˜S_Submarine() {}
13 void Init();

14 void SensorSearch();
15 void ModifySubscriptions();
16 void DiscoverProxy();
17 void UnDiscoverProxy();

18 private:
19 INT_ATTRIBUTE Country; // Country
20 POSITION_ATTRIBUTE Position; // Submarine position
21 SpCounterSem NumProxiesSem; // Number of Active
22 // Proxies
23 };

24 DEFINE_SIMOBJ(S_Submarine, 1, SCATTER);
25 DEFINE_SIMOBJ_EVENT_0_ARG(SubSensorSearch, S_Submarine, SensorSearch);
26 DEFINE_SIMOBJ_EVENT_0_ARG(SubModifySubscriptions, S_Submarine,
27 ModifySubscriptions);
28 DEFINE_SIMOBJ_HANDLER(SubmarineDiscoverProxy, S_Submarine,
29 DiscoverProxy);
30 DEFINE_SIMOBJ_HANDLER(SubmarineUnDiscoverProxy, S_Submarine,
31 UnDiscoverProxy);
32 #endif

Example 11.9: Class Type Filter Modifications to S Submarine Definition

1 // S_Submarine.C
2 #include "SpGlobalFunctions.H"
3 #include "SpSchedule.H"
4 #include "RB_ostream.H"
5 #include "SpObjProxy.H"
6 #include "SpExportAttribute.H"
7 #include "F_SpProxyItem.H"
8 #include "S_Submarine.H"

9 #include "SpPublishSpace.H"
10 #include "SpSubscribeSpace.H"
11 #include "SpDDMRegion.H"
12 #include "SpProc.H"

13 void S_Submarine::Init() {
14 DEFINE_ATTRIBUTE(Country, "Country");
15 DEFINE_ATTRIBUTE(Position, "Position");

16 Country = 2;
17 double pos[3] = {6400.0, -10.0, -6.0};
18 Position.SetECR(pos);

11.5. DDM EVENT HANDLERS OPTIMIZATION 245

19 SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
20 pubSpace->CreateRegion("Submarine_Publication_Region");
21 pubSpace->Update();

22 SpSubscribeSpace* subSpace = SubscribeSpace(500.0, "Ocean");
23 SpSubscribeRegion* subRegion =
24 subSpace->CreateRegion("Submarine_Subscription_Region");
25 subRegion->AddClass("Ship", NULL);
26 subSpace->Update();

27 SCHEDULE_SubSensorSearch(0.0, SpGetObjHandle());
28 SCHEDULE_SubModifySubscriptions(0.0, SpGetObjHandle());

29 NumProxiesSem = 0;
30 AddHandler(SubmarineDiscoverProxy_HDR_ID(), "Discover Object");
31 AddHandler(SubmarineUnDiscoverProxy_HDR_ID(), "UnDiscover Object");
32 }

33 void S_Submarine::SensorSearch() {
34 P_VAR;
35 int i;
36 double MyECR[3];
37 double RemoteECR[3];
38 double difference[3];
39 SpObjProxy* proxy;
40 static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
41 F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
42 GetRemoteObjectProxies()->get_top();
43 P_BEGIN(2);
44 for (;;) {
45 WAIT_FOR(1, NumProxiesSem, -1);
46 for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
47 proxy = testProxyItem->GetObjProxy();
48 static int refCountry =
49 proxy->GetReference("Country", "Ship");
50 static int refRadarFrequency =
51 proxy->GetReference("RadarFrequency", "Ship");
52 static int refPosition =
53 proxy->GetReference("Position", "Ship");

54 int targetCountry = proxy->GetInt(refCountry);
55 double targetFrequency = proxy->GetFloat(refRadarFrequency);
56 /*
57 * Print Ship’s Country and Radar Frequency
58 */
59 RB_cout << "Submarine " << SpGetSimObjKindId()
60 << " detects " << proxy->GetProxyName()
61 << " from country " << targetCountry
62 << " emitting radar frequency at " << targetFrequency
63 << " GHz at time " << (double) SpGetTime()
64 << endl;
65 /*
66 * Range base filtering
67 */
68 Position.GetECR(&MyECR[0], SpGetTime());
69 proxy->GetDynamicPosition(refPosition, RemoteECR,

246 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

70 ECR, SpGetTime());
71 Difference(MyECR, RemoteECR, difference);
72 double euclidDistance = Magnitude(difference);
73 if (20.0 > euclidDistance) {
74 RB_cout << "Submarine " << SpGetSimObjKindId()
75 << " is " << euclidDistance
76 << " km from " << proxy->GetProxyName()
77 << " at time " << (double) SpGetTime()
78 << " seconds." << endl;
79 }
80 testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();
81 }
82 WAIT(2, 10); // Wait 10 Seconds
83 }
84 P_END;
85 }

86 void S_Submarine::ModifySubscriptions() {
87 /*
88 * If simulation time has reached 2400.0 seconds then unsubscribe
89 * (i.e. delete) Region "Submarine_Subscription_Region".
90 */
91 if (2400.0 == SpGetTime()) {
92 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
93 subSpace->DeleteRegion("Submarine_Subscription_Region");
94 subSpace->Update();
95 }
96 SCHEDULE_SubModifySubscriptions(SpGetTime() + 300.0, SpGetObjHandle());
97 }

98 void S_Submarine::DiscoverProxy() {
99 ++NumProxiesSem;

100 }

101 void S_Submarine::UnDiscoverProxy() {
102 --NumProxiesSem;
103 }

Example 11.10: Class Type Filter Modifications to S Submarine Implementation

Similar changes which are not shown here were made to the Ship simulation object. When the new
simulation is executed, it contains � � � fewer events, which in our case is a

� ��� reduction. Also, at
� ��� � � , two of the three Ship simulation objects appear. What happened to the third ship? Once again,
there is a race condition when processing the proxies. When the semaphore is set and the process model
is executed, only two of the proxies have been delivered to the Submarine simulation object. There are
many solutions to this problem, which in reality, depend on the actual simulation implementation. In our
case, we could have delayed the setting of the semaphore until after receipt of the all of the proxies, or
perhaps created a separate process model event for each received Ship proxy. The actual implementation
is left up to the reader.

11.6 DDM Built-In Filtering Types

We just completed discussing class type filtering, provided by DDM. This is essentially DM, except that
the user can specify start and stop times for the filtering during simulation execution. While this may

11.6. DDM BUILT-IN FILTERING TYPES 247

be all that is required, it offers little in the way of improved simulation run-time performance, since the
filtering is very coarse. SPEEDES’ built-in DDM contains three additional levels of filtering, which are
the ability to filter on enumerated types (i.e. strings), doubles, and ranges (i.e. distance between objects).
These different types of filtering techniques are discussed in the following sections.

11.6.1 Enumerated Value Filtering

Enumerated value filtering provides a mechanism for filtering on user-defined strings. This type of filter
is achieved by adding the filter strings to file InterestSpaces.par and specifying the publication
and subscription ranges for these strings in the simulation objects. Let us modify the Ship and Submarine
example and use this filtering type for the Country attribute.

Figure 11.7 shows the new InterestSpaces.par. Notice that, in the Space Ocean, Dimension
Affiliation has been declared as an EnumType. Lines 7 through 12 contain the definition for this
enumeration type. It contains three enumerations called Blue, Green, and White. Distribute is
a required field, which can have a value of “T” or “F”. When this value is “T”, SPEEDES creates one
hierarchical grid per enumeration type and distributes these across available nodes. If it is “F”, then only
one hierarchical grid is created.

1 InterestSpaces {
2 reference Space Ocean // Space called "Ocean"
3 }

4 Ocean {
5 reference EnumType Affiliation // Dimension for Enums
6 }

7 Affiliation {
8 enum Blue // Enumeration type "Blue"
9 enum Green // Enumeration type "Green"

10 enum White // Enumeration type "White"
11 logical Distribute T
12 }

Figure 11.7: InterestSpaces.par for Enumeration Filtering

The code for creating and publishing the Ship simulation object in Example 11.10 should be replaced
with the following:

SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
SpPublishRegion* pubRegion =
pubSpace->CreateRegion("Ship_Publication_Region");

pubRegion->CreateDimension("Affiliation",
GetAffiliation(SpGetSimObjKindId()),
NULL);

pubSpace->Update();

The only change here is that we are now adding a Dimension to the Region. The name for the Dimension
is the same as specified in InterestSpaces.par. The second parameter in CreateDimension
is the string “Blue”, “Green”, or “White” (function GetAffiliation returns one of these values).
The code for function GetAffiliation is shown in Example 11.11.

248 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

1 static const char *Countries[] = { "Blue", "Green", "White" };

2 const char* GetAffiliation(int index) {
3 return (Countries[index % 3]);
4 }

Example 11.11: Function GetAffiliation

The code shown in Example 11.12 shows the new code for the Submarine simulation object. Specific
changes include:

1. Lines 22 through 27 have been modified to support subscriptions to different countries. The Sub-
marine simulation object creates one Region called Submarine Subscription Region.
One enumeration Dimension is created that subscribes to countries Green and White within this
region. In addition, the AddClass method is shown subscribing to class Ship. In our case,
the results of this example are the same with or without this line, since there is only one object.
However, if there were additional objects in this example that contained the same attributes and
the Submarine could not detect these objects (e.g. satellite), then this method would remove those
types. In other words, class type filtering can be used in conjunction with the other type of DDM
filters.

2. Lines 88 through 98 were added to method ModifySubscriptions. This changes the current
subscription in Dimension Affiliation from Green or White to Blue.

1 // S_Submarine.C
2 #include "SpGlobalFunctions.H"
3 #include "SpSchedule.H"
4 #include "RB_ostream.H"
5 #include "SpObjProxy.H"
6 #include "SpExportAttribute.H"
7 #include "F_SpProxyItem.H"
8 #include "S_Submarine.H"

9 #include "SpPublishSpace.H"
10 #include "SpSubscribeSpace.H"
11 #include "SpDDMRegion.H"
12 #include "SpProc.H"

13 void S_Submarine::Init() {
14 DEFINE_ATTRIBUTE(Country, "Country");
15 DEFINE_ATTRIBUTE(Position, "Position");

16 Country = 2;
17 double pos[3] = {6400.0, -10.0, -6.0};
18 Position.SetECR(pos);

19 SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
20 pubSpace->CreateRegion("Submarine_Publication_Region");
21 pubSpace->Update();

22 SpSubscribeSpace* subSpace = SubscribeSpace(500.0, "Ocean");
23 SpSubscribeRegion* subRegion =
24 subSpace->CreateRegion("Submarine_Subscription_Region");
25 subRegion->AddClass("Ship", NULL);

11.6. DDM BUILT-IN FILTERING TYPES 249

26 subRegion->CreateDimension("Affiliation", "Green", "White", NULL);
27 subSpace->Update();

28 SCHEDULE_SubSensorSearch(0.0, SpGetObjHandle());
29 SCHEDULE_SubModifySubscriptions(0.0, SpGetObjHandle());

30 NumProxiesSem = 0;
31 AddHandler(SubmarineDiscoverProxy_HDR_ID(), "Discover Object");
32 AddHandler(SubmarineUnDiscoverProxy_HDR_ID(), "UnDiscover Object");
33 }

34 void S_Submarine::SensorSearch() {
35 P_VAR;
36 int i;
37 double MyECR[3];
38 double RemoteECR[3];
39 double difference[3];
40 SpObjProxy* proxy;
41 static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
42 F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
43 GetRemoteObjectProxies()->get_top();
44 P_BEGIN(2);
45 for (;;) {
46 WAIT_FOR(1, NumProxiesSem, -1);
47 for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
48 proxy = testProxyItem->GetObjProxy();
49 static int refCountry =
50 proxy->GetReference("Country", "Ship");
51 static int refRadarFrequency =
52 proxy->GetReference("RadarFrequency", "Ship");
53 static int refPosition =
54 proxy->GetReference("Position", "Ship");

55 int targetCountry = proxy->GetInt(refCountry);
56 double targetFrequency = proxy->GetFloat(refRadarFrequency);
57 /*
58 * Print Ship’s Country and Radar Frequency
59 */
60 RB_cout << "Submarine " << SpGetSimObjKindId()
61 << " detects " << proxy->GetProxyName()
62 << " from country " << targetCountry
63 << " emitting radar frequency at " << targetFrequency
64 << " GHz at time " << (double) SpGetTime()
65 << endl;
66 /*
67 * Range base filtering
68 */
69 Position.GetECR(&MyECR[0], SpGetTime());
70 proxy->GetDynamicPosition(refPosition, RemoteECR,
71 ECR, SpGetTime());
72 Difference(MyECR, RemoteECR, difference);
73 double euclidDistance = Magnitude(difference);
74 if (20.0 > euclidDistance) {
75 RB_cout << "Submarine " << SpGetSimObjKindId()
76 << " is " << euclidDistance
77 << " km from " << proxy->GetProxyName()

250 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

78 << " at time " << (double) SpGetTime()
79 << " seconds." << endl;
80 }
81 testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();
82 }
83 WAIT(2, 10); // Wait 10 Seconds
84 }
85 P_END;
86 }

87 void S_Submarine::ModifySubscriptions() {
88 /*
89 * If simulation time has reached 1500.0 seconds then change
90 * subscription Region to "Blue".
91 */
92 if (1500.0 == (double) SpGetTime()) {
93 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
94 SpSubscribeRegion* subRegion =
95 subSpace->FindRegion("Submarine_Subscription_Region");
96 subRegion->ModifyDimension("Affiliation", "Blue", NULL);
97 subSpace->Update();
98 }
99 /*

100 * If simulation time has reached 2400.0 seconds then unsubscribe
101 * (i.e. delete) Region "Submarine_Subscription_Region".
102 */
103 if (2400.0 == SpGetTime()) {
104 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
105 subSpace->DeleteRegion("Submarine_Subscription_Region");
106 subSpace->Update();
107 }
108 SCHEDULE_SubModifySubscriptions(SpGetTime() + 300.0, SpGetObjHandle());
109 }

110 void S_Submarine::DiscoverProxy() {
111 ++NumProxiesSem;
112 }

113 void S_Submarine::UnDiscoverProxy() {
114 --NumProxiesSem;
115 }

Example 11.12: Enumeration Filter Modifications to S Submarine

When the Ship and Submarine example executes, Ship 0 is filtered out by DDM, as shown by this object
not appearing in the output. What happened here is that DDM filtered out all objects that did not have
the correct enumeration value. The result of this filtering is that the Submarine simulation object only
had two proxies on its proxy list. At � � � � � ����� , the subscription is changed. Now, the data for Ship 0
is output and the data for Ship 1 and Ship 2 are removed by filtering.

11.6.2 Double Range Filtering

Double range filtering allows users to specify filtering based on floating point numbers being within a
given range. Publications and Subscriptions are handled by suppling a lower and upper boundary for
the floating point number. If a range is not desired, then a single point can be used by using the same
value for the upper and lower boundary.

11.6. DDM BUILT-IN FILTERING TYPES 251

Figure 11.8 shows the new InterestSpaces.par that contains an example for double range fil-
tering. Notice that in the Ocean Space, Dimension RadarFrequency has been declared as a type
Dimension. Lines 14 through 21 contain the definition for this double range filter type. The required
lines are Lo, Hi, Resolution[0], Resolution[1], and Distribute. Lo and Hi specify the
upper and lower boundaries for this Dimension, specifically 2.0 and 20.0 GHz, respectively. The data
value specified in Resolution[0] is used in conjunction with the upper and lower boundaries to cal-
culate how many hierarchical grids are to be created for this dimension. In this example, � � ������� � ������� � ���
rounded up creates nine grids. The next two resolutions are used to further subdivide each grid, which
can help optimize simulation performance.

1 InterestSpaces {
2 reference Space Ocean // Space called "Ocean"
3 }

4 Ocean {
5 reference EnumType Affiliation // Dimension for Enums
6 reference Dimension RadarFrequency // Dimension for Doubles
7 }

8 Affiliation {
9 enum Blue // Enumeration type "Blue"

10 enum Green // Enumeration type "Green"
11 enum White // Enumeration type "White"
12 logical Distribute T
13 }

14 RadarFrequency {
15 float Lo 2.0 // GHz
16 float Hi 20.0 // GHz

17 float Resolution[0] 2.0
18 float Resolution[1] 0.5
19 float Resolution[1] 0.1
20 logical Distribute T
21 }

Figure 11.8: InterestSpaces.par for Double Range Filtering

Returning to the Ship and Submarine example, replace the Ship simulation objects publication code
with the following:

SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
SpPublishRegion* pubRegion =
pubSpace->CreateRegion("Ship_Publication_Region");

pubRegion->CreateDimension("Affiliation",
GetAffiliation(SpGetSimObjKindId()),
NULL);

pubRegion->CreateDimension("RadarFrequency",
RadarFrequency, RadarFrequency,
NULL);

pubSpace->Update();

The only change here is that Dimension RadarFrequency has been added to Space Ocean. This
Dimension was added to the same Region as Dimension Affiliation. Both Lo and Hi arguments

252 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

to method CreateDimension are the same, indicating that this object is producing data at one value.
In this case, the frequencies are 5.0, 8.0, and 11.0 GHz for Ships 0, 1, and 2, respectively.

The code shown in Example 11.13 shows the new implementation for the Submarine simulation object.
Specific changes include:

1. Lines 22 through 28 are used to to subscribe to our different Dimensions. The Submarine sim-
ulation object creates one Region called “Submarine Subscription Region”. Within this region,
one enumeration Dimension is created that subscribes to countries “Green” and “White”. Using
the same Region, another Dimension is created called RadarFrequency. In this dimension,
the Submarine simulation object subscribes to all objects whose frequencies are between 10.0
and 14.0 GHz. This current implementation shows an “AND” condition (i.e. both must be true in
order for proxies to be delivered to the Submarine). If a new Region had been created, then this
would have implemented an “OR” condition.

2. Lines 100 through 122 were added to method ModifySubscriptions. The changes here will
change the subscription regions for the Submarine. At � � � � � ����� , the subscription Region Sub-
marine Subscription Region, Dimension RadarFrequency is changed from 10.0 to
14.0 GHz to 3.5 to 6.5 GHz. At � � � � � ����� , a new Region called New Submarine Sub-
scription Region is created. This Region’s RadarFrequencyDimensions are initialized
with a frequency range of 6.5 to 9.5 GHz.

1 // S_Submarine.C
2 #include "SpGlobalFunctions.H"
3 #include "SpSchedule.H"
4 #include "RB_ostream.H"
5 #include "SpObjProxy.H"
6 #include "SpExportAttribute.H"
7 #include "F_SpProxyItem.H"
8 #include "S_Submarine.H"

9 #include "SpPublishSpace.H"
10 #include "SpSubscribeSpace.H"
11 #include "SpDDMRegion.H"
12 #include "SpProc.H"

13 void S_Submarine::Init() {
14 DEFINE_ATTRIBUTE(Country, "Country");
15 DEFINE_ATTRIBUTE(Position, "Position");

16 Country = 2;
17 double pos[3] = {6400.0, -10.0, -6.0};
18 Position.SetECR(pos);

19 SpPublishSpace* pubSpace = PublishSpace(0.0, "Ocean");
20 pubSpace->CreateRegion("Submarine_Publication_Region");
21 pubSpace->Update();

22 SpSubscribeSpace* subSpace = SubscribeSpace(500.0, "Ocean");
23 SpSubscribeRegion* subRegion =
24 subSpace->CreateRegion("Submarine_Subscription_Region");
25 subRegion->AddClass("Ship", NULL);
26 subRegion->CreateDimension("Affiliation", "Green", "White", NULL);
27 subRegion->CreateDimension("RadarFrequency", 10.0, 14.0, NULL);

11.6. DDM BUILT-IN FILTERING TYPES 253

28 subSpace->Update();

29 SCHEDULE_SubSensorSearch(0.0, SpGetObjHandle());
30 SCHEDULE_SubModifySubscriptions(0.0, SpGetObjHandle());

31 NumProxiesSem = 0;
32 AddHandler(SubmarineDiscoverProxy_HDR_ID(), "Discover Object");
33 AddHandler(SubmarineUnDiscoverProxy_HDR_ID(), "UnDiscover Object");
34 }

35 void S_Submarine::SensorSearch() {
36 P_VAR;
37 int i;
38 double MyECR[3];
39 double RemoteECR[3];
40 double difference[3];
41 SpObjProxy* proxy;
42 static int shipMgrId = SpGetSimObjMgrId("S_Ship_MGR");
43 F_SpProxyItem* testProxyItem = (F_SpProxyItem *)
44 GetRemoteObjectProxies()->get_top();
45 P_BEGIN(2);
46 for (;;) {
47 WAIT_FOR(1, NumProxiesSem, -1);
48 for (i = 0; i < GetRemoteObjectProxies()->get_length(); ++i) {
49 proxy = testProxyItem->GetObjProxy();
50 static int refCountry =
51 proxy->GetReference("Country", "Ship");
52 static int refRadarFrequency =
53 proxy->GetReference("RadarFrequency", "Ship");
54 static int refPosition =
55 proxy->GetReference("Position", "Ship");

56 int targetCountry = proxy->GetInt(refCountry);
57 double targetFrequency = proxy->GetFloat(refRadarFrequency);
58 /*
59 * Print Ship’s Country and Radar Frequency
60 */
61 RB_cout << "Submarine " << SpGetSimObjKindId()
62 << " detects " << proxy->GetProxyName()
63 << " from country " << targetCountry
64 << " emitting radar frequency at " << targetFrequency
65 << " GHz at time " << (double) SpGetTime()
66 << endl;
67 /*
68 * Range base filtering
69 */
70 Position.GetECR(&MyECR[0], SpGetTime());
71 proxy->GetDynamicPosition(refPosition, RemoteECR,
72 ECR, SpGetTime());
73 Difference(MyECR, RemoteECR, difference);
74 double euclidDistance = Magnitude(difference);
75 if (20.0 > euclidDistance) {
76 RB_cout << "Submarine " << SpGetSimObjKindId()
77 << " is " << euclidDistance
78 << " km from " << proxy->GetProxyName()
79 << " at time " << (double) SpGetTime()

254 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

80 << " seconds." << endl;
81 }
82 testProxyItem = (F_SpProxyItem *) testProxyItem->get_link();
83 }
84 WAIT(2, 10); // Wait 10 Seconds
85 }
86 P_END;
87 }

88 void S_Submarine::ModifySubscriptions() {
89 /*
90 * If simulation time has reached 1500.0 seconds then change
91 * subscription Region Affiliation to "Blue".
92 */
93 if (1500.0 == (double) SpGetTime()) {
94 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
95 SpSubscribeRegion* subRegion =
96 subSpace->FindRegion("Submarine_Subscription_Region");
97 subRegion->ModifyDimension("Affiliation", "Blue", NULL);
98 subSpace->Update();
99 }

100 /*
101 * If simulation time has reached 1800.0 seconds then change
102 * subscription Region RadarFrequency range to 3.5 to 6.5 GHz".
103 */
104 if (1800.0 == (double) SpGetTime()) {
105 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
106 SpSubscribeRegion* subRegion =
107 subSpace->FindRegion("Submarine_Subscription_Region");
108 subRegion->ModifyDimension("RadarFrequency", 3.5, 6.5, NULL);
109 subSpace->Update();
110 }
111 /*
112 * If simulation time has reached 2100.0 seconds then add
113 * a new subscription Region and create a new Dimension
114 * RadarFrequency with a range of 6.5 to 9.5 GHz".
115 */
116 if (2100.0 == (double) SpGetTime()) {
117 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
118 SpSubscribeRegion* subRegion =
119 subSpace->CreateRegion("New_Submarine_Subscription_Region");
120 subRegion->CreateDimension("RadarFrequency", 6.5, 9.5, NULL);
121 subSpace->Update();
122 }
123 /*
124 * If simulation time has reached 2400.0 seconds then unsubscribe
125 * (i.e. delete) Region "Submarine_Subscription_Region".
126 */
127 if (2400.0 == SpGetTime()) {
128 SpSubscribeSpace* subSpace = FindSubscribeSpace("Ocean");
129 subSpace->DeleteRegion("Submarine_Subscription_Region");
130 subSpace->Update();
131 }
132 SCHEDULE_SubModifySubscriptions(SpGetTime() + 300.0, SpGetObjHandle());
133 }

11.6. DDM BUILT-IN FILTERING TYPES 255

134 void S_Submarine::DiscoverProxy() {
135 ++NumProxiesSem;
136 }

137 void S_Submarine::UnDiscoverProxy() {
138 --NumProxiesSem;
139 }

Example 11.13: Double Range Filter Modifications to S Submarine

When this example is executed, the following occurs:

1. At � ��� � ����� , the Submarine starts to print out Ship 2’s data. DDM is filtering out Ship 0 and Ship
1 due to these objects not meeting the country and frequency DDM requirements, respectively.

2. At � � � � � ����� , the Submarine changes its Affiliation Dimension to subscribe to “Blue”.
This results in countries “Green” and “White” being removed from this Dimension and country
“Blue” being added. This causes Region Submarine Subscription Region to have Sub-
scriptions for any Ship that resides from country “Blue” whose radar is transmitting in the range
of 10.0 to 14.0 GHz. In this example, no Ships meet this criteria. Therefore, the Submarine stops
outputting Ship data.

3. At � � � � � ����� , the Submarine changes its RadarFrequencyDimension to a frequency range
of 3.5 to 6.5 GHz, which causes the previous definition of 10.0 to 14.0 GHz to be removed. Ship
0’s radar frequency is within this range. Therefore, the Submarine starts to output Ship 0’s data.

4. At � � � � � ����� , the Submarine creates a new Region called New Submarine Subscrip-
tion Region and creates a RadarFrequency Dimension whose frequency range is 6.5 to
9.5 GHz. This has created two Regions within the Ocean Space. The result is an “OR” condi-
tion. This means that any Ship whose publication criteria meets either Submarine subscription
specification, will have its data output. Ship 0 has already met the subscription criteria for Region
Submarine Subscription Region. Therefore, its data continues to be output. Ship 1’s
radar frequency meets the new Region New Submarine Subscription Region subscrip-
tion criteria. Therefore, Ship 1’s data is also displayed.

5. At � � � � � ����� , the Submarine deletes Region Submarine Subscription Region. The
result of this is Ship 0 is now filtered out by DDM. Therefore, Ship 0’s data is not output. Ship
1’s output is still displayed.

11.6.3 Range-Based Filtering

Range-based filtering is the final built-in DDM filter type. It is perhaps the most powerful and most
complex of the filter types. When range-based filtering is enabled, SPEEDES automatically determines
when objects are within a specified range. If we reexamine Figure 11.1, we notice that each Ship has
a circular radar detection range. However, implementation of a circular detection range is extremely
complex and CPU expensive. It is much easier to have a detection algorithm that is based on a rec-
tangular grid. Figure 11.9 shows this. Notice that the simulation object’s sensor detection ranges are
now square instead of the original circular detection range pattern. Actually, not only are they square,
but due to the DDM algorithm, the square is actually larger than shown. Therefore, while range-based
filters will reduce the amount of proxies delivered to the subscribing object, proxies will be delivered to
simulation objects that may be out of range (sensor range in this case). Therefore, if this is critical to
the performance of the simulation, users should perform additional checks on ranges to verify that the
detected objects are within range.

256 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

To use range-based filtering, a section has to be added to InterestSpaces.par, as shown in Fig-
ure 11.10. For range-based filtering, a Theater Dimension must be added to the Space. For this
example, Earth has been added on line 7. The definition of Dimension Earth is shown on lines 24
through 45. The example InterestSpaces.par shows the required fields necessary to create a
Theater Dimension. For range-based filtering, the Theater Dimension must specify the ranges for
latitude, longitude, and altitude. These elements are specified in InterestSpaces.par by the lati-
tude and longitude pair LatLng, which is broken down into Latitude and Longitude. Altitude is
specified in the Altitude section. Common to each of those sections are the attributes Lo, Hi, Res-
olution[0], Resolution[1], and Distribute. The lower and upper ranges for latitude and
longitude are �

� � � and �
� � � � , respectively. Altitude is specified in km, with � indicating the surface

of the earth.

1 InterestSpaces {
2 reference Space Ocean // Space called "Ocean"
3 }

4 Ocean {
5 reference EnumType Affiliation // Dimension for Enums
6 reference Dimension RadarFrequency // Dimension for Doubles
7 reference Theater Earth // Dimension for Range
8 // Based Filtering
9 }

10 Affiliation {
11 enum Blue // Enumeration type "Blue"
12 enum Green // Enumeration type "Green"
13 enum White // Enumeration type "White"
14 logical Distribute T
15 }

16 RadarFrequency {
17 float Lo 2.0 // GHz
18 float Hi 20.0 // GHz

19 float Resolution[0] 2.0
20 float Resolution[1] 0.5
21 float Resolution[1] 0.1
22 logical Distribute T
23 }

24 Earth {
25 LatLng {
26 Latitude {
27 float Lo -5.0
28 float Hi 5.0
29 }

30 Longitude {
31 float Lo -10.0
32 float Hi 10.0
33 }

34 float Resolution[0] 1000
35 float Resolution[1] 500

11.6. DDM BUILT-IN FILTERING TYPES 257

36 logical Distribute T
37 }

38 Altitude {
39 float Lo 0.0
40 float Hi 4.0
41 float Resolution[0] 4
42 float Resolution[1] 1
43 logical Distribute T
44 }
45 }

When a theater section is added to the InterestSpaces.par file, the range-based filtering is au-
tomatically enabled for all objects that publish or subscribe to this Space. No additional methods for
specifying a theater’s Dimensions are required. However, range-based filtering depends on the users
supplying the code for seven methods that are used by the range-based filter algorithm. The required
virtual methods located on S SpHLA are:

� double GetLookAheadSec()
All objects participating in range-based filtering must use the same value of GetLookAhead-
Sec. The value returned by GetLookAheadSec should be smaller than the value returned by
GetMinRescheduleTimeSec.

� double GetMinRescheduleTimeSec()
Smaller values result in better filtering, but may result in too large an amount of CPU being
expended for the DDM alone.

� double GetMinExpansionKm()
This gives the minimum expansion of the sensor range. Smaller values result in better filtering at
the expense of more frequent events to determine the proxy distribution.

� double GetMaxSpeedKmPerSec()
Returns the maximum speed in km/second that this object can achieve.

� double GetMaxSensorRangeKm()
Gives the maximum range of the “sensor.” That is, gives the minimum range at which this object
should give proxies of other objects doing range-based filtering. For example, for a radar, it would
be its detection range, but for a weapon, it would be its fire range.

� int GetPositionTimes(double time,
double& startTime,
double& endTime)

Arguments startTime and endTime are filled in with the bounds of the equation of motion
bounds for the passed in time. The return code is ignored for non-zero values and aborts for return
of 0. For fixed position objects, fill in - � and + � for startTime and endTime and return 1.

� void GetPosition(double time,
double position[3],
double velocity[3],
double acceleration[3])

Returns the position, velocity and acceleration for this object in Earth coordinate
system at time.

258 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

The first three functions are tuning parameters for DDM. Lower values result in more accurate DDM
(proxies are delivered closer to the correct distance) but also result in more CPU overhead for the DDM
filtering.

The last four function are used for the actual computation of the delivery time for the proxies. The
frequency of these computations occurs based on the sizes of the tuning parameters, and all the compu-
tations are recalculated whenever either proxy changes.

Let us modify the Ship and Submarine example one last time and incorporate the changes necessary
for range-based filtering. The changes made are shown in Examples 11.14 and 11.15 for the Ship and
Submarine simulation objects, respectively. The only changes made here are the addition of the seven
methods required for range-based filtering. Also, in the example provided, the conditional checks for
the target range were deleted. Therefore, if you run the example, you will see output from the example
with a distance to the target outside of the specified sensor range, as expected.

1 // S_Ship.H
2 #ifndef S_SHIP_H
3 #define S_SHIP_H

4 #include "S_SpHLA.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"
7 #include "SpDefineHandler.H"
8 #include "SpProcSem.H"

9 class S_Ship : public S_SpHLA {
10 public:
11 S_Ship() : S_SpHLA("Ship") {}
12 ˜S_Ship() {}

13 void Init();
14 void SensorSearch();
15 void ChangeRadarFrequency();
16 void DiscoverProxy();
17 void UnDiscoverProxy();
18 /*
19 * Range Based Filtering required methods
20 */
21 double GetLookAheadSec() {return 5.0;}
22 double GetMinRescheduleTimeSec() {return 10.0;}
23 double GetMinExpansionKm() {return 0.1;}
24 double GetMaxSpeedKmPerSec() {return (100.0 / 60 / 60);}
25 double GetMaxSensorRangeKm() {return RadarRange;}
26 int GetPositionTimes(double time,
27 double& startTime,
28 double& endTime) {
29 return (Position.GetTimeInterval(time, startTime, endTime));
30 }
31 void GetPosition(double t,
32 double position[3],
33 double velocity[3],
34 double acceleration[3]) {
35 Position(t, EARTH, &position[0], &velocity[0], &acceleration[0]);
36 }

11.6. DDM BUILT-IN FILTERING TYPES 259

37 private:
38 DOUBLE_ATTRIBUTE RadarFrequency; // Gigahertz
39 INT_ATTRIBUTE Country; // Country
40 DYNAMIC_POSITION_ATTRIBUTE Position; // Ship Position
41 double RadarRange; // Kilometers
42 SpCounterSem NumProxiesSem; // Number of Active
43 // Proxies
44 void ProcessShipProxy(SpObjProxy* proxy);
45 void ProcessSubmarineProxy(SpObjProxy* proxy);
46 void PrintDistance(SpObjProxy* proxy, double difference[3]);
47 };

48 DEFINE_SIMOBJ(S_Ship, 3, SCATTER);
49 DEFINE_SIMOBJ_EVENT_0_ARG(ShipSensorSearch, S_Ship, SensorSearch);
50 DEFINE_SIMOBJ_EVENT_0_ARG(ShipChangeRadarFrequency, S_Ship,
51 ChangeRadarFrequency);
52 DEFINE_SIMOBJ_HANDLER(ShipDiscoverProxy, S_Ship, DiscoverProxy);
53 DEFINE_SIMOBJ_HANDLER(ShipUnDiscoverProxy, S_Ship, UnDiscoverProxy);
54 #endif

Example 11.14: Range-Based Filtering Modications to S Ship

1 // S_Submarine.H
2 #ifndef S_Submarine_H
3 #define S_Submarine_H

4 #include "S_SpHLA.H"
5 #include "SpDefineSimObj.H"
6 #include "SpDefineEvent.H"
7 #include "SpDefineHandler.H"
8 #include "SpProcSem.H"

9 class S_Submarine : public S_SpHLA {
10 public:
11 S_Submarine() : S_SpHLA("Submarine") {}
12 ˜S_Submarine() {}
13 void Init();

14 void SensorSearch();
15 void ModifySubscriptions();
16 void DiscoverProxy();
17 void UnDiscoverProxy();
18 /*
19 * Range Based Filtering required methods
20 */
21 double GetLookAheadSec() {return 1.0;}
22 double GetMinRescheduleTimeSec() {return 2.0;}
23 double GetMinExpansionKm() {return 0.1;}
24 double GetMaxSpeedKmPerSec() {return 0.0001;}
25 double GetMaxSensorRangeKm() {return 20.0;}
26 int GetPositionTimes(double time,
27 double& startTime,
28 double& endTime) {
29 startTime = -INFINITY;
30 endTime = INFINITY;
31 return 1;

260 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

32 }
33 void GetPosition(double t,
34 double position[3],
35 double velocity[3],
36 double acceleration[3]) {
37 int i;
38 Position.GetEARTH(position[0], position[1], position[2]);
39 for (i = 0; i < 3; ++i) {
40 velocity[i] = 0.0;
41 acceleration[i] = 0.0;
42 }
43 }

44 private:
45 INT_ATTRIBUTE Country; // Country
46 POSITION_ATTRIBUTE Position; // Submarine position
47 SpCounterSem NumProxiesSem; // Number of Active
48 // Proxies
49 };

50 DEFINE_SIMOBJ(S_Submarine, 1, SCATTER);
51 DEFINE_SIMOBJ_EVENT_0_ARG(SubSensorSearch, S_Submarine, SensorSearch);
52 DEFINE_SIMOBJ_EVENT_0_ARG(SubModifySubscriptions, S_Submarine,
53 ModifySubscriptions);
54 DEFINE_SIMOBJ_HANDLER(SubmarineDiscoverProxy, S_Submarine,
55 DiscoverProxy);
56 DEFINE_SIMOBJ_HANDLER(SubmarineUnDiscoverProxy, S_Submarine,
57 UnDiscoverProxy);
58 #endif

Example 11.15: Range-Based Filtering Modications to S Submarine

The output from this example is very similar to the previous results. The biggest difference is that,
where in the previous example Ship 1’s country and radar frequency was output starting at � � � � � �
to the end of the simulation, this example does not. While it does start to output this information at
� � � � � � , Ship 0 moves out of range at approximately � � � � � � seconds, at which point range-based
filtering filters out this object.

11.7 DDM Performance

Table 11.4 shows the event statistics from each example described in this section. As each level of
filtering is increased, the number of zero lookahead events decreases (i.e. SpTouchProxy and SpRe-
flectAttribute). The reduction of these events add additional parallelism to a simulation and
reduce the number of rollbacks of user events.

11.7. DDM PERFORMANCE 261

10 km

10 km 20 km 30 km-30 km -20 km -10 km

20 km

30 km

-30 km

-20 km

-10 km

10 km

15 km

Ship #1

Ship #0

20 km

Submarine

Ship #2

Figure 11.9: DDM Ship Simulation Layout

Figure 11.10: InterestSpaces.par for Range-Based Filtering

262 CHAPTER 11. DATA DISTRIBUTION MANAGEMENT (DDM)

Event Name

Filter Type
DM Class Type Handlers Enumeration Double Range-Based

ShipSensorSearch 1080 1080 903 903 903 719
ShipChangeRadarFrequency 1080 1080 1080 1080 1080 1080
SubSensorSearch 361 361 193 193 284 264
SubModifySubscriptions N/A 13 13 13 13 13
SubscribeAllClasses N/A 4 4 4 4 4
SpTouchProxy 3240 2730 2090 2090 2110 526
SpReflectAttributes 1080 1080 920 920 910 384
SpDeliverProxyPtr N/A 12 12 12 996 268
SpUndeliverProxyPtr N/A 3 3 3 986 268
SpNewProxy N/A 7 18 18 516 244
SpRemoveProxy N/A 3 3 3 428 63
SpPublishGrid N/A 4 6 6 1110 1498
SpUnPublishGrid N/A 0 0 0 504 657
SpSubscribeGrid N/A 4 552 552 4967 34990
SpUnSubscribeGrid N/A 4 3 3 11 76
SpUnSubscribeSpace N/A 3 3 3 2 59
SpAddSubscriberSpace N/A 7 24 24 1200 1557
SpDeliverProxyPtrSpace N/A 0 6 6 78 54
SpUndeliverProxyPtrSpace N/A 0 0 0 0 55
SpPublishSpaceProcess N/A 12 12 12 3252 3250
SpSubscribeSpaceProcess N/A 10 372 372 376 1810

Totals 6841 6414 6113 6217 19730 43572

Table 11.4: DDM Summary Results

The number of user events also decreased as DDM filter is increased. The examples presented in this
Chapter were created for demonstrative purposes and, hence, are simple. Specifically, the user events
are performing very little work. However, if these user events were very time consuming, then reducing
the number of these event can increase the simulation performance.

11.7.1 Hierarchical Grids

A number of references have been made to hierarchical grids. These are simulation objects used to
optimize the DDM within SPEEDES so that it scales in both memory and numbers of objects. These
objects determine the overlaps between simulation objects that are publishing and subscribing so that
the proper proxies can be delivered.

In general, creating more hierarchical grid objects results in fewer rollbacks, but this is done at the ex-
pense of a larger memory footprint. On the other hand, creating fewer hierarchical grid objects results in
a smaller memory impact but will result in more rollbacks and, potentially, worse run-time performance.

11.8 Tips, Tricks, and Potholes

� When setting the Distributeparameter in InterestSpaces.paruse the following guide-
line. If the dimension changes frequently, then set the parameter to true in order to minimize the
number of rollbacks. If the dimension changes infrequently, then set the parameter to false.

� Specifying large values for methods GetLookAheadSec, GetMinRescheduleTimeSec,
and GetMinExpansionKmdecreases the number of DDM events at the expense of less accurate
filtering.

Part V

External Interfaces

263

Chapter 12

External Modules

The SPEEDES framework is a powerful simulation tool that contains many capabilities, which simplify
the creation of parallel discrete-event simulations. But how does the user get valuable information out
of the simulation for data analysis, real-time displays, debugging, etc.? SPEEDES provides a built-in
class SpStateMgr to receive “committed” or “released” events from the simulation for use. Use of the
state manager avoids having to interact with non-optimistic interfaces. The state manager offers users
the following capabilities:

� Time Management

� Object Proxy Data

� User-Defined events

Note that the features described in this chapter do not work in sequential mode. When running on one
node, be sure that optimize sequential is set to false in speedes.par. See Appendix C.1 for
more information.

12.1 Simple External Module

Use of the built-in SPEEDES external module class provides users with an easy way to to interface with
a SPEEDES application.

The basic steps are:

1. Create a communication path to the SPEEDES application.

2. Inform SPEEDES of the objects and data about which the external module will receive informa-
tion.

3. Advance time.

4. Process received simulation data.

This chapter will explore an external module which communicates with the example in Section 11.6.3.
This external module will act like a commander, keeping an eye on what the Submarine sees and issuing

265

266 CHAPTER 12. EXTERNAL MODULES

commands to attack targets. We will need to extend both the submarine and ship models in order to
allow the submarine to attack the ship.

First, a method Attack will be added to the S Submarine class, and a corresponding method
CheckForDamage will be added to the S Ship class. These methods need to be added to their
respective definition file, have the DEFINE SIMOBJ EVENT macro applied to the methods, and then
have the new events plugged into main. The implementation of these methods appears in Examples 12.1
and 12.2.

#include "SpGlobalFunctions.H"
#include "F_SpProxyItem.H"
#include "S_Submarine.H"
#include "S_Ship.H"

void S_Submarine::Attack() {
int i;
int numObjProxies;
int found = 0;
char* objName;
RB_queue* remoteProxies;
F_SpProxyItem* pItem;
SpObjProxy* remoteObject;

objName = SpGetMsgData(); // Get extra data passed to
// Attack method

remoteProxies = GetRemoteObjectProxies();
pItem = (F_SpProxyItem *) remoteProxies->get_top();
numObjProxies = remoteProxies->get_length();

for (i = 0; i < numObjProxies; ++i) {
remoteObject = (SpObjProxy *) pItem->GetObjProxy();
if (!strcmp(remoteObject->GetProxyName(), objName)) {

found = 1;
break;

}
pItem = (F_SpProxyItem *) pItem->get_link();

}
if (found == 1) {
static int refCountry =

remoteObject->GetReference("Country", "Ship");
int targetCountry = remoteObject->GetInt(refCountry);
if (targetCountry != Country){

SpObjHandle
remoteObjectHandle(remoteObject->GetProxyNode(),

remoteObject->GetProxySimObjMgrId(),
remoteObject->GetProxySimObjLocalId());

SCHEDULE_ShipCheckForDamage(SpGetTime() + 2.0, remoteObjectHandle);
}
else{

RB_cout << "Will not attack ship of same country" << endl;
}

}
else {
RB_cout << "Could not find object " << objName

<< " to attack " << endl;

12.1. SIMPLE EXTERNAL MODULE 267

}
}

Example 12.1: Attack method on S Submarine

The Submarine receives a command to attack and obtains the name of the object to attack from the data.
It then looks up the object on its list of proxies (these are the only items in range) and schedules an
event for the target to check itself for damage in two seconds. Upon receiving this event, the target ship
throws a random number and, 90% of the time, survives. When it does not survive, it removes all the
dynamic items from its list and stops publishing or subscribing.

#include "SpGlobalFunctions.H"
#include "SpBaseDynItem.H"
#include "SpFreeDynAttributes.H" // Needed for FreeDynamicAttributes
#include "RB_SpFrameworkFuncs.H" // Needed for RB_FREE_DELETE
#include "S_Ship.H"

void S_Ship::CheckForDamage() {
RB_SpRandom* myRandom = SpGetRandom();
if (myRandom->GenerateUniform() > 0.9) { // 10% chance of hit
/*
* Return all position items to dynanmic attribute free list.
* Remove this object from DDM participation.
*/

SpDynItem* currItem = (SpDynItem *) Position.GetFirstElement();
while (currItem != NULL) {

Position -= currItem;
RB_FREE_DELETE(FreeDynamicAttributes, currItem);
currItem = (SpDynItem *) Position.GetFirstElement();

}
SpUnpublishSpace("Ocean"); // Stop publishing
SpUnsubscribeSpace("Ocean"); // Stop subscribing

}
}

Example 12.2: CheckForDamage method on S Ship

Other changes will need to be made to the rest of the Ship model in order to manage the rest of the
Ship’s operations but are more extensive than can be presented here. These changes include:

� Stop the SensorSearch process because the Ship is no longer functioning.

� Store cancel handles for many events that may be changing the subscription or publication space,
or make these events check for a NULL space prior to operating on it.

� Change any other related code that changes the spaces in order to check if it exists first.

Now that a simulation is available, the actual external module can be written for extracting and inserting
data from and into the simulation. There are three classes most often used for building external modules.
These are the SpStateMgr, the SpStateMgrEvent, and the SpEmHostUser.

Communication with the external modules is handled by the HostRouter interface of the Speedes-
Server application. The location (i.e. machine name) of the SpeedesServer is specified in file

268 CHAPTER 12. EXTERNAL MODULES

speedes.par. Section C.3 describes the necessary configurations for the SpeedesServer. For
this example, use a speedes.parwith the SpeedesServer section missing. This will default the
SpeedesServer to be be located on local host. Users must start the SpeedesServer application
manually on the command line.

The most simple possible external module is then shown below in Example 12.3.

#include "SpDataParser.H"
#include "SpStateMgr.H"

int main(int argc, char** argv) {
double timeLag = 10.0;
SpDataParser speedesDotPar("speedes.par");
SpStateMgr stateMgr(&speedesDotPar, timeLag);

}
Example 12.3: Simple External Module

The first argument to the SpStateMgr constructor is a pointer to a SpDataParser, which is opened
to speedes.par. The second argument is timeLag. This argument specified the maximum amount
of time the external module is allowed to fall behind, or lag, the simulation. This value is required to be
positive and, in general, large values for timeLag are best if you do not want the external module to
slow down the advancment of GVT in the simulation.

Now, all this external module does is connect to the simulation and then immediately disconnect, which
is exceptionally uninteresting. In order to do something interesting, the external module needs to receive
data from the simulation and advance its own time. There are four state manager methods used for
subscribing to data within the simulation. These are shown below:

class SpStateMgr {
public:

SubscribeAll();
SubscribeType(char* type, ...);
SubscribeObject(char* objectName, ...);
SubscribeData(char* name, char* type);

};

� SubscribeAll:
all objects in the simulation. This should be used with caution as it can result in excessive amounts
of data being sent to the external module.

� SubscribeType:
Subscribes the external module to the object proxies of all objects passed into this method. The
list should be NULL terminated. The names that are passed into this method should be the name
of the object plugged in appended with the string “ MGR”. For example, if S Ship is plugged in,
passing in S Ship MGR will subscribe the external module to the proxies of all ships.

� SubscribeObject:
Subscribes the external module to the object proxies of the objects passed in on the command
line. This is the most specific form of object proxy subscription and results in the least amount of
data being transmitted. The list of objects should be NULL terminated or undefined behavior will
occur.

12.1. SIMPLE EXTERNAL MODULE 269

� SubscribeData:
Subscribes to the “named data” with the string name for all objects with the given type. Objects
within the simulation should determine if any external modules are subscribed to a given string
before attempting to send this data out, in order to reduce overhead.

The external module is a discrete-event simulator, just like the main SPEEDES framework, and work is
performed by writing code to respond to messages. The first code we will add to our external module is
a response to changes in object proxies.

class MyReflect : public SpStateMgrEvent {
public:

MyReflect() {}
void Process() {

cout << "MyReflect::Process" << endl;
}

}

void *NewMyReflect(int n) {
return new MyReflect[n];

}

Notice that this code declares a function that allocates new MyReflect classes. This is used in the
state manager event registration process.

Once we have designed our processing classes, we need to register this class with the state manager.
When we register our class, we must register it with a string handle. There are two predefined SPEEDES
handles (i.e. DISCOVER OBJECT and REFLECT ATTRIBUTES) and the user can define their own
handles for names of events they may receive from the SPEEDES application or for locally scheduled
events. Definitions for these handles are:

� DISCOVER OBJECT - When an object in a SPEEDES simulation is subscribed to, the first event
the external module will receive will be a DISCOVER OBJECT event. However, since most
simulation objects are constructed at simulation start-up and not when the object is used the first
time, the user will receive these events when they first subscribe. If the user subscribes during
simulation initialization, then all of their discovered objects will have a time stamp of � � on
them. If the user subscribes after simulation startup, the time stamp will be at connection time.

� REFLECT ATTRIBUTES - For any SPEEDES object that the user has subscribed to whose proxy
was changed, object proxy data will be sent to the external module for processing at the appropri-
ate logical time.

� User-Defined Events - These events are local state manager events that are executed at the appro-
priate logical time.

The following code shows how we can register our new class MyReflectwith the state manager.

/*
* Number of local events defined in the state manager
*/
stateManager.DefineNumberOfEvents(1);

270 CHAPTER 12. EXTERNAL MODULES

stateManager.DefineEvent(
"REFLECT_ATTRIBUTES", // Event name
0, // Unique integer
NewMyReflect, // Function to "new" this class
sizeof(MyReflect), // Size of event class
100); // Initial number of items on

// free list

Now, any message named REFLECT ATTRIBUTES received from the SPEEDES application will exe-
cute the process method.

The previous steps show how to make a connection with a SPEEDES application, subscribe to SPEEDES
objects, and define a local event class to process incoming messages. These are the basic initialization
steps. All that is left to do now is to start advancing time and let the local events process the data we
receive for which we have registered. The basic format for doing this is to enter a loop in which local
time is advanced by a fixed step size. The following code example illustrates the essential procedure:

stateManager.GoToTime(0.0);
while (stateManager.SpeedesExecuting() == 1) {
stateManager.GoToTime(stateManager.GetCurrentTime() + 100.0);

}

The method GoToTime is a blocking call. For example a call to GoToTime instructs SPEEDES to
advance GVT to the requested time plus time lag. For instance, if the input time were 300.0, then
SPEEDES will set up a barrier at 310.0 (assuming timeLag = 10.0, as in main above). Once GVT
advances to a value greater than or equal to the requested time, all of the received messages are processed
by the appropriate local event that was registered with the state manager in logical time order. Any user-
defined events are also processed. After all events are processed, the processing leaves this method (only
to be reentered in our example). Examples 12.4 and 12.5 show the above code for an external module.

// MyReflect.H
#ifndef MyReflect_H
#define MyReflect_H

#include "SpStateMgrEvent.H"

class MyReflect: public SpStateMgrEvent {
public:
MyReflect() {}
virtual ˜MyReflect() {}
virtual void Process() {

cout << "MyReflect Process at " << GetTimeTag()
<< ", Global Id: " << GetSimObjGlobalId()
<< ", Event Name: " << GetEventName() << endl;

}
};

static void* NewMyReflect(int n) {
return new MyReflect[n];

}
#endif

Example 12.4: External Module Proxy Processing Class

12.2. SENDING AND RECEIVING MESSAGES (NON-PROXY) 271

// Main.C (Example #1)
#include "SpIostream.H"
#include "SpStateMgr.H"
#include "SpDataParser.H"
#include "SpFreeObjProxy.H"
#include "MyReflect.H"

SpFreeObjProxy::SpFreeObjProxy(int n) {set_ntypes(n);}

enum {
REFLECT_ATTRIBUTES_ID,
NUMBER_OF_EVENTS

};

int main(int argc, char** argv) {
double timeLag = 10.0;
SpDataParser speedesDotPar("speedes.par");
SpStateMgr stateManager(&speedesDotPar, timeLag);

stateManager.SubscribeType("S_Submarine_MGR", NULL);
/*
* Number of local events defined in the state manager
*/

stateManager.DefineNumberOfEvents(NUMBER_OF_EVENTS);

stateManager.DefineEvent(
"REFLECT_ATTRIBUTES", // Event name
REFLECT_ATTRIBUTES_ID, // Unique integer
NewMyReflect, // Function to new event class
sizeof(MyReflect), // Size of event class
100); // Initial number of items on

// free list
stateManager.GoToTime(0.0);

while (stateManager.SpeedesExecuting() == 1) {
cout << "externalHostUser->SpeedesExecuting"

<< ", CurrentTime= " << stateManager.GetCurrentTime()
<< ", GrantedTime= " << stateManager.GetGrantedTime()
<< endl;

stateManager.GoToTime(stateManager.GetCurrentTime() + 100.0);
}

}
Example 12.5: External Module main (Example #1)

In addition to this code, you must also provide the constructor for class SpFreeObjProxy used in
the original SPEEDES application. In this case, the constructor was the minimal constructor written in
main in Example 11.8. For this reason, we added the same constructor to our main.

12.2 Sending and Receiving Messages (Non-Proxy)

In the previous section, we discussed connecting with the SPEEDES framework, retrieving proxies, and
advancing time. There can be instances where data is needed by the external module which is not in
proxy form, or perhaps the external module has some data that needs to be relayed into the simulation.

272 CHAPTER 12. EXTERNAL MODULES

Additional state manager functionality provides exactly these types of features. Similarly, sometimes
the external module needs to affect the simulation. We will look at this situation first. There currently ex-
ist two methods for sending data into SPEEDES. These are methods SpStateMgr::SendCommand
and SpEmHostUser::ScheduleEvent. Each of these methods contains two versions which al-
low users to send messages into SPEEDES simulation objects via global id or object instance name.
Of course, with either method, there must exist an event inside the simulation which can process the
message. When SendCommand is used, the processing simulation event has access to the external id,
which allows the simulation to respond directly to the external module, if necessary. The disadvantage of
SendCommand is that the receiving application event is executed at the current GVT, which can cause
rollbacks. Method ScheduleEvent allows you to schedule an event in the SPEEDES application at
a specific time, which allows you to minimize rollbacks by scheduling events in the future. The API
for the SpStateMgr method SendCommand and the SpEmhostUser method ScheduleEvent
is shown below:

int SendCommand(char* commandName,
int simObjGlobalId,
char* message,
int bytes)

Parameter Description
commandName Event name to be scheduled.
simObjGlobalId Global id of object for this schedule.
message Any data for the event.
bytes Length of the message.

Table 12.1: External Module Sendcommand API

SCHEDULE_EVENT_REPLY_MESSAGE*
ScheduleEvent(SpSimTime time,

int globalId,
char* eventName,
char* msg,
int msgBytes,
char* data,
int dataBytes,
TimeMode tmMode = IF_IN_PAST_IGNORE,
int cancelHandleReq = 1)

Parameter Description
time Time at which event will be scheduled.
globalId Global id for which this event is scheduled.
eventName Name of event to be scheduled.
msg The message for the event
msgBytes The size of the message class.
data Any additional data for this event.
dataBytes The number of bytes of data.
tmMode If it is equal to IF IN PAST IGNORE, then the event will be ignored if it arrives in

the past. If it is equal to the IF IN PAST SCHEDULE AT GVT, then the event will
be scheduled at GVT if the time it is scheduled for is before GVT.

cancelHandleReq If equal to 1, a cancel handle is returned. Otherwise, NULL is returned.

Table 12.2: External Module ScheduleEvent API

The format and content of each are self-explanatory. Notice that parameter msg in method Sched-
uleEvent is actually a SpMsg (i.e. a member of the message or “M ” class). Prior to the implementa-
tion of the unified API for events and methods, users of SPEEDES were required to provide this class.

12.2. SENDING AND RECEIVING MESSAGES (NON-PROXY) 273

However, now this class is auto-generated by the macro DEFINE SIMOBJ EVENT (see Chapter 6).
Therefore, for the external module, users must instantiate an empty SpMsg class for this parameter
which is currently ignored. Due to the use of hidden M classes, only zero argument event methods can
currently be scheduled using this method.

We will now extend our previous external module example to use these two methods. The following two
code examples show how to use methods SendCommand and ScheduleEvent for sending messages
into our ship and submarine simulation:

stateManager.SendCommand("SubAttack", "S_Submarine_MGR 0",
"S_Ship_MGR 1", strlen("S_Ship_MGR 1") + 1);

SpMsg theM_Underscore;
int globalId =
stateManager.GetEmHostUser()->NameLookup("S_Submarine_MGR 1");

stateManager.GetEmHostUser()->
ScheduleEvent(stateManager->GetCurrentTime() + 17.0, globalId,

"SubAttack", (char *) &theM_Underscore, sizeof(SpMsg),
"S_Ship_MGR 1", strlen("S_Ship_MGR 1") + 1);
IF_IN_PAST_SCHEDULE_AT_GVT);

Each of these methods cause the event SubAttack to be executed in the simulation and instructs the
submarine to attack the object with the name “S Ship MGR 1”. The call to SendCommand schedules
event SubAttack on the simulation object whose global id is 0. The event is executed as soon as it is
received, thus, rolling back all events on that object. ScheduleEvent schedules event SubAttack
on the simulation object whose global id is 1 at the current external module time, plus 17.0 seconds.

We have just described how to send data into the simulation, but suppose a simulation object had sim-
ulation data that is needed by the external module. Can we send the data to the external module?
Yes, by using either method SpHostUser::RB SendSubscribedData or method SpHost-
User::RB SendNamedData. The method called determines how the external module receives the
associated data. The method RB SendSubscribedData requires you to register an event with the
state manager similar to the way REFLECT ATTRIBUTES was done previously for proxy events. In
order to receive SPEEDES messages, the first thing to be done is to create an object which inherits from
class SpStateMgrEvent. The class you make must contain the virtual method Process, which is
where the code for processing the received data resides.

We will modify the submarine model once again so that it will notify the external modules of the
proxies that it has received. We will modify the methods S Submarine::DiscoverProxy and
S Submarine::UnDiscoverProxy, as shown in Example 12.6.

#include "S_Submarine.H"
#include "F_SpProxyItem.H"

void S_Submarine::DiscoverProxy() {
++NumProxiesSem;
if (CheckSubscription("SubDiscoverProxy")) {
F_SpProxyItem* proxyItem = (F_SpProxyItem*)SpGetMsgData();
SpObjProxy* discoveredObject = proxyItem->GetObjProxy();
char* proxyName = discoveredObject->GetProxyName();
SpGetHostUser()->RB_SendSubscribedData(

SpGetTime(), "SubDiscoverProxy",
proxyName, strlen(proxyName) + 1,

274 CHAPTER 12. EXTERNAL MODULES

SpGetSimObjGlobalId());
}

}

void S_Submarine::UnDiscoverProxy() {
--NumProxiesSem;
if (CheckSubscription("SubUnDiscoverProxy")) {
F_SpProxyItem* proxyItem = (F_SpProxyItem*)SpGetMsgData();
SpObjProxy* discoveredObject = proxyItem->GetObjProxy();
char* proxyName = discoveredObject->GetProxyName();
SpGetHostUser()->RB_SendSubscribedData(

SpGetTime(), "SubUnDiscoverProxy",
proxyName, strlen(proxyName) + 1,
SpGetSimObjGlobalId());

}
}

Example 12.6: New Discover and UnDiscover Proxy Methods for the Submarine

We now need to create two state manager events that respond to this named data. These are similar to
the code used to respond to the reflects we used earlier and are shown in Example 12.7.

// DiscoverUndiscover.H
#ifndef DiscoverUndiscover_H
#define DiscoverUndiscover_H
#include "SpStateMgrEvent.H"

class DiscoverShip : public SpStateMgrEvent {
public:
DiscoverShip() {}
virtual ˜DiscoverShip() {}

virtual void Process() {
cout << "Submarine is discovering a ship named " << GetData()

<< " at time " << GetTimeTag() << endl;
}

};

class UndiscoverShip : public SpStateMgrEvent {
public:
UndiscoverShip() {}
virtual ˜UndiscoverShip() {}

virtual void Process() {
cout << "Submarine is losing track of a ship named " << GetData()

<< " at time " << GetTimeTag() << endl;
}

};
static void* newDiscoverShip(int n){return new DiscoverShip[n];}
static void* newUndiscoverShip(int n){return new UndiscoverShip[n];}
#endif

Example 12.7: External Module User-Defined Events

After the class has been created, the event name which the simulation is using to send information out
to the external module must be registered with the state manager. For example:

12.2. SENDING AND RECEIVING MESSAGES (NON-PROXY) 275

stateManager.DefineNumberOfEvents(3);
stateManager.DefineEvent(

"SubDiscoverProxy", // Event name
1, // Unique integer
NewDiscoverShip, // Function to new event class
sizeof(DiscoverShip), // Size of event class
100); // Initial number of items on

// free list
stateManager.DefineEvent(

"SubUnDiscoverProxy", // Event name
2, // Unique integer
NewUndiscoverShip, // Function to new event class
sizeof(UndiscoverShip), // Size of event class
100); // Initial number of items on

// free list

Notice that input argument in method DefineNumberOfEvents is 3 due to the external module
application now having three events to process (i.e. event REFLECT ATTRIBUTES for proxy updates
was registered in the previous example). This is also why the second argument in the DefineEvent
methods are set to 1 and 2 respectively since 0 has been taken by event REFLECT ATTRIBUTES
above.

Example 12.8 shows the modifications made to our original external module with the additional fea-
tures added in. This includes the response to subscribed data “SubDiscoverProxy” and “SubUndis-
coverProxy”, with the added feature that every discovered ship will be fired upon using the Sched-
uleEventmethod call.

// Main.C (Example #2)
#include "SpIostream.H"
#include "SpStateMgr.H"
#include "SpDataParser.H"
#include "SpStateMgrEvent.H"
#include "SpMsg.H"
#include "SpFreeObjProxy.H"

SpFreeObjProxy::SpFreeObjProxy(int n) {set_ntypes(n);}

class MyReflect: public SpStateMgrEvent {
public:
MyReflect() {}
virtual ˜MyReflect() {}
virtual void Process() {

cout << "MyReflect Process at " << GetTimeTag()
<< ", Global Id: " << GetSimObjGlobalId()
<< ", Event Name: " << GetEventName() << endl;

}
};

class DiscoverShip : public SpStateMgrEvent {
public:
DiscoverShip() {}
virtual ˜DiscoverShip() {}
virtual void Process() {

cout << "Submarine is discovering a ship named " << GetData()
<< " at time " << GetTimeTag() << endl;

276 CHAPTER 12. EXTERNAL MODULES

SpMsg theM_Underscore;
int globalId = GetSimObjGlobalId();
StateMgr->GetEmHostUser()->

ScheduleEvent(StateMgr->GetCurrentTime() + 17.0, globalId,
"SubAttack", (char *) &theM_Underscore,
sizeof(SpMsg), GetData(),
strlen(GetData()) + 1,
IF_IN_PAST_SCHEDULE_AT_GVT);

}
};

class UndiscoverShip : public SpStateMgrEvent {
public:
UndiscoverShip() {}
virtual ˜UndiscoverShip() {}
virtual void Process() {

cout << "Submarine is losing track of a ship named " << GetData()
<< " at time " << GetTimeTag() << endl;

}
};

static void *NewMyReflect(int n){return new MyReflect[n];}
static void* NewDiscoverShip(int n){return new DiscoverShip[n];}
static void* NewUndiscoverShip(int n){return new UndiscoverShip[n];}

enum {
REFLECT_ATTRIBUTES_ID,
SUB_DISCOVER_PROXY_ID,
SUB_UNDISCOVER_PROXY_ID,
NUMBER_OF_EVENTS

};

int main(int argc, char** argv) {
double timeLag = 10.0;
SpDataParser speedeDotPar("speedes.par");
SpStateMgr stateManager(&speedeDotPar, timeLag);

stateManager.SubscribeType("S_Submarine_MGR", NULL);
/*
* Number of local events defined in the state manager
*/

stateManager.DefineNumberOfEvents(NUMBER_OF_EVENTS);

stateManager.DefineEvent(
"REFLECT_ATTRIBUTES", // Event name
REFLECT_ATTRIBUTES_ID, // Unique integer
NewMyReflect, // Function to new event class
sizeof(MyReflect), // Size of event class
100); // Initial number of items on

// free list
stateManager.DefineEvent(

"SubDiscoverProxy", // Event name
SUB_DISCOVER_PROXY_ID, // Unique integer
NewDiscoverShip, // Function to new event class
sizeof(DiscoverShip), // Size of event class
100); // Initial number of items on

12.3. LOCAL EVENTS 277

// free list
stateManager.DefineEvent(

"SubUnDiscoverProxy", // Event name
SUB_UNDISCOVER_PROXY_ID,// Unique integer
NewUndiscoverShip, // Function to new event class
sizeof(UndiscoverShip), // Size of event class
100); // Initial number of items on

// free list
stateManager.GoToTime(0.0);

stateManager.SubscribeData("SubDiscoverProxy", "S_Submarine_MGR");
stateManager.SubscribeData("SubUnDiscoverProxy", "S_Submarine_MGR");

while (stateManager.SpeedesExecuting() == 1) {
cout << "externalHostUser->SpeedesExecuting"

<< ", CurrentTime= " << stateManager.GetCurrentTime()
<< ", GrantedTime= " << stateManager.GetGrantedTime()
<< endl;

stateManager.GoToTime(stateManager.GetCurrentTime() + 100.0);
}

}
Example 12.8: External Module main (Example #2)

12.3 Local Events

In addition to responding to external messages from the simulation, an external module can also schedule
events of its own. To illustrate this, we will create an event called AttackShip and have this event
scheduled from the DiscoverShip event. Just like all other events, this event needs to be integrated
with the free lists in order to optimize the use of available resources. In Example 12.8, the class
DiscoverShip and the enum of event ids will change, as shown in Example 12.9.

#include "SpStateMgr.H"
#include "SpStateMgrEvent.H"

enum {
REFLECT_ATTRIBUTES_ID,
SUB_DISCOVER_PROXY_ID,
SUB_UNDISCOVER_PROXY_ID,
ATTACK_SHIP_ID,
NUMBER_OF_EVENTS

};

class DiscoverShip : public SpStateMgrEvent{
public:
DiscoverShip() {}
virtual ˜DiscoverShip() {}
virtual void Process() {

cout << "Submarine is discovering a ship named " << GetData()
<< " at time " <<GetTimeTag() << endl;

AttackShip* attackShipPtr = (AttackShip *)
StateMgr->GetFreeUserEvents().new_event(ATTACK_SHIP_ID);

attackShipPtr->Init(GetData());
// Attack in 2 seconds. Local Event

278 CHAPTER 12. EXTERNAL MODULES

ScheduleEvent(attackShipPtr, GetTimeTag() + 2.0);
}

};

class AttackShip : public SpStateMgrEvent {
public:
AttackShip() : ShipToAttack(NULL) {}
˜AttackShip() {}
void Init(char* shipToAttack) {

free(ShipToAttack);
ShipToAttack = strdup(shipToAttack);

}

virtual void Process() {
SpMsg theM_Underscore;
int globalId =

StateMgr->GetEmHostUser()->NameLookup(GetData());
StateMgr->GetEmHostUser()->ScheduleEvent(

StateMgr->GetCurrentTime() + 17.0, globalId,
"SubAttack", (char *) &theM_Underscore,
sizeof(SpMsg),"S_Ship_MGR 1",
strlen("S_Ship_MGR 1") + 1,
IF_IN_PAST_SCHEDULE_AT_GVT);}

private:
char* ShipToAttack;

};

void* NewAttackShip(int n){return new AttackShip[n];}
Example 12.9: External Module Local Events

Of course, as with other events, the local event needs to be plugged into the state manager as given in
the following example:

stateManager.DefineEvent(
"AttackShip", // Event name
ATTACK_SHIP_ID, // Unique integer
NewAttackShip, // Function to new event class
sizeof(AttackShip), // Size of event class
100); // Initial number of items on

// free list

12.4 Record and Playback

The state manager has one additional useful feature, which is the capability to record all messages
received from the SPEEDES simulation and record or save these messages for later playback. To enable
this capability, users must use state manager method RecordInputMessages. Once data has been
saved to a file, the data can be played back by constructing a state manager using the data file’s file name
and writing the rest of the external module. For example, in the previous examples you could replace
the state manager instantiation shown in the examples with a state manager instantiation with the data
file’s file name. The procedure for modifying one of the previous examples is:

1. Add a call to method RecordInputMessages right after you create the state manager.

12.5. OPTIMIZING MEMORY USE 279

2. Execute the simulation and external module.

3. Replace the original state manager instantiation with the new one and delete method Record-
Input Messages.

4. Replace the SpStateMgr constructor with the one that takes a file name as an argument and
pass the name of the saved file to the constructor.

5. Run the external module

12.5 Optimizing Memory Use

The SpStateMgr has the ability to go both backwards and forwards in time through the GoToTime.
Many situations do not require these capabilities such as gateways or other external modules that only
move forward in time. In these sorts of situations, the memory usage of the external module can be
improved by calling the method DisableRollbackSupport. By calling this method before any
GoToTimemethod calls are made, the memory footprint of the SpStateMgrwill be reduced.

12.6 Tips Tricks and Potholes

� Chosing a small value for time lag will guarantee that the simulation will not get far ahead of the
external module but may result in causing the simulation to lag. In general, choose a large value
for time lag. If the external module can run faster than the simulation, it will never end up lagging
the simulation significantly.

� As stated in the introduction, many features do not work when running in sequential mode. The
following features do not work in sequential mode:

– Time lag for the SpStateMgr is ignored.

– Pauses and resumes do not work.

– Creating or removing barriers does not work.

– Method GoToTime does not work.

280 CHAPTER 12. EXTERNAL MODULES

Chapter 13

Command-Line Utilities

SPEEDES contains many command-line utilities/tools. These tools allow the user to perform such
actions as pausing or resuming a simulation, locking the simulation to real-time, examining object
names, etc. A prerequisite for the usage of any of these tools is that SpeedesServermust be running.
The following sections describe the usage for each command-line utility.

Note that most of the features described in this chapter do not work in sequential mode. When run-
ning on one node, be sure that optimize sequential is set to false in speedes.par. See Ap-
pendix C.1 for more information. The one exception is that utility SpFilterTrace does not depend
on the SpeedesServer.

13.1 Querying Object By Names and Types

Name:
SpObjNames
SpObjType

Synopsis:
SpObjNames [-g id] [Object Type Name]
SpObjType [-g id] [Object Type Name]

Description:
SpObjNames queries SPEEDES for a list of object names and their respective global ids. Object-
Type Name is an optional parameter that, if given, will output all objects of that type and their re-

spective global ids. If Object Type Name is not specified, then all object types with their respec-
tive global id are output to the terminal. Option -g id can be used to specify the group so that one
SpeedesServer can be used with multiple simulations.

SpObjType queries SPEEDES for a list of object types and their respective type ids. Object-
Type Name is an optional parameter that, if given, will query SPEEDES for the specified type name.

If Object Type Name is not specified, then all object types and their respective type id’s are output
to the terminal. Option -g id can be used to specify the group so that one SpeedesServer can be
used with multiple simulations.

281

282 CHAPTER 13. COMMAND-LINE UTILITIES

13.2 Query

Name:
SpQuery

Synopsis:
SpQuery Object Name [Query Name]

Description:
SpQuery queries SPEEDES for information about the simulation object. The information returned is
dependent on whether or not the virtual methods Query and NamedQuery in class SpSimObj are
defined by the user’s simulation object or the default SpSimObj implementation. When Query is used
without Query Name, then the virtual method Query is executed. If optional parameter Query Name
is specified, then the virtual method NamedQuery is executed. If the virtual methods are not defined,
then SPEEDES returns the default data of Global Id, Query Time and the Number of Events for the
queried object. If the virtual methods are defined by the user, then SpQuery outputs the user-defined
data.

13.3 Time

Name:
SpTime

Synopsis:
SpTime [lag]

Description:
SpTime queries SPEEDES for the current simulation time (i.e. GVT). If lag is specified, the SpTime
queries SPEEDES for the current time using lag as an input value for the call to SPEEDES. This has the
effect of setting a barrier up in SPEEDES at the current GVT plus lag. Therefore, for large input lags,
this utility does not inhibit GVT advancement.

13.4 Changing Lock To Wall Clock Scaler

Name:
SpChangeScaler

Synopsis:
SpChangeScaler scaler

Description:
SpChangeScalerchanges the rate of time advancement for SPEEDES when the parameter scaled-
time in speedes.par is set to true. For example, SpChangeScaler 50 changes the SPEEDES

time advancement rate to 50 times wall clock, provided that the simulation can run that fast.

13.5. SCHEDULING AND CANCELING EVENTS 283

13.5 Scheduling and Canceling Events

Name:
SpScheduleEvent
SpCommand
SpCancelEvent

Synopsis:
SpScheduleEvent Time Object Name Event Name [User Data]
SpCommand Command Name Object Name Data String
SpCancelEvent CancelHandle

Description:
SpScheduleEvent is used to schedule pre-defined events on a SPEEDES simulation object. The
user supplies the time that the event should be executed at, the name of the object that the event will
run on, and the name of the event to be executed. The user can supply user-defined data (char *) as
an optional fourth input parameter. The insertion of an event by this utility can fail in several ways,
including:

� Specified time is in the simulation past (earlier than current GVT).

� Object specified is not a valid object.

� Event name is incorrect (silent error).

Upon successful event insertion, SpScheduleEventwill return a cancel handle that can be used by
the SpScheduleEvent counterpart SpCancelEvent to cancel the event.

SpCommand also can be used to schedule events or event handlers, but this utility does not return cancel
handles. The input parameter Data String must be a plain text string. Actual SPEEDES events data
can be composed of complex data types. For these types of events this utility cannot be used.

13.6 Pause and Resume

Name:
SpPause
SpResume

Synopsis:
SpPause [Named Of Pause [Time Of Pause]]
SpResume [Named Pause]

Description:
Use SpPause to “pause” the simulation by setting up a barrier inside the simulation, thus preventing
GVT from advancing. If the utility is used without an input parameter, then the simulation will pause
immediately. Using the SpResume command with no parameters causes the pause set with SpPause
to be removed. SpPause can be supplied with optional parameters. The first optional parameter is
the “name” of a pause (i.e. Name Of Pause). If a name is given to a pause, it is known as a “Named

284 CHAPTER 13. COMMAND-LINE UTILITIES

Pause”. A Named Pause behaves exactly like a normal pause in that the simulation pauses once a Named
Pause is received. However, the only way a Named Pause can be removed is with utility SpResume
using the same Named Pause. If a Named Pause is used, then an optional time parameter can be supplied,
which causes the simulation to pause at the specified time. If the time given is before GVT, then the
simulation will pause immediately.

SpResume is the counterpart to SpPause. SpResume removes a Named Pause or unnamed pause
created by SpPause. SpResume can also be used to remove pauses that were created in section
NamedPauses in file speedes.par.

13.7 Simulation Time Controller

Name:
SpForceToWallClock

Synopsis:
SpForceToWallClock -m num -r num [-from start]

Description:
SpForceToWallClock utility allows the user to lock time in their simulation to some multiple of
wall clock. The mandatory option is -m, which specifies what rate GVT will run at relative to wall
clock time. For example, if a user chooses 4, then SpForceToWallClockwill attempt to keep GVT
at 4 times wall clock time (i.e. for every

�
second of elapsed wall clock time GVT will advance by �

seconds). Option -r specifies the frequency at which SpForceToWallClockwill verify GVT time.
For example, a -r setting of ��� � seconds specifies that SpForceToWallClockwill check simulation
time every ��� � seconds and calculate GVT time errors relative to wall clock time. If an error exists, then
the appropriate time correction is applied.

Option -from start specifies that simulation GVT advancement will be passed until elapsed wall
clock time is equal to GVT. For example, if the simulation GVT is at � ����� when SpForceToWall-
Clock starts with option -from start, then GVT pauses for � ����� seconds (assuming that the -m
option is

� ��� seconds).

13.8 Killing Simulations

Name:
SpKillSim

Synopsis:
SpKillSim

Description:
SpKillSim kills all of the simulations currently running.

13.9. SORTED OUTPUT 285

13.9 Sorted Output

Name:
SpSortedOutput

Synopsis:
SpSortedOutput [-q] [-f filename] [-l lag] stream name

Description:
Simulations that use RB exostream can display data generated on multiple nodes in a sorted fashion
using utility SpSortedOutput. RB exostream constructors are given plain text names inside of
the simulation and by specifying this name (stream name), then this utility will display all data
written to this stream sorted by time. Option -q prevents output from being displayed on the terminal.
Output can be saved to a file using the -f option. Option -q and -f can be used in conjunction to save
binary data. Option -l is used to specify the amount of time, in seconds, that this utility can lag behind
the SPEEDES simulation.

13.10 Trace File Filtering

Name:
SpFilterTrace

Synopsis:
SpFilterTrace Trace File Name String...

Description:
SPEEDES has an event trace capability which records event processing statistics to a file for later use
(e.g. simulation debug, post simulation event analysis, etc.). The amount of data in the trace file can
become quite large, which can make the trace data difficult to analyze. Utility SpFilterTrace can
filter the section blocks in the trace file based on user input strings. SpFilterTrace input parameters
are the Trace File Name and one or more input strings for FilterTrace to search the trace file
for. Any data found in the trace file that matches the input search strings are output to the terminal.
To create a trace file during a simulation run, set the parameter trace to T in section trace in file
speedes.par.

Section 17.2 shows some example SpFilterTrace usage commands.

286 CHAPTER 13. COMMAND-LINE UTILITIES

Part VI

Advanced Topics

287

Chapter 14

Simulation Objects

14.1 Dynamic Objects

SPEEDES allows simulation objects to be created dynamically during simulation execution. The API
provides an interface for defining events that will create and initialize a dynamically created simulation
object. A simulation object may define an unlimited number of dynamic initialization methods with the
following API macro call found in SpDefineEvent.H:

DEFINE_CREATE_EVENT_<numParam>_ARG(eventName,
className,
methodName,
[paramList])

Parameter Description
numParam The number of parameters used in the method being converted into an event (valid

range is 0 to 8).
eventName Any user-defined string representing the name of the creation event (legal characters

for string names include alphanumeric and underscore characters).
className The name of the simulation object class that will be dynamically created.
methodName The name of the method that will be called upon the construction of this object.
paramList Comma delimited list of the parameter types found in the method.

Table 14.1: Macro DEFINE CREATE EVENT API

As with other SPEEDES events, any event created by macro DEFINE CREATE EVENTmust be plugged
into main.

A byproduct of the above macro is a schedule function that is nearly identical to the schedule function
for a standard event. The one difference is that the SpObjHandle parameter is not constant. This
is because the schedule function will determine what the object handle of the newly created object has
to be. Once it is determined, this object will be created and the handle of the newly created object is
returned in the objHandle parameter.

SpCancelHandle
SCHEDULE_<eventName>(const SpSimTime simTime,

SpObjHandle& objHandle,
[paramList],

const char* data = NULL,
int dataBytes = 0)

289

290 CHAPTER 14. SIMULATION OBJECTS

Parameter Description
eventName This is the same name used when the event was defined.
simTime This parameter specifies the time at which the event will be executed. The time sched-

uled can be the present time or a future time, but not a time in the past.
objHandle This parameter is filled out by the schedule function with the object handle of the

newly created object. See Section 3.3 for additional information on object handles.
paramList This is a comma delimited list of the types of the parameters that are to be passed to

the simulation object method.
data This optional parameter allows users to send data to the receiving event for further

processing. The data can be binary or character stream data. If the data contains
pointers, make sure to write “wrap” and “unwrap” functions to enable packing and
unpacking a buffer that represents the data.

dataBytes This parameter represents the size, in bytes, of the buffer sent as the “data” parameter.
If you do not use the “data” parameter, then there is no need to use this parameter
either.

Table 14.2: Function SCHEDULE API for Dynamically Created Objects

The following example illustrates how to use the dynamic object creation functionality. The example
consists of two simulation object types. The code shown in Example 14.1 and 14.2 shows an object that
will be dynamically created. The code shown in Example 14.3 shows an object that is created using the
traditional approach (static definition).

// S_DynamicObject.H
#ifndef S_DynamicObject_H
#define S_DynamicObject_H

#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"

class S_DynamicObject: public SpSimObj {
public:
S_DynamicObject() {}
void Init() {}
void DynamicObjectInit(int initVar);
void PrintName();

};

DEFINE_SIMOBJ(S_DynamicObject, 0, SCATTER);
DEFINE_CREATE_EVENT_1_ARG(DynamicObject_DynamicObjectInit,

S_DynamicObject, DynamicObjectInit, int);
DEFINE_SIMOBJ_EVENT_0_ARG(DynamicObject_PrintName,

S_DynamicObject, PrintName);
#endif

Example 14.1: Dynamic Simulation Object Creation Definition

// S_DynamicObject.C
#include "RB_ostream.H"
#include "SpMainPlugIn.H"

#include "S_DynamicObject.H"

void S_DynamicObject::DynamicObjectInit(int initVar) {

14.1. DYNAMIC OBJECTS 291

char name[80];

sprintf(name, "Dyn Obj Number %d", initVar);
SetName(name);
RB_cout << "Dynamic Object whose name is \""

<< name << "\" created at " << SpGetTime()
<< endl;

}

void S_DynamicObject::PrintName() {
RB_cout << "Dynamic Object is: \"" << GetName() << "\"" << endl;

}

void PlugInDynamicObject() {
PLUG_IN_SIMOBJ(S_DynamicObject);
PLUG_IN_EVENT(DynamicObject_DynamicObjectInit);
PLUG_IN_EVENT(DynamicObject_PrintName);

}
Example 14.2: Dynamic Simulation Object Creation Implementation

The definition file uses the new macro DEFINE CREATE EVENT. This will now allow for simula-
tion object S DynamicObject to be dynamically created by using function SCHEDULE Dynamic-
Object DynamicObjectInit. Notice that, even though these objects are dynamically created,
the macro DEFINE SIMOBJ must be used with its quantity specifier as zero. A non-zero value could
have been used here as well. The result of this would have been the creation of the specified amount
of simulation objects (i.e. S DynamicObject) during simulation initialization. Dynamically created
objects could still be created, thus simulation objects can be designed such that they can be created at
initialization and during run time.

Notice that the implementation file specifies a unique name for each dynamically created object. This is
necessary if the object handle for the dynamically created object will be needed during the simulation
execution (and it will be if events are to be scheduled on the dynamically created object as it will be for
this example).

Example 14.3 shows the simulation object that is created at simulation initialization.

// S_StaticObject.C
#include "SpSimObj.H"
#include "SpDefineSimObj.H"
#include "SpDefineEvent.H"
#include "SpMainPlugIn.H"
#include "SpGlobalFunctions.H"
#include "SpProc.H"
#include "RB_ostream.H"
#include "I_SpLookupDynSimObjByName.H" // GET_DYN_OBJ_HANDLE

#include "S_DynamicObject.H"

class S_StaticObject: public SpSimObj {
public:
void Init();
void DynamicObjectName(char *name);
char DynObjName[80];

};

292 CHAPTER 14. SIMULATION OBJECTS

DEFINE_SIMOBJ(S_StaticObject, 2, SCATTER);
DEFINE_LOCAL_EVENT_1_ARG(StaticObject_DynamicObjectName,

S_StaticObject, DynamicObjectName, char*);

void S_StaticObject::Init() {
SpObjHandle dynamicObjHandle;

cout << "Static Object Initialization for Object "
<< SpGetSimObjKindId() << endl;

SpEnableDynSimObjLookup();

sprintf(DynObjName, "Dyn Obj Number %d", SpGetSimObjKindId());
SCHEDULE_StaticObject_DynamicObjectName(0.0 + SpGetSimObjKindId(),

*this,
DynObjName);

SCHEDULE_DynamicObject_DynamicObjectInit(5.0,
dynamicObjHandle,
SpGetSimObjKindId());

cout << "Static Object # " << SpGetSimObjKindId()
<< " Scheduled creation of object " << dynamicObjHandle << endl;

SCHEDULE_StaticObject_DynamicObjectName(10.0 + SpGetSimObjKindId(),
*this,
DynObjName);

}

void S_StaticObject::DynamicObjectName(char* name) {
P_VAR;
SpObjHandle lookupObjHandle;
int simObjMgrId;
P_BEGIN(1);

simObjMgrId = SpGetSimObjMgrId("S_DynamicObject_MGR");

GET_DYN_OBJ_HANDLE(1, SpGetTime(), simObjMgrId, name,
lookupObjHandle);

RB_cout << "Handle returned by GET_DYN_OBJ_HANDLE = "
<< lookupObjHandle << " at " << SpGetTime() << endl;

SpObjHandle nullObjHandle (-1, -1, -1);
if (nullObjHandle != lookupObjHandle) {
SCHEDULE_DynamicObject_PrintName(SpGetTime() + 100.0,

lookupObjHandle);
}

P_END;
}

void PlugInStaticObject() {
PLUG_IN_SIMOBJ(S_StaticObject);
PLUG_IN_EVENT(StaticObject_DynamicObjectName);

}
Example 14.3: Static Simulation Object

Each static simulation object will create one S DynamicObjectobject and schedule event Dynamic-
Object PrintName on that object. The Init method schedules three events as follows:

14.1. DYNAMIC OBJECTS 293

1. Event StaticObject DynamicObjectName is scheduled on simulation object S Static-
Object � � ����� . This event attempts to schedule event DynamicObject PrintName on the
specified dynamically created object. However at � � ����� , no objects have been created yet,
therefore the object handle looked up for the dynamic object is � � � � � � � � � � .

2. Event DynamicObject DynamicObjectInit is scheduled at � � � ��� , which causes the
S DynamicObject simulation object to be created.

3. Event StaticObject DynamicObjectName is scheduled again. However, this time the
dynamic objects exist. Therefore, event DynamicObject PrintName is scheduled on each
dynamic object.

Method DynamicObjectName (i.e. event StaticObject DynamicObjectName) is used to
schedule an event on the dynamically created object. The first step is to look up the object handle
for the dynamically created object. Currently, this requires that the process model be used with the
process model construct GET DYN OBJ HANDLE. After the object handle is retreived, an event on the
dynamic object is scheduled. Recall that the Initmethod scheduled this event before and after the cre-
ation of the dynamic object, hence the if statement verifying that the object exists prior to scheduling
the dynamic object event DynamicObject PrintName.

The API for GET DYN OBJ HANDLE is shown below:

GET_DYN_OBJ_HANDLE(reentryLabel,
simTime,
simObjMgrId,
dynSimObjName,
objHandle)

Parameter Description
reentryLabel Integer id for the appropriate process model reentry label. For example, if P BEGIN

defines the number of reentry labels to be 3, then there should be 3 process model
reentry constructs whose labels are 1, 2, and 3.

simTime Specifies the simulation time when processing will continue.
simObjMgrId Id of the simulation object manager that is responsible for the dynamic object being

searched for.
dynSimObjName Name of the dynamic simulation object for which the object handle is desired.
objHandle The object handle for the requested dynamic simulation object. If an object is not

found, then the handle is set to � � � � � � � � �
 .
Table 14.3: Macro GET DYN OBJ HANDLE API

Prior to using GET DYN OBJ HANDLE, the function SpEnableDynSimObjLookupmust have been
called.

Finally, the code shown in Example 14.4 completes this example.

// Main.C
#include "SpMainPlugIn.H"

void PlugInDynamicObject();
void PlugInStaticObject();

int main (int argc, char **argv) {

294 CHAPTER 14. SIMULATION OBJECTS

PlugInDynamicObject();
PlugInStaticObject();

ExecuteSpeedes(argc, argv);
}

Example 14.4: main for Dynamic Object Creation Example

14.2 Components

In SPEEDES, a component is a class inheriting from SpComponent that can be plugged into and
unplugged from a simulation object with simple method calls. This strategy allows the component
to automate various tasks that are always associated with plugging in and unplugging the component.
Other simulation objects can only schedule events for components via handler events, since they have
no way of knowing whether any particular component is currently plugged in.

Components automate one key feature: adding a component’s handlers to the simulation object when it
is plugged in and removing its handlers when it is unplugged from the simulation object. This coordi-
nates component handler addition and removal with whether their associated components are plugged
in, thereby supporting an abstraction barrier between components and other simulation objects that
schedule events related to them. That is, since other simulation objects can only schedule events for
components via handler events, components can respond to events when plugged in, yet ignore events
when unplugged.

14.2.1 The Component APIs

To create a component, inherit from SpComponent. This class then provides the methods for adding
and removing handlers:

void AddHandler (const SpHandlerId& handlerId,
char* trigger = NULL)

void SubscribeHandler(const SpHandlerId& handlerId,
char* trigger = NULL)

void RemoveHandler (const SpHandlerId& handlerId,
char* trigger = NULL)

The parameter definitions for these methods are the same as for those described for the simulation ob-
jects (see Table 7.2). SPEEDES stores these handlers in the component until they are plugged into
the simulation object, at which point SPEEDES adds the component handlers to the simulation ob-
ject. When components are removed from the simulation object, SPEEDES automatically removes the
component’s handlers from the simulation object, but leaves them stored in the component so that the
component may be plugged into the simulation object again later. The component handler’s add and
remove methods may be called at any simulation time, regardless of whether the component is currently
plugged into the simulation object.

Handlers may be created as methods on the component, just as handlers are created as methods on any
object (see Chapter 7). Handler methods on any object can be dynamically added to and removed from
a component at any simulation time. For example:

#include "SpComponent.H"
#include "RB_ostream.H"

14.2. COMPONENTS 295

class MyComponent : public SpComponent {
public:
MyComponent() {AddHandler(MyHandler_HDR_ID(this), "my trigger");}
MyHandler() {RB_cout << "MyHandler invoked" << endl;}
˜MyComponent() {RemoveHandler(MyHandler_HDR_ID(this),

"my trigger");}
};
DEFINE_HANDLER(MyHandler, MyComponent, MyHandler);

Example 14.5: Basic Component Example

Then, to plug components in and remove them from simulation objects, call these methods on the
simulation object:

void AddComponent (SpComponent& component);
void RemoveComponent(SpComponent& component);

For example:

#include "MyComponent.H"
#include "S_MySimObj.H"

class S_MySimObj : public SpSimObj {
public:
MyComponent Component;
AddMyComponent() {AddComponent(Component);}
RemoveMyComponent() {RemoveComponent(Component);}

};
Example 14.6: Adding a Component to a Simulation Object

296 CHAPTER 14. SIMULATION OBJECTS

Chapter 15

Autonomous Events

Chapter 6 introduced simulation object events, local events, and autonomous events. Simulation object
events and local events hide the internal event execution flow and complexity from the user. This makes
these types of events the easiest type to design, use, and maintain. However, there may be instances
where users need more control over the event execution, need additional event optimizations, or need to
boost simulation run-time performance. In these cases, users should consider using autonomous events,
since this type of event give users full access to the internal phases of an event through the event class
virtual methods.

Autonomous events differ from other point-to-point and local events in that they are completely de-
coupled from the simulation object on which they act. This is different from point-to-point or local
events, since these events are defined and reside directly on the simulation object on which they act.
Autonomous events also differ from point-to-point and local events in that they provide direct access to
virtual methods in the event class SpEvent.

The most important feature available for use when using autonomous events, which is not available when
using point-to-point and local events is the use of the SPEEDES lazy functionality (i.e. virtual method
lazy). By using lazy, events will not be reexecuted if the reexecution of the event does not change
the outcome (i.e. reexecution of event produces same result). For time consuming events that get rolled
back, lazy can prevent the reexecution of these events, thus leading to better simulation performance.
Also, if lazy passes, then anti-messages are not sent, preventing yet more simulation objects from rolling
back.

The following sections explain each virtual method available for use by the user when when designing
autonomous events.

15.1 Implementing Autonomous Events

All autonomous events are a child class of SpEvent. An example of such an event is shown in Exam-
ple 15.1

#ifndef E_MyEvent_H
#define E_MyEvent_H

#include "SpGlobalFunctions.H"
#include "SpEvent.H"
#include "SpDefineEvent.H"

297

298 CHAPTER 15. AUTONOMOUS EVENTS

#include "SpMsg.H"

#include "MySimObj.H"

class E_MyEvent : public SpEvent {
public:
E_MyEvent() {/* user code */}
virtual ˜E_MyEvent() {/* user code */}
void MyMethod() {

int temp = ((MySimObj *) SpGetSimObj())->GetValue() + 1;
((MySimObj *) SpGetSimObj())->SetValue(temp);

}
virtual void init(SpMsg *) {/* user code */}
virtual int lazy() {/* user code */}
virtual void exchange() {/* user code */}
virtual void commit() {/* user code */}
virtual void cleanup() {/* user code */}

private:
};
DEFINE_AUTONOMOUS_EVENT_0_ARG(MyEvent, E_MyEvent, MyMethod);
#endif

Example 15.1: Generic Autonomous Event

Events always act on a simulation object. For the above example, the simulation object that this event
works on is MySimObj. In order to get this simulation object, global function SpGetSimObj is used
with its return pointer casted to the MySimObj. When designing an autonomous event, any combination
of the virtual methods shown in the above example may be implemented.

After implementing the needed virtual method in the event class, the user event method needs to be
turned into an event. This is done by applying the DEFINE AUTONOMOUS EVENT to the class and
method. The API for this macro is described in Section 6.5.

15.2 Event Processing Phases

Fundamental to understanding autonomous events is understanding the phases involved in the SPEEDES
event processing algorithm. Table Table 15.1 shows the different phases of an event.

Phase Task Event Method Executed
1 Event construction Event constructor
2 Event initialization virtual SpEvent::init(SpMsg *)
3 Normal or lazy processing User event method or virtual SpEvent::lazy()
4 Rollback preparation virtual SpEvent::exchange()
5 Rollback

�

virtual SpEvent::exchange()
6 Permanent processing virtual SpEvent::commit()
7 Event cleanup virtual SpEvent::cleanup()
8 Event destruction SpEvent::˜SpEvent()

�

If rolled back, return to phase 3

Table 15.1: Event Processing Phases

Each method shown in Table 15.1 is a virtual method on SpEvent. Users can supply their own code
for each of these methods in order to customize their event design. Each phase is discussed in more
detail below:

15.2. EVENT PROCESSING PHASES 299

Phase 1. During simulation initialization, SPEEDES constructs events as part of free lists. Thus, event
constructors are called only once during an entire simulation, even though an event is normally
reused many times.

Phase 2. When an event is scheduled, an event of the scheduled type is pulled off the free list and
its init(SpMsg *) method is called. SPEEDES then places this event in the appropriate
simulation object’s event queue ordered by time stamp.

Phase 3. At the appropriate time, SPEEDES pulls the event off the queue and performs one of two
actions:

(a) Normal event processing (i.e. user code is executed).

(b) Lazy processing. If lazy is enabled in speedes.par and lazy has been enabled for
the current event (i.e. SpEvent::set lazy has been called), then method lazy is
called. If this method returns 0, then the event is reprocessed. Otherwise, the event is
skipped (i.e rolled forward).

Phase 4. Immediately after undergoing normal or lazy processing, SPEEDES calls exchange to pre-
pare for processing later potential rollbacks. The exchange technique is the fastest known
method for processing rollbacks for individual state variables.

Phase 5. This phase represents what happens during a rollback, if it ever occurs. Otherwise, SPEEDES
skips this phase. If the event is rolled back, SPEEDES calls exchange again to restore
state data stored in the original exchange call. Of course, rollback variables have their
states restored automatically using the incremental state saving technique (see Section 4.1 and
Section 5.4). At this point, the event is reinserted into the event priority queue according to its
time stamp ordering, and SPEEDES moves back to phase 3. Phases 3 through 5 may occur
numerous times.

Phase 6. Once GVT is updated to be greater than or equal to this event’s time stamp, rollbacks are
impossible. This is because no events may be processed with a time stamp earlier than the
current GVT (see Appendix A). Thus, at this point, phases 3 through 5 permanently stop
cycling and SPEEDES calls commit, calling user code that cannot be rolled back.

Phase 7. Just before the event is inserted back into its free list, SPEEDES calls cleanup. This is
where the event is restored to a clean state, such as deleting memory allocated during init.

Phase 8. Finally, at the end of the simulation, the event’s destructor is called, cleaning up anything oc-
curring during its constructor or any other final operations. Like the constructor, the destructor
is only called once, even though the event may be reused (going through phases 2-7) multiple
times throughout the simulation.

The following subsections discuss how each of these phases relate to the virtual method in SpEvent.

15.2.1 Lazy Re-evaluation

Lazy re-evaluation is a technique that allows SPEEDES simulations to process events out of order
without having to reexecute them, according to criteria established by the user. By processing events in
parallel, while sometimes allowing events to be processed out of order, SPEEDES has the potential to
“beat the critical path”, since this technique bypasses the general rule that a simulation’s critical path
must be processed sequentially.

300 CHAPTER 15. AUTONOMOUS EVENTS

Users specify the criteria for passing lazy re-evaluation using the virtual method SpEvent::lazy.
Whenever an event is rolled back and the event is participating in lazy re-evaluation, then SPEEDES
holds back anti-messages. When it is time to reprocess the event, SPEEDES first calls lazy. If the
reexecution of the user event will not change the final outcome of the event (i.e. the same results are
achieved after the event is reexecuted or perhaps just “close enough”), then method lazy should return
a non-zero value. Since the user implements method lazy, the user can use whatever criteria they choose.
If the reexecution of the event produces different results, then lazy should return zero. SPEEDES will
then send out anti-messages associated with this event followed by the reprocessing of the event user
code (i.e. normal event execution).

To implement this technique, users need to do the following:

1. Edit speedes.par and enable lazy in section parameters.

2. Each event type that is going to participate in lazy needs to enable lazy by calling method
set lazy (defined in SpEvent class). This can be done in the event’s constructor.

3. Implement method lazy. This method should evaluate whether or not the event should be reex-
ecuted. If it does, then it should return 0. Otherwise, it should return 1. A common method of
doing this is to save the simulation object state variables when the event user code is executed.
Method lazy can then compare the saved values against the simulation object state variables
and, if there are no differences, then it should return 1.

Events that pass lazywill roll forward rather than being reprocessed. SPEEDES will not send any anti-
messages, hence other events will not be rolled back. This can save considerable overhead, especially for
events that schedule many other events or for events that depend on a low percentage of the simulation
object’s state, or both.

While the lazy re-evaluation technique can save considerable optimism overhead, it also requires extra
memory and performance overhead by withholding anti-messages longer, saving lazy state variable
values in the event object, and performing the lazy calls. Users should consider these tradeoffs when
considering whether or not to implement lazy.

15.2.2 Fast Rollbacks

As an alternative to using rollbackable variables, users can use a slightly higher performing technique
called “exchange” to make simulation object variables “rollback proof”. However, this method is,
in general, more tedious to implement. The exchange technique manually exchanges old with new,
and new with old, simulation object state variables for rollback preparation, rollbacks, and rollfor-
wards. SPEEDES calls the virtual method SpEvent::exchange immediately after calling the event
method, and calls the same exchange method again before rolling back the event, thereby restoring
the original value. This provides the same functionality as rollbackable variables, but spares the rollback
variable overhead associated with creating, storing, and managing incremental state saving items.

To implement the exchange method, use normal variables (i.e. non-rollbackable) to represent each
state variable in the simulation object. In the event method, use a separate version of that variable and
store it in the SpEvent object. Then, exchange, simply swaps the event variable and simulation
object variable. Users can swap multiple state values in exchange. An example of this is shown in
Example 15.2.

15.3. INCREASING EFFICIENCY OF AUTONOMOUS EVENTS 301

The exchange technique is a good way to implement a rollbackable version of a variable if it does
not exist and it is cost prohibitive to write a rollbackable version of the variable (see Section 5.4). In
addition, using the exchange technique is slightly more efficient than using rollbackable variables.

However, using rollbackable variables eliminates the need for users to concern themselves with simu-
lation object state variable restoration on event rollbacks, hence making rollbackable variables easier
to use. Thus, for maintainability and ease of use, using rollbackable variables is probably the best and
easiest method when designing and implementing simulation objects. To create custom rollbackable
variables, see Section 5.4.

15.2.3 Committing Events

While exchange makes simulation object state data “rollback proof”, commit makes any kind of
operation “rollback proof.” In fact, commit is so general that a user could eliminate using rollback
variables and operations entirely by using exchange and commit, respectively. As the exchange
technique replaces rollbackable variables, commit replaces rollbackable operations. Commit provides
a slightly higher performing, but more tedious alternative to using rollbackable operations in the event
method.

The idea behind commit is to perform operations only once an event can no longer be rolled back.
SPEEDES accomplishes this by waiting until GVT passes an event’s time stamp to call that event’s
commit virtual method. Since, by definition, no events may be scheduled with a time stamp earlier
than the current GVT, any operations that occur during commit are final and are, therefore, guaranteed
not to rollback.

Developers implement actions in commit that occur as a result of calling the event method. Because
these actions cannot be rolled back, there is no rollback infrastructure needed to support these actions.
Thus, using commit is slightly more efficient than using rollback operations, which do require the roll-
backable infrastructure. Also, commit is useful for implementing rarely used, system specific external
commands (such as writing to an external data base), since using commit relieves developers from
having to develop custom rollbackable operations.

However, using commit has the same drawback as using exchange. That is, it exposes an additional
coding layer to handle rollback issues that is transparent when using rollbackable operations. To create
custom rollbackable operations, see Section 5.4.

15.3 Increasing Efficiency of Autonomous Events

The efficiency of autonomous events can be increased using init, cleanup, and the SpEvent con-
structor . There are only rare cases where these methods will be useful. Using the SpEvent constructor
allows users to perform costly operations once per free list event. Since events are managed using free
lists, each event in the free list is only constructed once during the entire simulation. Thus, data that
rarely or never changes can be accessed from a database and stored in the event object (probably as
a static variable) during construction. If exiting SPEEDES without memory leaks is important, any
memory allocated should be deallocated in the SpEvent destructor.

The init virtual method is called exactly once per scheduled event. Operations that need to be per-
formed each time the event is invoked, and that are not affected by rollbacks, can be placed in init.
This generally applies to operations that do not access or change simulation object state. Moving event
code into init, where possible, increases performance, since these operations will not be reprocessed

302 CHAPTER 15. AUTONOMOUS EVENTS

each time the event is rolled back. Any memory allocated in init should be deallocated in cleanup.
Also, cleanup is a good place to reinitialize event data, such as setting pointers to NULL.

15.4 Autonomous Event Example

Example 15.2 demonstrates each of the advanced techniques described in this chapter. It counts the
number of rollbacks (i.e. when lazy does not pass) and the number of times lazy does pass for each
event, as well as the total of each of these values for each free list event at the end of the simulation. For
this example, assume that S MySimObj has a non-rollbackable state integer, val.

#ifndef E_MyEvent_H
#define E_MyEvent_H

#include "SpGlobalFunctions.H"
#include "SpEvent.H"
#include "SpDefineEvent.H"
#include "SpMsg.H"

#include "MySimObj.H"

#define MY_SIMOBJ ((MySimObj *) SpGetSimObj())

class E_MyEvent : public SpEvent {
public:
E_MyEvent() {

set_lazy();
TotalRollbacks = 0;
TotalLazyPasses = 0;

}
virtual ˜E_MyEvent() {

cout << "Total rollbacks for this free list event = "
<< TotalRollbacks
<< ", total lazy passes for this free list event = "
<< CurrentLazyPasses << endl;

}
void MyMethod() {

LazyVal = 0;
ExchangeVal = 0;
Val = 0;
ExchangeVal = MY_SIMOBJ->GetValue() + 1;

}
virtual void init(SpMsg *) {

CurrentRollbacks = 0;
CurrentLazyPasses = 0;

}
virtual int lazy() {

if (MY_SIMOBJ->GetVal() == LazyVal) {
CurrentLazyPasses++;
return 1;

}
else {

CurrentRollbacks++;
return 0;

15.4. AUTONOMOUS EVENT EXAMPLE 303

}
}
virtual void exchange() {

int temp;
temp = MY_SIMOBJ->GetValue();
MY_SIMOBJ->SetValue(ExchangeVal);
ExchangeVal = temp;

}
virtual void commit() {

cout << "Simulation object Value set to: " << ExchangeVal << endl;
}
virtual void cleanup() {

TotalRollbacks += CurrentRollbacks;
TotalLazyPasses += CurrentLazyPasses;
cout << "Rollbacks for this event = " << CurrentRollbacks

<< ", lazy passes for this event = " << CurrentLazyPasses;
}

private:
int LazyVal; // Original value of val at start of event
int ExchangeVal; // Value of val from SimObj at end of event
int CurrentRollbacks; // Number of rollbacks in this event
int CurrentLazyPasses; // Number of times lazy passed in this event
int TotalRollbacks; // Total rollbacks for this event
int TotalLazyPasses; // Total times lazy passed for this event

};

DEFINE_AUTONOMOUS_EVENT_0_ARG(MyEvent, E_MyEvent, MyMethod);
#endif

Example 15.2: Autonomous Event Example

304 CHAPTER 15. AUTONOMOUS EVENTS

Chapter 16

Checkpoint/Restart: Using Persistence

Enabling a simulation to be checkpointed and restarted is an involved process which requires additional
work from the user. Once enabled, a performance penalty ranging from 10% to 60% will be encountered,
as well as short halts of the simulation while the checkpoint file is written to disk.

16.1 Persistence Memory Management Description

Consider a C++ class:

class foo {
public:

int type;
double weight;
double[3] position;

};

This class has a characteristic commonly called “flat.” This means that the class does not have any
pointers or any other sort of dynamic memory contents. If this class were written out to disk in binary
and then read back in again, it would be just as valid as it was before it was written out.

Now consider this C++ class:

class PointsToSelf{
public:

PointsToSelf :
self(this) {};

private:
PointsToSelf* self;

};

In this class, the value self always points back to the class itself. This class is not flat and, if written
to disk and then read back in, most likely would end up in a different memory location. This means that
the value of self would most likely be incorrect and this pointer must be changed to the new address
if the class is to be used correctly. This is the essence of persistence memory management.

305

306 CHAPTER 16. CHECKPOINT/RESTART: USING PERSISTENCE

16.2 Basic Changes to Enable Checkpoint/Restart

The SPEEDES framework provides functionality that allows users to save the simulation state to disk,
as well as the ability to restore the simulation state for restart. There are a number of basic changes
that must be made in order to support checkpoint and restart. The first change to be made is to modify
speedes.par to support check points. Add the following section to speedes.par:

Checkpoint {
logical Enable T // Enable checkpoints
float WallTimeInterval -1.0 // Wall clock time between

// checkpoints
float SimTimeInterval 100.0 // Simulation time between

// checkpoints
string CheckpointPath ./checkpoints // Path to checkpoint files

}

Checkpoints are enabled by setting the parameter Enable to T in section Checkpoint. Checkpoints
occur at the rates specified by the parameters WallTimeInterval and SimTimeInterval. When
a negative or zero time is specified, then this parameter will not be used when determining if it is
time to perform a checkpoint. Check point files will then be written to files in the path specified by
CheckpointPath.

The macro PO DEFINE CLASS is defined in PO.H and generates many short functions that are useful
for persistence memory management. PO DEFINE CLASS should never be called by a user. Instead,
users should use macro RB DEFINE CLASS, which internally calls PO DEFINE CLASS, to be used
instead. Macro RB DEFINE CLASS is described in Section 5.1. Some of the more useful functions
generated by PO DEFINE CLASS(foo) include:

foo* PO_NEW_foo() // Allocates a new foo and
// registers it with persistence

foo* PO_NEW_ARRAY_foo(int n) // Allocates an array of new foos and
// registers them with persistence

foo* PO_DELETE_foo() // Allocates a foo and unregisters
// it with persistence

foo* PO_DELETE_ARRAY_foo(int n) // Deallocates an array of foos and
// unregisters them with persistence

void PO_REGISTER_CLASS_foo() // Registers foo with the database
// for later reconstruction.

These are similar to the RB DEFINE CLASS generated functions, except that these functions do not op-
erate rollbackably. Therefore, it is recommended that these functions only be used when it is guaranteed
that the code being processed will not be rolled back. Examples of this are the simulation object methods
Init, Terminate, construction, destruction, or other times outside of normal event processing.

In order to checkpoint and restart a simulation, SPEEDES must be told which objects to store and
restore, where the pointers are within those objects, and how to create those objects. These issues are
addressed in the following sections.

Finally, there exists a global variable that contains the current on/off status of persistence:

int PersistenceEnabled;

16.2. BASIC CHANGES TO ENABLE CHECKPOINT/RESTART 307

When PersistenceEnabled is set to 1, then checkpoint/restart has been enabled in file speedes-
.par and checkpoints are being created.

16.2.1 Rollbackable Classes and Functions

All rollbackable classes and functions contained in the SPEEDES framework have been made check-
point/restartable. This means no additional work must be performed to attach pointers for rollbackable
container classes or other structures. One exception to this rule is the RB ostream class. If a new
RB ostream is created from another stream, undetermined behavior will result with this RB ostream
when it is used or accessed after a restart.

For a user-defined class, RB NEW class and its variants from the RB DEFINE CLASS macro will
automatically inform the database that class should be checkpointed. Similarly, RB DELETE class
informs the database that piece of memory does not need to be stored.

16.2.2 Registering Classes to be Restored

Classes must be recreated upon a restart and, in order to know how to create them, they must be regis-
tered with the persistence database. SPEEDES automatically registers all the classes, before the call to
main occurs, through a call to * REGISTER CLASS class for each each RB DEFINE class used.

Whenever * REGISTER CLASS class is called, an instance of the class is created so that their per-
sistence database can identify information about the class, such as the locations of virtual function
table (vtable) (see Section 16.2.5). When this temporary version of the class is created, the following
static data member is accessable:

SpPoDataBase::DoNotAllocateMemoryInConstructor

Its value is 1 during persistence initialization and 0 at other times.. The constructor of the class being
registered should examine this value and, if it is set, avoid assuming anything about the state of the
program upon its construction. This will help avoid unexpected behavior as well as memory leaks. In
general, when DoNotAllocateMemoryInConstructor is set to 1, users should initialize point-
ers to NULL and initialize primitive base types (integers, doubles, etc.) and nothing more.

16.2.3 Attaching Pointers

Identifying what pointers need to be stored and restored is done on a class instance-by-instance basis.
PO.H defines a simple macro PO ATTACH PTR(void*&) that is called to indicate a specific pointer
within an object instance is to be stored and restored.

Consider again this simple non-flat class:

class PointsToSelf {
public:

PointsToSelf :
self(this) {}

private:
PointsToSelf* self;

};

308 CHAPTER 16. CHECKPOINT/RESTART: USING PERSISTENCE

This class can be modified to always attach the pointer to self by changing the constructor to read:

PointsToSelf::PointsToSelf :
self(this) {
PO_ATTACH_PTR(self);

}

This will cause the pointer self to be attached whenever this class is created (i.e. RB NEW or PO NEW).
If it is desired that the pointer only be attached occasionally, then the call to PO ATTACH PTR can be
made anywhere before a checkpoint is called. If the pointer is not attached before a checkpoint, the
pointer will not be restored upon a restart. Any pointers that are attached in the constructor will only be
automatically attached if the class is created using RB NEW or PO NEW.

16.2.4 Adding and Removing Memory From Persistence

The persistence database must be informed about which objects will be saved and restored. To reduce
the amount of work a user must perform, all memory that is allocated using RB NEW and deallocated
with RB DELETE is automatically added and removed from the persistence database. Other methods
are available to add and remove memory, but these are the only recommended methods for adding or
removing memory from persistence.

16.2.5 Classes with Virtual Functions

Modern compilers handle virtual methods by storing a pointer in the class to a table of virtual functions
to be called (see Figure 16.1). This method is efficient but results in added complexity to persistence
memory management.

Identification of the location of the vtable is done by inheriting from the class SpPersistence-
BaseClass which can be found in the header file SpPersistenceBaseClass.H. All classes
that contain a virtual function should directly inherit from SpPersistenceBaseClass (multiple
inheritance is not sufficient).

class foo
�

public:
virtual ˜foo();

� ;

class bar : public foo
�

public:
˜bar();
int x;
foo containedFoo;

� ;

foo
vtable pointer

bar
vtable pointer
int x
foo containedFoo
(2 ��� vtable pointer)

Figure 16.1: Placement of Virtual Function Table within Classes

16.2.6 Smart Pointers

The RB DEFINE CLASS macro also expands an additional class, which can be used to automatically
attach pointers and also behave as a type-specific RB voidPtr. This class looks like:

16.3. HANDLING EVENTS WHICH PASS POINTERS 309

class RB_PTR_foo {
public:

RB_PTR_foo(){};
RB_PTR_foo(foo* t);
operator foo *();
foo* operator =(foo* t);
foo* operator -> ();

};

This class behaves in every way like a foo* and has the added advantage of being both a rollbackable
and persistent pointer. It is automatically attached upon its first assignment and each assignment is
undone upon a rollback.

16.3 Handling Events Which Pass Pointers

While defining events that take pointers is dangerous, there are still cases where a pointer needs to be
passed in an event. Underneath the covers, SPEEDES uses messages to schedule events and the pointer
in this message must be saved in order to be properly restored upon a restart.

Consider a case where an event had an interface defined as follows:

DEFINE_EVENT_INTERFACE_4_ARG(SpModifyFooAndBar,
int,
foo*,
double,
double,
bar*);

There would then be two pointers in this message that would need to be attached and subsequently
restored upon a restart. The code necessary to schedule this event is shown in Example 16.1.

#include "PO.H"
RB_DEFINE_CLASS(PO_SPEEDES_MSG_TYPE);
...
SpObjHandle objHandle;
foo* myFoo;
bar* myBar;
int count;
double velocity;
double altitude;
...
M_ModifyFooAndBar_ARG* msg =

(M_ModifyFooAndBar_ARG*)
this->schedule(newTime,

ModifyFooAndBar_EVENT_ID,
objHandle->GetSimObjMgrId(),
objHandle->GetSimObjLocalId(),
objHandle->GetNodeId(),
"Additional data",
strlen("Additional data") + 1);

msg->ExternalId = -1;
msg->undirected = 0;

310 CHAPTER 16. CHECKPOINT/RESTART: USING PERSISTENCE

msg->ProcReentryType = BEGIN_PROCESS;
msg->EarliestStartTime = -1e20;
msg->v1 = count;
msg->v2 = myFoo;
msg->v3 = velocity;
msg->v4 = altitude;
msg->v5 = myBar;
if (PersistenceEnabled) {

RB_PO_ADD((void*)msg,
DefaultDataBase,
PO_GET_PO_SPEEDES_MSG_TYPE_ID(),
sizeof(M_ModifyFooAndBar_ARG) + msg->bytes);

PO_ATTACH_PTR(msg->v2);
PO_ATTACH_PTR(msg->v5);
SpEvent::IgnoreDuplicatePO_Adds();

}
Example 16.1: Persistence and Pointers as Arguments to Events

Here, the event is scheduled using the internal SpEvent method schedule. The message class
M ModifyFooAndBar ARG is generated from the DEFINE EVENT INTERFACE macro. This mes-
sage needs to be added to the database in a rollbackable fashion. The arguments to the RB PO ADD call
are the data to be added, the database, the type of data, and the size of the data, respectively. The size
of the message is the actual size of the class plus the size of any additional data added onto the end
message.

The two pointers in the message myFoo and myBar are the second and fifth arguments respectively.
The members of the message that correspond to these arguments are v2 and v5 respectively. Once the
pointers to these arguments have been attached, the static method SpEvent::IgnoreDuplicate-
PO Adds() needs to be called to inform SPEEDES that the message has already been added to the
database and to not try to add this message itself.

16.4 Printing the Database for Further Debugging

By executing SPEEDES with the argument “-PrintDatabases type time”, where type is
either SIM or WALL and time is a time at which a checkpoint was created, a great deal of information is
printed about the checkpoint file. Errors are printed out at the start and the first type of error encountered
(if any) has the form:

Tried to reconstruct class foo but this class
has not yet been registered in this database. This class
will be restored as char buffers!!!!!!

The above message states that type foo was not registered before the call to SpeedesExecute. This
should never happen and indicates either an internal error or a corrupted checkpoint file.

The next type of error appears as follows:

!!!!!!!!!!!!!!!!!!!!!!!!Could not remap a pointer!!!!
Pointer was inside an object of type bar
with size 4400
and had an offset of 3892

16.4. PRINTING THE DATABASE FOR FURTHER DEBUGGING 311

The exact piece of memory where the error occurred can be determined with the later output, but this
indicates where within an object type the pointer error occurred. This generally means there was a
PO ATTACH PTR called and the memory that was pointed to was not added to the database.

The actual database output then begins after the error messages. The format of this file is output and
starts off with a brief description of the “shape” of a class.

Class name: foo 282
Class size: 380
Number virtual function tables: 3

vtable at offset 0
vtable at offset 284
vtable at offset 336

This indicates the name and id of a class along with its size. Then follows information about the number
of vtables within the class along with their offsets within the class. This information can be used to help
identify classes that do not have all of their vtable pointers registered through inheritance, as described
in Section 16.2.5.

Next comes output describing each block of memory that was added to persistence. A block of memory
is allocated with RB NEW or PO ADD.

Class type: foo Dangling memory: Yes
Single item
Base address: 135789336
Memory block size: 380
Unnamed
Memory block has 18 pointers

/--\
/-------------------------Pointers-------------------------\

/--\
Array	offset of pointer	destination	destination
element	within element	of pointer	in database?
0	32	135804816	YES
0	152	135787200	YES
0	164	0	-
0	172	0	-
0	184	0	-
0	188	0	-
0	192	0	-
0	240	135803844	YES
0	264	0	-
0	304	0	-
0	312	0	-
0	324	135805056	YES
0	328	135807728	YES
0	332	143305872	YES
0	348	141882400	YES
0	352	0	-
0	356	141986096	YES
0	360	141986096	YES

Figure 16.2: Persistence Block Example

312 CHAPTER 16. CHECKPOINT/RESTART: USING PERSISTENCE

This output also starts with class type and an indication as to whether the memory is dangling (nothing
else pointing to it) or not. The next line indicates if its a single item or an array of items and that is
followed by the base address of the block when it was saved. Next follows the size, the name (if named)
and the number and list of pointers. The pointers appear in a block format with one pointer per line. The
first column is the array element within the block that the pointer appears. The second column is the
offset of the pointer within that specific array element. The third column is the destination of the pointer
and the fourth column states whether the destination is in the database or not. If the fourth column is
NO, this indicates that persistence pointer (PO ATTACH) pointer was not added (PO ADD), resulting in
one of the errors at the start of the output.

16.5 Tips, Tricks, and Potholes

1. Always use RB NEW and RB DELETE to allocate memory, even in a simulation object constructor.
The overhead is minimal and this will ensure that memory is always added to the database.

2. Use of smart pointers can reduce the number of errors of not attaching pointers. When these
cannot be used, attach the pointers in the constructors and always use RB NEW and PO NEW to
ensure they are attached.

Chapter 17

Diagnostic Tools

Determining the correct operation of a discrete-event simulation can be a daunting task. In an optimistic
processing simulation framework, such as SPEEDES, this task becomes nearly impossible without ad-
equate tools to assist the user in diagnosing run-time errors and analyzing run-time performance.

17.1 Global Virtual Time (GVT) Statistics

GVT is calculated at fairly regular intervals and, upon every calculation, statistics can be printed updat-
ing the progress of the framework. This is enabled by setting parameter statistics in the param-
eters section of speedes.par to “T”. Summary lines are printed to the screen. The default GVT
output line will be similar to that shown in Figure 17.1.

3) GVT=415 cpu=1.1 wall=1.1 STAR=0 Tproc=0.15 Tcmt=0 Eff=0
Nproc=1268 Ncmt=46 e=126 e/c=21 eg=1611 r=3382 m=223 a=188 c=4

6) GVT=920 cpu=2.5 wall=2.5 STAR=360.2 Tproc=0.23 Tcmt=0 Eff=0
Nproc=354 Ncmt=63 e=393 e/c=33 eg=2339 r=4792 m=268 a=192 c=12

9) GVT=1615 cpu=3.8 wall=3.9 STAR=488.8 Tproc=0.32 Tcmt=0 Eff=0
Nproc=867 Ncmt=132 e=714 e/c=40 eg=3436 r=7025 m=339 a=206 c=20

Figure 17.1: GVT Statistics Output Line

The content of the GVT output line is controlled through different parameters in the statistics
section in speedes.par (see Section C.4 for additional information). A description of the statis-
tics parameters, GVT output line symbol, and a parameter description is given in Table 17.1.

Statistics
Parameter Output Description

CYCLE value) Prints the GVT cycle number at the start of the statistics line. This is the
number of times GVT has been calculated.

GVT GVT= The current GVT which is the latest simulation time that has been commit-
ted (cannot be rolled back).

CPU cpu= The total processing time spent thus far.
WALL wall= The total wall time spent since the start of the simulation.
STAR STAR= Simulation Time Advancement Rate for the previous cycle. This is the ratio

of change in GVT to the change in wall clock.

313

314 CHAPTER 17. DIAGNOSTIC TOOLS

Statistics
Parameter Output Description

PROC Tproc= The total time spent processing events events since the start of the simula-
tion.

COMMIT Tcmt= The total amount of committed (non-rolled back) event processing since the
start of the simulation.

PROCEFF Eff= The ratio of committed processing time to total processing time since the
start of the simulation.

PHASE1 Nproc= The number of events processed in the prior cycle.
PHASE2 Ncmt= The number of events committed in the prior phase. Note that the number

committed can be greater than the number processed.
EVENTS e= Total number of events processed since the start of the simulation.
EVENTSCYCLE e/c= Total number of events processed during the last cycle.
EVTGVT eg= Total number of events committed since the start of the most recent GVT

cycle
ROLLBACKS r= Number of rollbacks since the start of the simulation.
MESSAGES m= Total number of event messages sent since the start of the simulation.
ANTIMESSAGES a= Total number of anti-messages sent since the start of the simulation. An

anti-message is a message canceling a scheduled event due to a rollback.
CANCELS c= Total number of events canceled since the start of the simulation.

Table 17.1: GVT Output Line Description

The GVT statistic can be printed on a node-by-node basis by setting the additional parameters in the
statistics section of the speedes.par file.

logical WriteGvtStatistics T
string FileName GvtStatistics

The first parameter enables and disables the printing of the statistics and the second sets the name of the
output files. The file name specified is appended with “.#” where # is the node number for each output
file. These output files will have the format as shown in Figure 17.2.

Cycle=396
GVT=95.0216
LVT=95.2964
Risk=0.0214499
EnterFB=0.00358595
ExitFB=0.0214499
UpdateGVT=0.0216699
EnterSpin=-1e+20
Commit=0.0236249
CPU=9.53
Wall=10.1205
STAR=10.3702
Tproc=2.83806
Tcmt=2.82824
Eff=0.996539
Nproc=116
Ncmt=89
Evts=41545
E/Cyc=105
E/gvt=1442

17.1. GLOBAL VIRTUAL TIME (GVT) STATISTICS 315

RBs=51
Msgs=20720
Anti=17
Cancel=0
Xmsgs=0
events in queue=200

Figure 17.2: GVT Statistics File Output

Much of this information is very similar to that provided in the GVT output line but there are a few
new items and much of the data is presented on a node-by-node basis. The particular lines and their
descriptions are given in table 17.2. Those options that are only available in the output files are presented
in bold face font.

Statistics
Parameter Output Description

CYCLE Cycle= Prints the GVT cycle number at the start of the statistics
line. This is the number of times GVT has been calculated.

GVT GVT= The current GVT which is the latest simulation time that
has been committed (cannot be rolled back).

LVT LVT= The Local Virtual Time (LVT). This is the time tag of the
next event to be processed in the event queue.

BTW Risk= Number of seconds into the last cycle at which the simula-
tion stopped processing events and sending messages.

EnterFB= Number of seconds into the last cycle at which this node of
the framework requested an update of GVT.

ExitFB= Number of seconds into the last cycle at which all the nodes
agreed to update GVT.

UpdateGVT= Number of seconds into the last cycle at which the frame-
work finished updating GVT.

EnterSpin= Number of seconds into the last cycle at which the current
node reached a point at which it would no longer process
events.

Commit= Number of seconds into the last cycle at which the frame-
work finished committing events.

CPU CPU= The total processing time spent thus far.
WALL Wall= The total wall time spent since the start of the simulation.
STAR STAR= Simulation Time Advancement Rate for the previous cycle.

This is the ratio of change in GVT to the change in wall
clock.

PROC Tproc= The total time spent processing events events since the start
of the simulation.

COMMIT Tcmt= The total amount of committed (non-rolled back) event pro-
cessing since the start of the simulation.

PROCEFF Eff= The ratio of committed processing time to total processing
time since the start of the simulation.

PHASE1 Nproc= The number of events processed in the prior cycle.
PHASE2 Ncmt= The number of events committed in the prior phase. Note

that the number committed can be greater than the number
processed.

316 CHAPTER 17. DIAGNOSTIC TOOLS

Statistics
Parameter Output Description

EVENTS Evts= Total number of events processed since the start of the sim-
ulation.

EVENTSCYCLE E/Cyc= Total number of events processed during the last cycle.
EVTGVT E/gvt= Total number of events committed since the start of the sim-

ulation.
ROLLBACKS RBs= Number of rollbacks since the start of the simulation.
MESSAGES Msgs= Total number of event messages sent since the start of the

simulation.
ANTIMESSAGES Anti= Total number of anti-messages sent since the start of the

simulation. An anti-message is a message canceling a
scheduled event due to a rollback.

CANCELS Cancel= Total number of events canceled since the start of the sim-
ulation.

NUM EVENTS IN QUEUE # events in
queue=

The number of events in the event queue at the time of the
GVT update.

Table 17.2: GVT Output File Description

17.2 Trace Files

Trace files provide a mechanism for allowing event execution flow to be analyzed. For example, if event
A schedules event B, which schedules event C, then this sequence of events is captured in a text file.
Basically, a trace file contains the time and name for each committed event and the names of all events
that it scheduled. By looking at these files, a user can trace the event sequence for a given simulation
execution. To enable trace files, add the following sections to the speedes.par file:

trace {
logical trace T // T = on, F = off
string tracefile Trace // File name appended by node number

}

Figure 17.3 shows the trace file from the car and stop light example described in Section 6.5.

1 Time = {30,0,0,5,0}
2 EvtName: StopLight_TurnsRed
3 TriggerName:
4 ObjName: S_StopLight_MGR 0
5 SimObjMgrId: S_StopLight_MGR
6 Handle: (0,1,0)
7 GlobalId: 4
8 RBitems: 3
9 Cancel id: 8

10 EvtCPU: 0.000177992
11 TotCmtd: 0.000177992
12 TotTime: 0.000177992
13 CritPth: 0.000177992
14 ProcessMode: Timewarp
15 NumEventsBeyondGVT: 8
16 TimeBeyondGVT: 1e+20
17 NoTag:

17.2. TRACE FILES 317

18 LocSched: Time = {30,0,0,6,4}
19 EvtName: Car_Stop
20 SimObjMgrId: 0
21 Handle: (0,0,0)
22 bytes: 101
23 LocSched: Time = {30,0,0,8,4}
24 EvtName: Car_Stop
25 SimObjMgrId: 0
26 Handle: (0,0,1)
27 bytes: 101
28 LocSched: Time = {60,0,0,10,4}
29 EvtName: StopLight_TurnsGreen
30 SimObjMgrId: 1
31 Handle: (0,1,0)
32 bytes: 80
33 RskSched: Time = {30,0,0,7,4}
34 EvtName: Car_Stop
35 Handle: (1,0,0)
36 bytes: 101
37 RskSched: Time = {30,0,0,9,4}
38 EvtName: Car_Stop
39 Handle: (1,0,1)
40 bytes: 101

Figure 17.3: Trace File Example Output

The trace file shows event StopLight TurnsRed going off at time � ����� seconds (stop light turned
red). It scheduled event Car Stop for each car object telling the car that the light was red. It then
scheduled event StopLight TurnsGreen at time

� ����� for itself so that the stop light can turn from
red to green at the appropriate time. Additional information on each individual line contained in this file
is shown in Table 17.3.

Line
Number(s) Description
1 - 7 Basic information on current event being processed. This information is the time, event name,

trigger name (for handlers), object name, type, object handle, and global id of the event being
processed.

8 Specifies the number of rollback items created for this specific event. The number of rollback
items is usually equal to the number of rollbackable operations performed in this event.

9 Specifies the cancel id for this event.
10 EvtCPU is the amount of time used by this specific event. Although the name includes the

phrase “CPU”, the number will only sometimes represent CPU time. Other times, it may repre-
sent wall time or counts, depending on what Timer’s value is in the statistics section of
speedes.par.

11 TotCmtd is the total committed amount of time used by this simulation object up to this point.
12 TotTime is the total amount of time used by the simulation object up to this point (this includes

time that was “wasted” by a rollback).
13 CritPth is total length of critical path leading to this event.
14 ProcessMode will be one of the following:

� Breathing Time Buckets:
Indicates that this event was processed, but any events it scheduled are held back until the
rest of the simulation catches up with this node.

318 CHAPTER 17. DIAGNOSTIC TOOLS

Line
Number(s) Description
14 (cont.) � Timewarp:

Indicates that this event was processed and the events it scheduled were released to other
nodes.

� Risk Free:
Indicates that this event was processed without risk (i.e. events were scheduled without
fear of anti-messages calling them back).

� GVT Update:
Indicates that this event was processed while updating GVT, and its events were held until
the end of the GVT update.

� Not running BTW:
Indicates that Breathing Time Warp (BTW) algorithm was not in operation when this
event was processed. This case occurs when using other algorithms (such as sequential)
or in unique situations, such as event InitialEvent.

15 - 16 NumEventsBeyondGVT and TimeBeyondGVT are the number of events beyond GVT that
the current event has processed and the number of simulation seconds beyond GVT that the event
has processed. Large values for these two parameters indicate a high degree of optimism in the
processing of the current event.

17 Line 17 can have a value of NoTag or BeginTag. In the case of this entry being BeginTag,
then additional user-definable data will be output followed by a marker called EndTag. Users
can set this data in an event by filling out the data using class SpTag, which behaves similarly
to ostream. For example, if the following code is added to event StopLight TurnsRed:

...
SpTag* tag = SpGetTag();
(*tag) << "Traffic light turned red at "

<< (double) SpGetTime() << " seconds." << endl
<< "Message sent to each car." << endl;

...

then the trace file would contain the following:

BeginTag:
Traffic light turned red at 30.0 seconds.
Message sent to each car.
EndTag:

18 - 40 These lines indicate all of the events that were scheduled by this event (i.e. Stop-
Light TurnsRed). Each event scheduled will be composed of three or four parts. The first
part specifies one of the following:

� LocSched:
Indicates that this event was locally scheduled (scheduled on the same node).

� RskSched:
Indicates that the event was scheduled at risk of being rolled back due to an anti-message.

� SafeSched:
Indicates that the event was scheduled on another processor without fear of anti-messages.

Each of these lines is followed by the time at which this event was scheduled. EvtName specifies
the name of the event being scheduled. SimObjMgrId specifies the simulation object type on
which this event is being scheduled. Handle specifies the object handle for the object for which
this event was scheduled. bytes specifies the size of the scheduled event message in bytes.

17.3. FLYING TRACE 319

Line
Number(s) Description
18 - 40
(cont.)

Therefore, event StopLight TurnsRed is scheduling five events. Event Car Stop is sched-
uled on each car. The car simulation objects are distributed across two nodes. Therefore, two
events are scheduled locally (i.e. LocSched) and two events are scheduled for the cars on the
other node (i.e. RskSched). These later two events can cause the events on the car simulation
objects to be rolled back, since these are events being scheduled for an object on a different
node, especially since they are being scheduled for now. Event StopLight TurnsGreen is
scheduled on itself at

� � � � seconds in the future, so that it can turn the traffic light from red to
green.

Table 17.3: Trace File Definitions

SPEEDES provides a utility that will filter blocks of event data for post-processing analysis. The utility
SpFilterTrace is detailed in Section 13.10 and is useful for following the behavior of a single object
or a type of event. It will filter out events of a specific type on objects of specific types, names, or other
searchable fields.

Here are some examples of commands that could be used to filter a trace file:

� Filter all events that were processed by stop lights:

SpFilterTrace Trace_1 "S_StopLight_MGR"

� Filter all Car Stop events on node 0:

SpFilterTrace Trace_1 "EvtName: Car_Stop"

� Filter all Car Stop events that have the data “Potential Bug” in the tag field.

SpFilterTrace Trace_1 "EvtName: Car_Stop" "Potential Bug"

17.3 Flying Trace

The trace file provides an exact record of all the events that were processed and committed in a simula-
tion. Given that measures were taken to ensure repeatability and that no external interactions were used,
a trace file will be identical from run to run although different CPU times may occur due to computer
clock differences.

Due to the optimistic nature of BTW, events may be processed, rolled back and reprocessed, or never
processed again. The need to see what was really going on leads to the desire for a different type of
trace known as “flying trace”.

Once the application has been recompiled and linked, the flying trace capability needs to be enabled in
speedes.par, as shown below:

FlyingTraceOutput {
string TraceFileName flyingTraceFileName

}

This feature only works when the simulation runs on two or more nodes or when optimize sequen-
tial is set to F.

320 CHAPTER 17. DIAGNOSTIC TOOLS

A simulation run with the above modification will result in one file per node called flyingTrace-
FileName #, where # specifies the node number for which the data was collected. Figure 17.4 shows
a portion of the flying trace file for the car and stop light simulation. This example shows the flying
trace at � � ����� . Recall that at ��� � ����� the traffic light turned red. The simulation was modified slightly
in such a way as to cause a rollback on the stop light simulation object (event StopLight TurnsRed
gets rolled back), and therefore, the event executed at � � � ����� is rolled back.

1 --------------------End non local messages------------
2 process: evtype: 1 objType: 0 localId: 0 time:0
3 process: evtype: 3 objType: 0 localId: 0 time:0
4 process: evtype: 1 objType: 0 localId: 1 time:0
5 process: evtype: 8 objType: 0 localId: 0 time:15
6 process: evtype: 10 objType: 0 localId: 0 time:15
7 process: evtype: 4 objType: 0 localId: 0 time:15
8 process: evtype: 3 objType: 0 localId: 1 time:20
9 process: evtype: 5 objType: 1 localId: 0 time:30

10 -------------------Begin non local messages------------
11 Schedule: evtype: 2 Node: 1 objType: 0 localId: 0 time:Time = {30}
12 Schedule: evtype: 2 Node: 1 objType: 0 localId: 1 time:Time = {30}
13 --------------------End non local messages------------
14 process: evtype: 2 objType: 0 localId: 0 time:30
15 process: evtype: 2 objType: 0 localId: 1 time:30
16 process: evtype: 8 objType: 0 localId: 1 time:35
17 process: evtype: 10 objType: 0 localId: 1 time:35

18 Got a rollback, evtype: 20 objType: 1 localId: 0 time:15
19 RollBack: evtype: 5 objType: 1 localId: 0 time:30
20 RollBack: evtype: 2 objType: 0 localId: 0 time:30
21 RollBack: evtype: 10 objType: 0 localId: 1 time:35
22 RollBack: evtype: 8 objType: 0 localId: 1 time:35
23 RollBack: evtype: 2 objType: 0 localId: 1 time:30
24 -----end of rollback------

25 process: evtype: 20 objType: 1 localId: 0 time:15
26 process: evtype: 5 objType: 1 localId: 0 time:30
27 -------------------Begin non local messages------------
28 Schedule: evtype: 2 Node: 1 objType: 0 localId: 0 time:Time = {30}
29 Schedule: evtype: 2 Node: 1 objType: 0 localId: 1 time:Time = {30}
30 --------------------End non local messages------------
31 process: evtype: 2 objType: 0 localId: 0 time:30
32 process: evtype: 2 objType: 0 localId: 1 time:30
33 process: evtype: 8 objType: 0 localId: 1 time:35
34 process: evtype: 10 objType: 0 localId: 1 time:35

Figure 17.4: Flying Trace File Example Output

Each event in a simulation is assigned a unique integer value during initialization. A table of these
integers cross-referenced to event names is printed at the start of the simulation. By looking at this
event name cross-referenced matrix, users can identify which event is processed in the above flying
trace example. Table 17.4 explains the flying trace output file.

17.4. EVENT USAGE STATISTICS 321

Line
Number(s) Description
1 - 9 This shows what events were execuated in what order. At � � � � � � the Stop Light object sched-

ules an event on each car notifing the Car objects that the light is red.
10 - 12 This shows the events scheduled on objects not on this node. Since these are for cars, this shows

that an event was scheduled for the cars on the other node (i.e. node 1).
13 - 17 Execution on this node continues. The first events executed are the Car Stop events, which

were scheduled by the event on line 9. The next events are the local Radio events.
18 - 24 The other node scheduled an event of type 20 on the Stop Light object on this node. This has

caused the event executed on line 9 and all events it scheduled to be rolled back. Events of type
2, 8, and 10 executed on lines 14 - 17, are rolled back. Not shown in this print out are the cancel
events for the two Car Stop events scheduled on node 1. However, the other node’s flying trace
output file would show these events getting rolled back.

25 - 34 These lines once again show the normal timeline for the events. The traffic light once again turns
red at � � � � � � , followed by the events that it scheduled.

Table 17.4: Flying Trace File Definitions

17.4 Event Usage Statistics

Enabling trace and flying trace can result in significant performance degradation due to the increase in
disk accesses (i.e. data writes to disk). A summation of some of these statistics can be obtained at the
end of the simulation, as well as at fixed GVT time intervals. These statistics can be enabled for output
by adding the correct parameter(s) to section statistics found in speedes.par. The following
subsections describe each of the event statistics available to the user. The data shown in the tables below
are based on the car stop light simulation example first described in Section 6.4. This example was
sightly modified in that the traffic light now rolls back every

� � � seconds.

17.4.1 Event Memory Usage

The amount of memory used by the event free list mechanism will be displayed by adding the following
entry in the speedes.par:

statistics {
logical MemoryUsage T // Memory statistics

}

The result of this will produce the data shown in Table 17.5.

322 CHAPTER 17. DIAGNOSTIC TOOLS

Event name Id Nevents Nfree Nmessages Nfree Bytes
Car StopCar 0 160 160 160 160 106240
Car Go 1 540 540 30 30 317760
Car Stop 2 530 530 0 0 309520
Car RadioController 3 80 37 80 37 53120
Car RadioStation 4 240 240 240 240 161280
StopLight TurnsRed 5 60 47 60 47 39840
StopLight TurnsGreen 6 60 60 60 60 39840
Radio Off 7 30 30 0 37 17520
Radio On 8 40 40 0 244 23360
Radio Scan 9 240 175 0 2503 140160
Radio SendFrequency 10 240 240 0 2633 140160
RollBack 11 30 29 30 30 19920
SpInitial 12 3 3 0 0 1788
SpAddSimObjInteraction 13 4 4 4 4 3040
SpAddNodeInteraction 14 8 8 4 4 5328
SpHandler 20 10 10 30 30 8600
SpCancel 21 40 40 40 40 26720

Nholders = 8000, Nfree = 1901, Bytes = 480000
Total bytes = 1894196 (1.8942 Meg)

Table 17.5: Event Memory Usage Diagnostic Output Data

The data shown in this table is tabulated on an event type by event type basis. The columns shown are
event name (Event name), event type id (Id), total number of events (Nevents) of that type in the
free list, number of available events in the free list (Nfree), number of messages managed by the free
list (Nmessages), number of available messages in the free list (Nfree), and the total bytes required
to manage the events and messages (Bytes). Note that the number of events managed is not necessarily
equal to the number of messages managed. Holders are used to contain the events and messages within
the free list and their total number is presented here. Similarly, the total bytes for all messages, events
and holders are presented.

17.4.2 Event Message Sending

Events on a simulation object can be scheduled on any node at anytime in the future. How do these
events make their way to the appropriate simulation object on the correct node? The object handle
correctly identifies the object instance and location. The act of “scheduling” an event causes SPEEDES
to package up the event information and send it to the correct node so that this node can schedule the
appropriate event on the specified object instance. This information is called a “message”.

There are three types of messages in SPEEDES. The most common are asynchronous messages and
anti-messages. Asynchronous messages are the messages that are normally sent in scheduling events.
Most of the time, these messages are sent in an asynchronous fashion without waiting for the recipient
of the message to respond. Anti-messages are messages sent to undo an event (i.e. rollback). Finally,
coordinated messages are the standard event scheduling messages, but these are sent during a special
phase of BTW (see Appendix A for more information on BTW) when the nodes are synchronized.

These are events that can be scheduled without fear of being rolled back (known as risk-free). The
number of coordinated messages is, in general, small. If the number becomes large, this generally
indicates that the value of Nopt in speedes.par is set too small.

To enable message sending statistics, add the parameter MessageSending to the statistics
section in speedes.par:

17.4. EVENT USAGE STATISTICS 323

statistics {
logical MessageSending T // Message statistics. Only valid

// when simulation is run on
// 2 or more nodes.

}

The result of this will produce data shown in Table 17.6.

Event name Nmess Ncoord Nanti
Car Go 1380 15 1215
Car Stop 1338 15 1173
RollBack 32 4 0
SpAddNodeInteraction 2 0 0
SpHandler 21 3 0

Number of asynchronous messages = 2773
Number of coordinated messages = 37
Number of antimessages = 2388
Total number of messages = 5198

Table 17.6: Event Message Sending Diagnostic Output Data

Columns 2, 3, and 4 show the number of asynchronous messages (Nmess), coordinated messages
(Ncoord), and anti-messages (Nanti), respectively. This feature is unavailable when used only on
one node.

17.4.3 Event Data Summary

Event processing statistics are available when parameter EventProcessing in section statis-
tics is set in speedes.par. The format of this flag is shown below:

statistics {
string Timer WallClock // Use CPU, WallClock, or Counter

// for event timings
logical EventProcessing T // Event processing statistics
logical CriticalPath T // Critical path statistics

}

The Timer setting in speedes.par affects how the data is measured for this feature. See The value
of Timer can be one of CPU,WallClock, or Counter. When event summary data is being collected,
the time sensitive data elements are collected using one of the following data collection methods.

� CPU:
All time measurements are specified using CPU time.

� WallClock:
All time measurements are specified using wall clock time (i.e. time passage on a watch or clock).

� Counter:
Timer simply returns 1, regardless of the time elasped. Therefore, time represents the number of
events.

324 CHAPTER 17. DIAGNOSTIC TOOLS

If no timing data is desired, then the use of Counter will minimize the CPU overhead associated
with the statistics collection. If parameter CriticalPath is set to true, then the event critical path is
calculated and displayed as part of the event data summary. The critical path of a simulation is defined
to be the longest sequence of events necessary to complete the simulation.

Table 17.7 shows the data collected from running the car and stop light simulation.

Event name Nproc Ncmtd Tcpu Tcmtd � Tcmtd � Eff MaxProc
Car StopCar 1000 200 1.006 0.261 0.001 0.260 0.2228
Car Go 1207 244 0.009 0.002 1.1e-05 0.282 0.0001
Car Stop 1168 240 0.040 0.009 4.1e-05 0.242 0.0002
Car RadioController 375 37 0.018 0.002 5.7e-05 0.115 0.0002
Car RadioStation 2561 228 0.023 0.002 9.6e-06 0.094 0.0001
StopLight TurnsRed 478 60 0.036 0.004 8.2e-05 0.136 0.0007
StopLight TurnsGreen 493 60 0.037 0.005 9.8e-05 0.157 0.0003
Radio Off 38 3 0.000 3.8e-05 1.2e-05 0.079 1.5e-05
Radio On 244 25 0.006 0.001 4.8e-05 0.194 0.0002
Radio Scan 2474 211 0.087 0.008 4.2e-05 0.101 0.0004
Radio SendFrequency 2572 228 0.036 0.003 1.6e-05 0.101 0.0001
RollBack 36 36 2.052 2.052 0.057 1 0.2180
SpHandler 36 36 0.176 0.176 0.004 1 0.1690
SpCancel 219 45 0.005 0.001 2.8e-05 0.226 0.0002
Totals 12901 1653 3.537 2.532 0.001 0.716 0

Critical path processing time = 1.504
Maximum possible speedup = 1.492

Table 17.7: Event Summary Diagnostic Output Data

Column 1. Event name:
The name of the event.

Column 2. Nproc:
The number of times an event of this type was processed.

Column 3. Ncmtd:
The number of times an event of this type was committed. The difference between this
number and Nproc is the number of times this type of event was rolled back.

Column 4. Tcpu:
Total number of seconds spent processing events of this type including rollbacks. Although
the name includes the phrase “CPU”, the number will only sometimes represent CPU time.
Other times, it may represent wall time or counts, depending on what the value of parameter
Timer is in the statistics section of speedes.par.

Column 5. Tcmtd:
The same as Tcpu, except that Tcmtd does not include time spent on processing that was
later rolled back.

Column 6. � Tcmtd � :
The average time spent committing an event of this type, or, � Tcmtd � � Tcmtd � Ncmtd.
For example, SPEEDES spent a total of � ��� � � � � seconds to commit all of the Radio Off
events. There were three Radio Off events which means � Tcmtd � was one-third of
that figure:

� � � � � � � seconds.

17.4. EVENT USAGE STATISTICS 325

Column 7. Eff:
The efficiency of this event. The efficiency is defined by the quantity Tcmtd � Tcpu. This
value gives a rough estimate of the proportion of useful CPU time spent on this event.

Column 8. MaxProc:
SPEEDES determines which event of this type took the longest to process, regardless of
whether the event was rolled back. This parameter shows the time required to process that
event.

This set of data often returns some of the most valuable information for simulation analysis, while also
being the most difficult information to analyze. Columns Tcpu and Tcmtd give the total time spent
processing this event and the total time spent committing the event, respectively. These may differ if
the simulation is running on multiple nodes or if it is running with external interactions. For events
which always take the same amount of time, Nproc/Ncmtd will be equal to Tcpu/Tcmtd. However,
many, if not most events, will contain different code paths, hence different execution times. Therefore,
in general, Nproc/Ncmtd may not be equal to Tcpu/Tcmtd, since event reexecution after a rollback
can take a different path through the code.

17.4.4 Event Usage Statistics by Simulation Object

As a further refinement, the event data can be saved on a simulation object-by-event basis. To enable this
feature, add section StatsOnSimobjByEventBasis to section statistics in speedes.par.

StatsOnSimobjByEventBasis {
string MyStatData /tmp/output // Directory name for the

// output data.
logical PrintIntervalData T // Interval data enable.

}

Parameter MyStatData specifies the directory name where all of the data files are to be saved. A file
for each simulation object instance will be created, and all of its statistics will be written to these files.
These file names are determined by the simulation object name. If simulation objects have the same
names, then the output results will be concatenated into the same file. Subparameter PrintInter-
valData specifies whether or not interval data is to be output (see Section 17.6.1). In general, this is
an expensive run-time option to enable and may result in unacceptable performance loss.

Table 17.8 shows example output for simulation object S Car MGR 0. The column definitions are
identical to those used in the event data summary (see Section 17.4.3).

Event name Nproc Ncmtd Tcpu Tcmtd � Tcmtd � Eff MaxProc
Car StopCar 173 20 0.03135 0.01384 0.00069 0.44154 0.01212
Car Go 498 61 0.00800 0.00195 3.2e-05 0.24478 0.00025
Car Stop 483 60 0.01611 0.00234 3.9e-05 0.14547 0.00012
Car RadioController 224 10 0.00908 0.00044 4.4e-05 0.04855 6.9e-05
Car RadioStation 1112 49 0.00971 0.00048 9.8e-06 0.04990 4.5e-05
Radio On 125 6 0.00288 0.00027 4.6e-05 0.09717 0.00016
Radio Scan 1063 46 0.03683 0.00173 3.7e-05 0.04705 8.2e-05
Radio SendFrequency 1109 49 0.01548 0.00072 1.4e-05 0.04700 5.0e-05
SpCancel 406 43 0.00880 0.00114 2.6e-05 0.12955 4.1e-05

Table 17.8: Object and Event Data Summary Diagnostic Output Data

326 CHAPTER 17. DIAGNOSTIC TOOLS

17.4.5 Automatic Lazy Re-evaluation Statistics

User designed lazy re-evaluation was discussed in detail in section 15.2.1. SPEEDES has the ability to
automatically determine when an event may be lazily rolled forward and does this through a system of
touch and depend analysis of every event.

Automatic lazy re-evaluation by default is not enabled. Compile time option of -DUSE AUTO LAZY
will enable Automatic lazy re-evaluation. This causes rolled back events to be rolled forward without
reprocessing if the final result of the event does not change. In addition, statistics for these types of
events can be displayed. Once again, the code for capturing the statistics data must be compiled into
the SPEEDES framework with compile time option of -DAUTO LAZY PERF. Once SPEEDES and the
application have been compiled, the following parameters must be added to file speedes.par.

parameters {
string auto_lazy ALL_EVENTS_ENABLED
int auto_lazy_threshold 10

}

statistics {
logical AutoLazyEvaluation T

}

Once automatic lazy re-evaluation has been enabled, SPEEDES begins the automatic lazy re-evaluation
of all events. It does this by recording a depend every time a rollbackable variable or structure is read or
accessed. It also records a depend whenever a rollbackable variable or structure is modified. With this
information, SPEEDES is able to automatically determine whether a straggler touched variables upon
which the current event depended. On the basis of that information, it can determine whether or not to
roll the current event forward or to send anti-messages and reprocess the event.

SPEEDES automatic lazy re-evaluation algorithm is designed to be as efficient as possible, hence it only
records touches when a straggler is processed rather than recording all touches all of the time. It also
disables roll forward if an event has implemented the exchangemethod because these touches cannot
be automatically tracked. Finally, event orderings may be different when automatic lazy re-evaluation
is enabled because the automatic tie-breaking fields, as decribed in Section 6.1, cannot be properly
implemented. However, this should only be an issue for events with identical floating point times.

Figure 17.9 and Figure 17.10 show the automatic lazy statistics output for the car and stop light example.

17.4.
E

V
E

N
T

U
SA

G
E

STA
T

IST
IC

S
327

Event Type Processed Roll Forwards Reprocesses # Events Sched Add Depends Add Touches AutoLazy Evals
Car StopCar 200 0 0 0 1666 600 0
Car Go 244 0 0 0 927 488 0
Car Stop 240 0 0 0 1739 720 0
Car RadioController 37 78 0 156 1462 1184 78
Car RadioStation 228 541 0 0 45 0 541
StopLight TurnsRed 60 198 0 838 440 60 198
StopLight TurnsGreen 60 202 0 854 440 60 202
Radio Off 3 13 0 0 0 3 13
Radio On 25 54 0 54 87 75 54
Radio Scan 211 512 0 1011 2105 1055 512
Radio SendFrequency 228 542 0 542 932 228 542
RollBack 36 0 0 0 220 36 0
SpHandler 36 0 0 0 189 0 0
SpCancel 54 0 9 0 56 63 9
Totals 1662 2140 9 3455 10308 4572 2149

Table 17.9: Automatic Lazy Evaluation Statistics Part I

Event Type � T proc � T depend � T depend � T touch � T touch � T eval � T eval �

Car StopCar 0.00015 0.00161 9.6e-07 0.00167 2.7e-06 0 0
Car Go 2.8e-05 0.00099 1.0e-06 0.00127 2.6e-06 0 0
Car Stop 7.6e-05 0.00168 9.6e-07 0.00225 3.1e-06 0 0
Car RadioController 0.00022 0.00139 9.5e-07 0.00104 8.8e-07 0.00642 8.2e-05
Car RadioStation 1.6e-05 4.4e-05 9.9e-07 0 0 0.00095 1.7e-06
StopLight TurnsRed 9.3e-05 0.00044 1.0e-06 6.0e-05 1.0e-06 0.00040 2.0e-06
StopLight TurnsGreen 9.1e-05 0.00043 9.8e-07 5.7e-05 9.5e-07 0.00043 2.1e-06
Radio Off 2.7e-05 0 0 2.9e-06 9.6e-07 2.2e-05 1.7e-06
Radio On 5.5e-05 8.3e-05 9.5e-07 7.7e-05 1.0e-06 9.7e-05 1.7e-06
Radio Scan 7.8e-05 0.00202 9.6e-07 0.00103 9.8e-07 0.00778 1.5e-05
Radio SendFrequency 3.1e-05 0.00091 9.7e-07 0.00023 1.0e-06 0.00366 6.7e-06
RollBack 0.01682 0.00024 1.0e-06 4.2e-05 1.1e-06 0 0
SpHandler 0.00021 0.00019 1.0e-06 0 0 0 0
SpCancel 4.3e-05 5.5e-05 9.9e-07 0.00018 2.9e-06 0 0
Totals 0.01796 0.01012 9.8e-07 0.00794 1.7e-06 0.01979 9.2e-06

Table 17.10: Automatic Lazy Evaluation Statistics Part II

328 CHAPTER 17. DIAGNOSTIC TOOLS

Column header definitions for Table 17.9.

Column 1. Event Type:
The name of the event.

Column 2. Processed::
The number of times the event type was processed by the simulation. This number includes
reprocesses of a single scheduled event, and should match Nproc from the EventPro-
cessing statistics.

Column 3. Roll Forwards:
The number of times the event type was rolled forward instead of reprocessed following an
automatic lazy re-evaluation.

Column 4. Reprocesses:
The number of times the event type was reprocessed instead of rolled forward following an
automatic lazy re-evaluation.

Column 5. # Events Sched:
The number of events scheduled by events of the event type that have been re-evaluated by
automatic lazy over the course of the simulation. For example, event StopLight Turns-
Red scheduled 838 events. Since this event was only processed 60 times, this event is a good
event to roll forward to prevent all of the event cancelations required for its scheduled events.

Column 6. Add Depends:
The number of automatic lazy dependencies created by processing events of the event type
over the course of the simulation. The average time for adding a dependency is given in
the second half of the automatic lazy statistic table (shown in Table 17.10). In general, the
largest overhead in automatic lazy are the dependency checks. Also, the more dependencies
an event creates, the more likely it is the event will be reprocessed instead of rolled forward.

Column 7. Add Touches:
The number of automatic lazy touches, or modifications, created by processing events of the
event type over the course of the simulation. The average time for adding touches for the
event type is shown in the second half of the automatic lazy statistics table (shown in Ta-
ble 17.10). If the number of touches for a particular event exceeds the auto lazy thres-
hold parameter in speedes.par, events rolled back by that event will be automatically
reprocessed instead of rolled forward. The threshold parameter defaults to 10. The idea is
that, if a straggler event causes too many changes, it is assumed that there is going to be
a match between the straggler’s touches and the dependencies of the events that the strag-
gler rolled back. Therefore, reprocess those events rather than wasting time looking for the
match.

Column 8. AutoLazy Evals:
Automatic lazy evaluations result in either a roll forward or a reprocess. Therefore, this
column is the sum of Roll Forwards and Reprocesses.

Column header definitions for Table 17.10.

Column 1. Event Type:
The name of the event.

17.5. SIMULATION OBJECT STATISTICS 329

Column 2. � T proc � :
The average processing time spent per event of the event type.

Column 3. T depend:
The total time spent adding automatic lazy dependencies while processing events of the
event type.

Column 4. � T depend � :
The average time spent adding automatic lazy dependencies while processing events of the
event type.

Column 5. T touch:
The total time spent adding automatic lazy touches while processing events of the event
type.

Column 6. � T touch � :
The average time spent adding automatic lazy touches while processing events of the event
type.

Column 7. T eval:
The total time spent conducting automatic lazy re-evaluations for events of the event type.

Column 8. � T eval � :
The average time spent conducting automatic lazy re-evaluations for events of the event
type.

17.5 Simulation Object Statistics

17.5.1 Simulation Object Data Summary

Similar to the event data summary diagnostic data (see Section 17.4.3), there is diagnostic data available
for simulation objects. Instead of statistical information about each event type, this feature provides in-
formation about each simulation object type. To enable simulation object diagnostic data, add parameter
ObjectProcessing to the statistics section in speedes.par, as shown below. Table 17.11
shows example output from the car and stop light simulation. Again, the names of the columns are the
same as described in Section 17.4.3.

statistics {
logical ObjectProcessing T // Object processing statistics

}

Object name Nproc Ncmtd Tcpu Tcmtd � Tcmtd � Eff MaxProc
S Car MGR 16326 1461 0.92095 0.10236 7.0e-05 0.11114 0.17468
S StopLight MGR 1107 156 0.31846 0.02893 0.00018 0.09085 0.22019
S RollBack MGR 36 36 1.38484 1.38484 0.03846 1 0.21344
Totals 17469 1653 2.62426 1.51614 0.00091 0.57774 0

Table 17.11: Simulation Object Summary Diagnostic Output Data

330 CHAPTER 17. DIAGNOSTIC TOOLS

17.5.2 Object Placement Information

Using a block or scatter decomposition usually distributes the simulation objects in a relatively random
fashion. However, this randomness makes it hard to identify where the objects are actually located.
SPEEDES will print out this data so that users can identify interdependencies or help track down per-
formance issues.

To enable this output, add a new section to the statistics section of speedes.par called Obj-
NamesByNode that looks like this:

statistics {
ObjNamesByNode {

string fileName ObjectMap
}

}

This will generate files in the form of ObjectMap NODE #, where # is replaced by the node number.
When the example in section 6.4 is run on two nodes with the above addition to speedes.par, it
produces two files called ObjectMap NODE 0 and ObjectMap NODE 1. These files are shown in
Figures 17.5 and 17.6, respectively.

Only objects with names will be printed
Object manager is S_Car_MGR
Object Name:"S_Car_MGR 0" Global Id:0 Object Handle:{0,0,0} Kindid:0
Object Name:"S_Car_MGR 2" Global Id:2 Object Handle:{0,0,1} Kindid:2

Object manager is S_StopLight_MGR
Object Name:"S_StopLight_MGR 0" Global Id:4 Object Handle:{0,1,0}

Kindid:0

Figure 17.5: File ObjectMap NODE 0

Only objects with names will be printed
Object manager is S_Car_MGR
Object Name:"S_Car_MGR 1" Global Id:1 Object Handle:{1,0,0} Kindid:1
Object Name:"S_Car_MGR 3" Global Id:3 Object Handle:{1,0,1} Kindid:3

Object manager is S_StopLight_MGR

Figure 17.6: File ObjectMap NODE 1

Some unnecessary white space was eliminated in the above text in order for the data to fit within the
figure. This output shows that the cars with kind ids of 0 and 2 were created on node 0 while the cars
with kind ids of 1 and 3 were created on node 1. Finally, the only stoplight was created on node 0.

17.6 Interval Statistics

17.6.1 Event and Object Statistics

Interval event and object processing statistics can be displayed as the simulation is executing by adding
section IntervalOutputTime to section statistics in speedes.par, as shown below:

17.6. INTERVAL STATISTICS 331

statistics {
IntervalOutputTime {

float SimTime 10.0 // Interval output time
OutputFileName {

string StatisticsFileName intervalStats // Result filename
}

}
}

This section indicates that the data should be collected approximately every
� ����� seconds. Section

OutputFileName is an optional section. If it is present, the output of the simulation will be saved
in the file specified by StatisticsFileName, which in this case is intervalStats. If it is not
present, then the output goes to stdout. This output contains all the information described in Section 17.4
but only over the previous interval of time. This data can then be used to profile the behavior of specific
events or objects over the life of the simulation. For example, suppose an event’s average CPU time is
less than 1 milliseconds (ms) over a 2 hour simulation run. However, this event may spike to over 100
ms or even 1000 ms at given times. This sort of behavior is masked by the global statistics, but becomes
very visable when interval statistics are examined.

The overhead for displaying these statistics is usually quite small (usually less than a few milliseconds),
and should not prohibit system analysts from using them. The tabulation of the data displayed occurs
outside of the event processing cycle. Hence, these data point calculations do not have an affect on the
displayed data.

17.6.2 Rollback Statistics

Information about all events which rollback other events can be saved off to output files by setting
parameter RollbackBreakdownByEventType in section statistics in speedes.par, as
shown below:

statistics {
RollbackBreakdownByEventType {

float OutputIntervalSimtime 100.0 // Minimum simulation time
// interval

int WidthOfPrintedMatrix 80 // Number of columns in printed
// table

OutFileName {
string RollbackBreakdownFileName rbTable // Base filename

}
}

}

Parameter OutputIntervalSimtime specifies the time interval at which the data will be output to
the data file whose base name is specified by RollbackBreakdownFileName. This base name is
appended by the node number to create the actual file name. Table 17.12 shows the output for the car
and stop light simulation for node 0 at one time interval.

332 CHAPTER 17. DIAGNOSTIC TOOLS

Rolled Back Event Id
Event Name Event Id 0 1 2 3 4 7 8 9 10 21

Car StopCar 0 0 0 0 0 0 0 0 0 0 0
Car Go 1 9 12 14 2 18 0 2 16 18 4
Car Stop 2 0 0 0 13 81 1 8 78 81 4
Car RadioController 3 0 0 0 0 0 0 0 0 0 0
Car RadioStation 4 0 0 0 0 0 0 0 0 0 0
Radio Off 7 0 0 0 0 0 0 0 0 0 0
Radio On 8 0 0 0 0 0 0 0 0 0 0
Radio Scan 9 0 0 0 0 0 0 0 0 0 0
Radio SendFrequency 10 0 0 0 0 0 0 0 0 0 0
SpHandler 20 0 2 0 0 0 0 0 0 0 0
SpCancel 21 0 0 0 0 0 0 0 0 0 0

Table 17.12: Event Rollback Diagnostic Output Data

Each row specifies the event by name with its respective event integer id in the Event Id column.
Each number at a specific column location specifies how many times the event in that row rolled back
the event listed at the top of the column. For example, the quantity of 13 in row Car Stop specifies
that event Car Stop rolled the event whose id is 3 (i.e. Car RadioController), back 13 times.

Part VII

Appendix

333

Appendix A

Parallel Discrete-Event Simulation
Technical Reference

A.1 What is Discrete-Event Simulation

Discrete-event simulation is a very powerful technique for modeling the intricate interactions of complex
systems.1 The fundamental building blocks of discrete-event simulation are events. Once a discrete-
event simulation has been initialized, all application-specific calculations evolve over time through the
processing of time-stamped events that occur at discrete points in simulated time2.

Each event is assigned a logical time stamp that determines when it is processed. To preserve causality,
events are processed in ascending logical time order. An event queue data structure manages the correct
event processing order in logical time. Events can potentially do two things:

� Modify the state of the system.

� Schedule new events for the present, or for the future, but not in the past.

One of the benefits of discrete-event simulation over time-stepped simulation 3 is that updates can be
scheduled to occur only when necessary. This capability allows simulation developers to optimize their
run-time performance by carefully coordinating when changes occur in the modeled system. Discrete-
event simulation decouples complex models by allowing them to evolve independently over simulated
time. Discrete-event simulation therefore supports model behavior in a more realistic and natural man-
ner than time-stepped simulation.

A.2 Sequential Discrete-Event Simulation (SDES)

Sequential Discrete-Event Simulation (SDES) simply means that events are processed sequentially on
a single processor. This is in contrast to PDES where events are processed in parallel on multiple

1A system may be formally composed of sub-systems, which can further be composed into sub-sub-systems, etc., and
models that interact in a coordinated manner to represent the physical system. Another way of saying this is that systems can
be hierarchical, but they always decompose into models that represent the physical system.

2Simulation time and logical time are synonyms. These terms are equally used to specify the simulated time of an event.
3Time-stepped simulations normally update the entire state of the modeled system at regular time intervals. Time advances

using a for-next loop with a constant step. In contrast, discrete-event simulations decouple processing through the use of
irregularly time-stamped events that only updates what needs to be updated when it needs to be updated.

335

336 APPENDIX A. PARALLEL DISCRETE-EVENT SIMULATION TECHNICAL REFERENCE

processors. The normal processing flow of a SDES is shown below in Figure A.1.

Pending Event(tPending Event(t11))

Pending Event(tPending Event(t22))

Pending Event(Pending Event(ttnn))

State

Current Event(tCurrent Event(t00))

Event
Queue

2. Process 3. May Modify

4. May
Schedule

1. Get Next Event

Figure A.1: Processing Flow of a Discrete-Event Simulation

All pending events are managed in an event queue. In step 1, the event with the earliest time stamp is
removed from the event queue. The current simulation time of the system is advanced to this event’s
time value. In step 2, the event is processed. Steps 3 and 4 flow from the processing of the event. Events
may modify the state of the system and they may schedule new events for the present or for future times.
These four steps are continually repeated until the simulation either reaches its end time, or until some
other termination condition is reached.

The event with the earliest time stamp is continually pulled out of the event queue and processed. This
continues until either the simulation reaches its end time or until some other termination condition is
reached. As the current event is processed, it may modify the state of the system and/or it may schedule
new events for the present or for the future.

In SDES, events are free to access and/or modify any of the system’s state variables. This is not normally
allowed in PDES because the system’s state is distributed across multiple processors. Furthermore, even
different subsystems or models on the same processor are not normally allowed to access and/or modify
each other’s state because they may be at different simulation times.

A.3 SDES and PDES Trade-Offs

There are several obvious reasons why large simulation applications might consider using the PDES
paradigm. At the top of the list is computational speed-up. Computational speed-up is defined to be the
execution completion time that an application takes to run on one processor divided by the same time it
takes to run on N processors. In other words, speed-up = T � /T � . The parallel processing efficiency is
defined to be the computational speed-up divided by the number of processors. In other words, efficiency
= speed-up/N.

However, it is important to understand that SDES are much simpler to implement than PDES. This
equally applies to the supporting PDES infrastructure and to the actual application models representing
the simulated system. There is no guarantee that every PDES application will achieve perfect speed-
up. Some of the technical challenges involved in supporting PDES are listed in Table A.1. SPEEDES
addresses all of the technical issues listed in Table A.1, while providing a rich object-oriented modeling
framework for users to develop their application models. Some of the other potential benefits of PDES

A.4. PDES CHALLENGES 337

include:

� Faster execution run times.

� Larger address spaces.

� More disciplined object-oriented approach.

� Interoperatability with other distributed simulations.

Issue SDES PDES
System State Events can access or mod-

ify the entire state of the
system.

Events can only access or modify the state of a single sim-
ulation object. This is because simulation objects are dis-
tributed across multiple processors and may also be at dif-
ferent times.

Object Interactions Any simulation object, at
anytime, can interact with
any other simulation ob-
ject without a performance
penalty.

Simulation objects are either limited by how tightly they
can interact in time, or they must use rollback-based tech-
niques to recover from time accidents caused by straggler
messages generated by events on other processors.

Communication Events are scheduled lo-
cally.

Events scheduled for simulation objects on remote proces-
sors must send messages to be posted.

Synchronization Simple next event process-
ing approach.

Must coordinate event processing with messages received
from other nodes while coordinating the advancement of
global time.

Flow Control None. Must make sure that messages are routed through the net-
work without excessive delays. Must also provide stabil-
ity concerning synchronization messages, memory usage,
and numbers of rollbacks.

Table A.1: SDES vs. PDES

A.4 PDES Challenges

The fundamental challenge of PDES is to efficiently process events concurrently on multiple processors,
while preserving the overall causality of the system as it advances in simulated time. Each node must
continually address the fundamental problem,

Is it safe to process my next pending event, or will I receive an event message from another node with
an earlier time stamp that must be processed first?

In the most general situation, where any event can schedule an event for any other simulation object
at any present or future time, addressing this problem may end up serializing the entire simulation if
conservative techniques are used. The conservative approach encompasses any strategy that processes
events only when it can be guaranteed that no straggler messages will arrive with an earlier time stamp.
When considering all of the pending events waiting to be processed across all of the processors, only
the event with the smallest time stamp can be safely processed. This is because it is still possible for
that event to generate a new event with an earlier time stamp than all of the other pending events in the
system.

Figure A.2 illustrates this problem. Imagine that two nodes are processing events without anytime
synchronization. Almost certainly, one of the nodes will advance ahead of the other in simulated time.

338 APPENDIX A. PARALLEL DISCRETE-EVENT SIMULATION TECHNICAL REFERENCE

Imagine now that an event on the slower node schedules an event for the faster node in its logical past.
This would violate causality since events must be processed in their correct ascending time order.

The challenge of PDES is to efficiently process events concurrently while preserving the overall causal-
ity of the simulated system. Two approaches are commonly used to solve this problem. The conservative
approach only processes events when there is no chance of receiving a straggler message. The optimistic
approach uses rollback techniques to undo the damage done when processing events out of order.

Erroneously Processed
Events

Erroneously ProcessedErroneously Processed
EventsEvents

Last Processed EventLast Processed Event

Node 0Node 0

Node 1Node 1

Last Processed EventLast Processed EventNew EventNew Event
ScheduledScheduled

SimulationSimulation
TimeTime

Unprocessed EventsUnprocessed Events

Unprocessed EventsUnprocessed Events

Conservative approach: Never allows events to be processed if it is
possible for “ straggler” messages to arrive from other nodes

Optimistic approach: Fixes s traggler message problem by rolli ng back s tate
and canceling generated events

Conservative approach:Conservative approach: Never allows events to be processed if it isNever allows events to be processed if it is
possible for “ straggler” messages to arrive from other nodespossible for “ straggler” messages to arrive from other nodes

Optimistic approach:Optimistic approach: Fixes s traggler message problem by rolli ng back s tateFixes s traggler message problem by rolli ng back s tate
and canceling generated eventsand canceling generated events

Figure A.2: Synchronization in Optimistic PDES.

A.5 Conservative Time Management

There are basically only two ways to synchronize PDES. The first approach is to ensure that each node
never processes an event when it is possible to receive an event with an earlier time stamp from another
node. This general strategy is often called the conservative approach. Conservative approaches place
limitations on how simulated objects interact. Some of these limitations are described in Table A.2.

A.6. OPTIMISTIC TIME MANAGEMENT 339

Technique Limitation
Lookahead This approach limits how tightly simulation objects on different nodes are allowed to

interact in simulation time. Assuming a lookahead value, L, a simulation object at time,
T, would not be allowed to schedule an event for another simulation object on another
node any earlier than time T+L. This limitation can degrade the fidelity of the simulation.
Trying to work around this limitation by predicting when events occur only complicates
the application software and still does not fix the problem when such predictions are
wrong.

Topology This approach limits which simulation objects can interact with which other simulation
objects by defining a rigid interaction topology between them. A simulation object can
only schedule an event for another simulation object if it is connected to it in the topology
graph. For many applications, this constraint does not impose any real limitations. How-
ever, when virtually any simulation object can interact with any other simulation object,
this constraint is unacceptable.

FIFO Interactions The First In First Out (FIFO) technique imposes a rule for ordering event scheduling
between simulation objects. All events scheduled by one simulation object for another
simulation object must follow in ascending order as time evolves. An example of how
this rule can be violated is if a simulation object, A, at time, 100, schedules an event for
another object, B, at time, 200. Then at time 110, object A schedules another event for
object B at time, 150. In this example, the event scheduling streams are crossed, thus
violating the FIFO constraint.

Table A.2: Frequent Limitations Imposed by Conservative Techniques

A.6 Optimistic Time Management

A second, and more aggressive, approach allows nodes to process events optimistically, but then relies
on a rollback mechanism to undo any erroneously processed events as stragglers are received. This is
called the optimistic approach. Rolling back an event requires an advanced simulation engine that is
capable of undoing changes made to state variables, while also retracting any events that were sched-
uled. SPEEDES applications handle this through use the built-in rollbackable data types (i.e., atomic
data types, container classes, and dynamic memory operations) to implement their state in a rollback-
able manner. SPEEDES then transparently performs rollback operations for applications as straggler
messages arrive from other nodes.

When a SPEEDES node receives a straggler message, it does not rollback all of the locally processed
events that have a greater time value. Instead, SPEEDES only rolls back the necessary events that were
processed by the target simulation object. This is shown in Figure A.3. By limiting rollbacks in this
manner, more parallelism is achieved. This results in fewer rollbacks and better overall parallel perfor-
mance. However, it does mean that events must be associated with one, and only one, simulation object.
Accessing and/or modifying the state variables of another simulation object in an event is forbidden.

To first order, rollbacks only affect the target simulation object. Notice in Figure A.3 that even though
Node 1 receives a straggler message in its past from Node 0, only Object 7 rolls back its one event that
was processed out of time order. Of course, the event rolled back might induce further rollbacks. Also,
it is possible that when this straggler event is processed, it may generate more events that cause further
rollbacks, but this is also a second order effect. In this figure, GVT stands for Global Virtual Time, and
LVT stands for Local Virtual Time. GVT is globally advanced by all of the nodes in a periodic manner.
LVT is locally known by each of the nodes and can sometimes go backwards in time.

340 APPENDIX A. PARALLEL DISCRETE-EVENT SIMULATION TECHNICAL REFERENCE

Obj 0Obj 0
Obj 1Obj 1
Obj 2Obj 2
Obj 3Obj 3
Obj 4Obj 4

Obj 5Obj 5
Obj 6Obj 6
Obj 7Obj 7
Obj 8Obj 8
Obj 9Obj 9

SimulationSimulation
TimeTime

Node 0Node 0

Node 1Node 1

GVTGVT

LVTLVT11

LVTLVT00

Straggler causesStraggler causes
one rollbackone rollback

Figure A.3: Stragglers only Rollback a Single Object Rather Than Whole Node

Figure A.4 shows how rollbacks are actually implemented. When a simulation object receives a straggler
message, only the optimistically processed events with time stamps greater than the incoming straggler
are rolled back Events are always rolled back one at a time and in reverse order. This is very similar to
commercial software applications that provide undo capabilities. By undoing a series of actions, users
can restore their work to earlier states. State variables affected by each event are restored to their original
values and then all generated events are retracted. SPEEDES automatically retracts locally generated
events directly through pointers and uses anti-messages to cancel events generated for simulation objects
on other nodes.

If those events scheduled other events, then those scheduled events are retracted either directly for lo-
cally scheduled events, or by sending anti-messages to cancel events that were scheduled for simulation
objects residing on other nodes. It is possible for a simulation to receive an anti-message for an event
that it has already processed. In this case, more rollbacks may be generated, which may generate more
anti-messages in a cascading manner. SPEEDES provides flow control over optimism and message-
sending risk to provide stability and eliminate rollback explosions.

Anti-messages may induce further rollbacks, which in turn may generate even more rollbacks, etc. Such
cascading rollbacks may become unstable if flow control is not provided by the simulation infrastructure.
SPEEDES provides this flow control by limiting optimism and message-sending risk.

A.7. TIME WARP AND BREATHING TIME BUCKETS 341

Processed Events Unprocessed Events
Simulation ObjectSimulation Object

Processed Events Unprocessed Events
Simulation ObjectSimulation Object

Events Rolled BackEvents Rolled Back

Straggler MessageStraggler Message

AntimessagesAntimessages

Events Rolled BackEvents Rolled Back

AntimessagesAntimessages

AntimessageAntimessage

EventEvent
CancelledCancelled

Figure A.4: Rolling Back a Simulation Object

A.7 Time Warp and Breathing Time Buckets

The study of optimistic time management algorithms began in 1984. The first of these algorithms,
called Time Warp, showed great promise. However, for real-world kinds of problems, the Time Warp
algorithm often showed signs of instability due to excessive overheads and poor workload imbalances.

In 1990, SPEEDES began by investigating how optimistic event processing could be accomplished
without requiring anti-messages. The Breathing Time Buckets algorithm processed events optimisti-
cally, but only released off-node messages when it was safe to do so. The key to the Breathing Time
Buckets algorithm is the Event Horizon, shown in Figure A.5.

In Figure A.5, three event horizon cycles are shown. Each cycle processes its pending events while
collecting newly generated events in an auxiliary event queue. When the next event to be processed is
in the auxiliary event queue, the auxiliary event queue is sorted, merged into the primary event queue
and then the next cycle begins. Cycle 3 shows that, even when an event schedules a new event for the
same time as itself, the event horizon algorithm always processes at least one event. Thus, there is no
way for a deadlock situation to occur when processing events in cycles defined by the event horizon.

342 APPENDIX A. PARALLEL DISCRETE-EVENT SIMULATION TECHNICAL REFERENCE

Cycle 3Cycle 3

Generated EventsGenerated Events

Pending EventsPending Events

SimulationSimulation
TimeTime

Pending EventsPending Events

Generated EventsGenerated Events

SimulationSimulation
TimeTime

Cycle 1Cycle 1

SimulationSimulation
TimeTime

Pending EventsPending Events

Generated EventsGenerated Events

Cycle 2Cycle 2

Figure A.5: The Event Horizon

The event horizon is a concept that can first be understood without referring to parallel processing.
Imagine first that all pending events are mapped into a single event queue. As each event is processed,
it may generate zero or more new events with arbitrary time stamps. To maintain complete generality, it
is assumed that the simulation engine has no way to predict what each event will do until it is processed.
All newly generated events are maintained in a special auxiliary event queue. At some point in time,
the next event to be processed will be in the auxiliary event queue. This point in time is called the event
horizon.

One of the key features of the event horizon is that, by definition, events in a given cycle are not disturbed
by other events generated in the same cycle. If the events were distributed to multiple processors, and
if the event horizon was known before hand, it would be possible to process events in parallel without
ever receiving a straggler message. However, the event horizon is not determined until the events in
the current cycle are actually processed. The Breathing Time Buckets algorithm resolved this dilemma
by merging optimistic processing with risk-free messaging sending. The basic algorithm is shown in
Figure A.6.

Figure A.6 shows each node starting the cycle using the same global time value. Events are then pro-
cessed optimistically without releasing any of their generated messages. Each node determines its local
event horizon using its own set of pending events and generated messages. The global event horizon is
the minimum of all local event horizons. Once the global event horizon is determined, the Breathing
Time Buckets algorithm safely releases all messages generated by events with time stamps less than or
equal to that value. As shown for Node 0, it is still possible for events to be rolled back by stragglers.
When this occurs, state information is restored and unsent messages are thrown away. Anti-messages
are never necessary because messages are only released when events are committed.

A.7. TIME WARP AND BREATHING TIME BUCKETS 343

Local EventLocal Event

Horizon 0Horizon 0

Local EventLocal Event

Horizon 1Horizon 1
EventEvent

HorizonHorizon

Start OfStart Of
CycleCycle

Node 0Node 0
EventsEvents

Node 1Node 1
EventsEvents

SimulationSimulation
TimeTime

Generated
Messages

Generated
Messages

Throw Away MessagesThrow Away Messages

if Necessaryif Necessary

Figure A.6: The Breathing Time Buckets Algorithm Processes in Event Horizon Cycles

Breathing Time Buckets starts each cycle by processing events optimistically without releasing mes-
sages. Each node determines its local event horizon by tracking the time value of its earliest unsent
message. Locally scheduled events do not count in the event horizon determination. This greatly ex-
tends the number of events processed in each event horizon cycle without causing excessive overheads.
This value is called T ����� . When the node’s next event has a time value greater than T ����� , the node
defines its local event horizon to be T ����� . The true global event horizon is the minimum of each node’s
local event horizon.

Once a node crosses its local event horizon, it then broadcasts its local event horizon time to the other
nodes. This may cause other nodes to realize that they too have crossed the event horizon. If another
node later determines that its local event horizon has an earlier time value, then it, too, broadcasts its
local event horizon to the other nodes. SPEEDES provides flow control by staggering these broadcasts
to ensure scalability.4

Once all of the nodes have crossed the event horizon, they simultaneously break out of their optimistic
event processing and begin to safely release all unsent messages generated by events with time tags less
than or equal to the event horizon. This step is where events are committed. A coordinated message-
sending algorithm ensures that each node receives all of its incoming messages before beginning the
next cycle. Rollbacks may occur as straggler messages arrive, but their effect on rollbacks is limited

4The time between asynchronous broadcasts is automatically staggered by SPEEDES and can be set by users. Tasb
asynchronous broadcasts can also be disabled if desired.

344 APPENDIX A. PARALLEL DISCRETE-EVENT SIMULATION TECHNICAL REFERENCE

locally. Events that are rolled back simply restore their state and then discard their unsent messages.

The one drawback of Breathing Time Buckets is the possibility that not enough events will be processed
on the average in each cycle to remain efficient. The Breathing Time Buckets algorithm can suffer from
the problem of too many synchronizations (see cycle 3 in Figure A.5). Keep in mind, however, that
Breathing Time Buckets will always process at least one event, so there is no chance for deadlocks to
occur. Like Time Warp, Breathing Time Buckets places no event scheduling constraints on the program-
mer (e.g. global lookahead or limited object interactions), but its performance will be poor if very few
events are processed on the average per cycle. Simulations that frequently model interactions between
objects on different nodes with very tight time scales exacerbate this problem.

A.8 Breathing Time Warp and Flow Control

Time Warp and Breathing Time Buckets are limited in their ability to support general-purpose PDES
applications. However, these two approaches actually suffer from opposite problems.

� Time Warp suffers from cascading anti-message explosions that can easily become unstable. In
other words, Time Warp sends its messages in a manner that is too risky.

� Breathing Time Buckets suffers from holding back too many of its messages, which can result
in too many synchronizations. In other words, Breathing Time Buckets does not provide enough
risk in its message sending.

The obvious solution to the inherent problems of each approach is to combine their strengths into one
algorithm that tunes the message-sending risk. This is precisely what BTW does.

BTW starts out each cycle by processing events using the Time Warp approach. In other words, mes-
sages are sent with risk5. Each node starts holding back its messages once the number of optimistically
processed (but uncommitted) events gets beyond N � ����� . At this point, the Breathing Time Buckets al-
gorithm kicks in. Once GVT is updated, messages from events with time stamps less than or equal to
GVT are released. The basic BTW event processing cycle is shown in Figure A.7.

Figure A.7 shows the cycle starting out with each node processing events with message-sending risk
using the Time Warp algorithm. If any these events are rolled back, anti-messages may be required.
After a node optimistically processes Nrisk (configurable in speedes.par) events, it switches over
to the Breathing Time Buckets algorithm where messages are held back. Here, events that are rolled
back do not need to send anti-messages, since their messages were never released. At some point in
time, it is determined to update GVT. Once GVT is updated, the Commit phase releases all unsent
messages, frees state-saving resources, and is permitted to send data to the outside world.

5This means that anti-messages are required to retract messages that were sent with risk if the event is rolled back.

A.8. BREATHING TIME WARP AND FLOW CONTROL 345

Breathing Time Warp example with four nodes
–– Time WarpTime Warp:: Messages released as events are processedMessages released as events are processed

–– Breathing Time BucketsBreathing Time Buckets:: Messages held backMessages held back

–– GVTGVT:: Flush messages out of network while processing eventsFlush messages out of network while processing events

–– CommitCommit:: Release messages when committing eventsRelease messages when committing events

Time WarpTime Warp

Time WarpTime Warp

Time WarpTime Warp

Time WarpTime Warp

Breathing Time BucketsBreathing Time Buckets

Breathing Time BucketsBreathing Time Buckets

Breathing Time BucketsBreathing Time Buckets

Breathing Time BucketsBreathing Time Buckets

GVTGVT

GVTGVT

GVTGVT

GVTGVT

CommitCommit

CommitCommit

CommitCommit

CommitCommit

Wall TimeWall Time

Node 0

Node 1

Node 2

Node 3

Figure A.7: The Breathing Time Warp GVT Cycle

A number of conditions may cause a GVT update. If any of the following conditions occur, BTW breaks
out of its event processing and updates GVT.

� A specified amount of wall time,
�������

elapses (Tgvt in speedes.par).

� Each node has � ����� processed, but uncommitted events.

� The event horizon is crossed by all of the nodes

� There are no more events to process.

One common question raised by many SPEEDES users is, “what is the optimal setting for ��� �
	�� ”?
There are two ways to understand the effect of �� �
	�� on the BTW algorithm.

� By allowing ��� �
	�� events to be processed before starting the Breathing Time Buckets algorithm,
the problem of too many synchronizations is solved. At least ��� �
	�� events are processed during
each cycle. Even though at least events are processed during each cycle, this does not guarantee
that ��� �
	�� events are committed during each cycle. Rollbacks may limit the actual number of
events committed. Notice that if ��� ��	�� is set to zero, BTW reduces to Breathing Time Buckets.

� By providing a mechanism to reduce the message sending risk in Time Warp, cascading anti-
messages are effectively limited. ��� �
	�� prevents Time Warp from becoming unstable. Notice that
if ��� ��	�� is set to infinity, BTW reduces to Time Warp.

In most instances, ��� �
	�� can be set somewhere between 50 to 100 without losing significant performance
due to excessive event horizon synchronizations. On the other hand, ��� ��	�� can usually be set as high as
2000 without losing performance due to cascading anti-message explosions. This bathtub effect means
that users are not required to fine-tune their settings of �� �
	�� . In other words, a wide range of settings
will work fine.

346 APPENDIX A. PARALLEL DISCRETE-EVENT SIMULATION TECHNICAL REFERENCE

As applications use more processing nodes, the potential for rollbacks increases. For example, the same
simulation running on 4 nodes almost always experiences fewer rollbacks than when executing on 16
nodes. This means that the value for � � �
	�� may need to be decreased to throttle anti-messages when
executing on large numbers of nodes. At some point, �� ��	�� may be so low that it impacts performance.
In such cases, the application is most likely approaching its maximum speed-up, which is dictated by
the critical path of its run-time execution.

Appendix B

The Conservative Time Management
Algorithm

The conservative time management algorithm offers a simpler, non-patented alternative to the Breathing
Time Warp algorithm. The term ”conservative” is in contrast to ”optimistic.” The essential difference
between the two is that optimistic algorithms process events without certainty that they are valid (and
therefore they sometimes need to roll back events), while conservative algorithms process only valid
events, thereby never needing to roll them back. The advantage to the user is that he needs not write
rollbackable simulations. The disadvantage to the user is that he must specify a minimum lookahead
value (float MinLookahead in the parameters section of the speedes.par file), represent-
ing the simulation time interval between the current event’s simulation time and the simulation time at
which events are scheduled by the current event.

B.1 Setting the Appropriate Parameters in the speedes.par File

Running SPEEDES using the conservative time management algorithm requires that two parameters are
set in the parameters section of the speedes.parfile, namely modemode and MinLookahead.
The mode parameter must be set to CONSERVATIVE, while the MinLookahead parameter must be
set to a non-zero, positive floating point number, representing the minimum time interval (defined as
the ”lookahead”) between the current event and any events that it schedules (with the exception of self-
scheduled events, which do not need a minimum lookahead). While a non-zero minimum lookahead
parameter is required when running in conservative mode, it can also be specified in any other time
management mode as well.

If and when events are scheduled in the past or with less lookahead than the minimum lookahead re-
quired, SPEEDES automatically increases the schedule time so as to equal the minimum lookahead
required. To determine whether to be warned of these automatic corrections, an optional parame-
ter, LookaheadAutoCorrectDebugmay be set in the DebugOutputection of speedes.par.
The default setting for LookaheadAutoCorrectDebug, NON TERMINAL WARNING, specifies
SPEEDES to print a warning message like the following:

---| WARNING: Event scheduled with insufficient lookahead
---| Scheduler Event ID = 0
---| Scheduler Event Time = {2, 0, 0, 2, 0}
---| Scheduled Event ID = 0

347

348 APPENDIX B. THE CONSERVATIVE TIME MANAGEMENT ALGORITHM

---| Scheduled Event Time = {3, 0, 0, 3, 2}
---| Lookahead Requirement = 2
---| Corrected Scheduled Event Time = {4, 0, 0, 3, 2}

When an event is scheduled in the past, the message looks similar, except that the first line says ---|
WARNING: Event scheduled in the past.

If you would prefer to have the simulation terminate whenever there is insufficient lookahead, set
LookaheadAutoCorrectDebug to TERMINAL ERROR. In this case, SPEEDES prints a message
like the following just before terminating:

---| TERMINAL ERROR: Event scheduled with insufficient lookahead
---| Scheduler Event ID = 0
---| Scheduler Event Time = {2, 0, 0, 2, 0}
---| Scheduled Event ID = 0
---| Scheduled Event Time = {3, 0, 0, 3, 2}
---| Lookahead Requirement = 2

Finally, if you would prefer SPEEDES to just correct schedule times as needed, continuing without
printing warnings at all, set LookaheadAutoCorrectDebug to NONE.

B.2 Minimum Lookahead Global Functions

SpGlobalFunctions.H provides two useful functions when using minimum lookahead. First, to
obtain what the minimum lookahead time is (as specified in speedes.par), call SpGetMinLooka-
head(). To obtain the simulation time equal to the current time (including the user priority fields) plus
the minimum lookahead, call SpGetMinLookaheadTime(). These functions are useful when writ-
ing generic events that may be used with any minimum lookahead setting, since they relieve the need to
hard-code the lookahead used when scheduling events.

B.3 Proxy Updates, Undirected Handlers, and DDM

Proxies updates are always delivered with minimum lookahead with respect to when the attribute they
reflect was modified. Undirected handlers, like all other non-self-scheduled events, must be scheduled
with minimum lookahead, and all handler will be invoked at that time (including handlers invoked on
the same simulation object that scheduled them). The lookahead added for all DDM events is undefined.

B.4 Special Event Plug-in Calls (Advanced Topic)

When requiring a non-zero minimum lookahead, there are two alternatives to plugging in events us-
ing PLUG IN EVENT. The first alternative, PLUG IN EVENT WITH LOOKAHEAD BYPASS, can be
employed for events that are scheduled locally (meaning on the same node). Such events will not be
required to be scheduled with minimum lookahead. This feature takes advantage of the fact that the con-
servative algorithm does not technically require minimum lookahead for local events, but only for events
that are sent from one node to another. The reason SPEEDES normally requires minimum lookahead
even for local events is for the sake of consistency, and so that runs will be repeatable when changing

B.4. SPECIAL EVENT PLUG-IN CALLS (ADVANCED TOPIC) 349

the number of nodes used (and thus the node placement of simulation objects). This plug-in call is not
recommended unless one or more of the following are true: 1) the simulation does not require being
repeatable when changing the number of nodes, 2) the event is always scheduled between simulation
objects that are guaranteed to always be on the same node, guaranteeing repeatability (by means of
the node placement feature, for instance), or 3) the event is scheduled on a simulation object which is
always local, regardless of the number of nodes, guaranteeing repeatability.

The second alternative, PLUG IN EVENT WITH LOOKAHEAD ADJUSTMENT can be used when an
event is expected to be scheduled without enough lookahead, and the correction that SPEEDES makes
is considered expected behavior. This plug-in call forces there to be no error or warning whenever
SPEEDES makes the needed lookahead corrections, regardless of the setting for LookaheadAuto-
CorrectDebug in speedes.par. However, if possible, it is preferable to schedule such events
with a schedule time obtained with SpGetMinLookaheadTime(). This way, they are guaranteed
never to need a lookahead adjustment.

350 APPENDIX B. THE CONSERVATIVE TIME MANAGEMENT ALGORITHM

Appendix C

SPEEDES Parameter File Configuration

The speedes.par file configures many of the run-time parameters for SPEEDES. The file itself,
along with all of the sections and parameters contained in the file, are optional. Except where noted, the
default values are presented.

C.1 High Level SPEEDES Configuration (section parameters)

The parameters section controls the general behavior of the simulation.

parameters {
string mode BREATHING_TIME_WARP
int n_nodes 1
float tend 3600.0
float lookahead 0.0
logical scaled_time F
float scaler 1.0
logical statistics T
logical lazy F
float spin 0.0
logical optimize_sequential T
string auto_lazy NO_OVERRIDE
int auto_lazy_threshold 10

}

Parameter Name Description
mode This string defines the time management mode for the simulation. It can take

one of the following values: CONSERVATIVE, BREATHING TIME BUCKETS,
TIME WARP, or BREATHING TIME WARP.

n nodes The number of nodes to be used. It can be overridden by the command line option -n
where # is the number of nodes.

tend The simulation end time.
lookahead If the value of mode is CONSERVATIVE, all events that are scheduled off-node will

be scheduled at least lookahead seconds into the future. If this is violated, the time
of the event is moved out to lookahead seconds. This parameter is required only if
the value of mode is CONSERVATIVE.

351

352 APPENDIX C. SPEEDES PARAMETER FILE CONFIGURATION

Parameter Name Description
scaled time If set to T, the simulation will run at the rate specified by the value of scaler (next

definition).
scaler This parameter, which is required only if scaled time is set to T, specifies the

multiple of wall clock time to which the rate of the simulation will be locked. If
unable to maintain the specified rate, the simulation will not attempt to catch up.

statistics If set to T, statistics, as specified in the statistics section (see Section C.4), will
be printed on the command line. If set to F, only a minimal set of statistics will be
printed, in particular, cycle number, wall clock time, and GVT.

lazy If set to T, lazy evaluation of events will be determined on an event-by-event basis.
Otherwise, no lazy evaluation is performed.

spin Setting this parameter causes SPEEDES to spin in a busy loop for the specified number
of seconds after every event.

optimize sequential If set to T, a specialized sequential algorithm is used when running on one node. Note:
All external interactions may behave incorrectly if this flag is set to T.

auto lazy The string value of this parameter determines the automatic lazy re-evaluation mode
for events. It can take any of the values NO OVERRIDE, ALL EVENTS ENABLED, or
ALL EVENTS DISABLED; corresponding to “use default settings”, “automatic lazy
enabled for all events”, or “automatic lazy disabled for all events”, respectively. Au-
tomatic lazy re-evaluation is not enabled by default in SPEEDES. It must be compiled
in with the compile time option USE AUTO LAZY.

auto lazy threshold Adds upper limits on the number of automatic lazy touches recorded automatic lazy
re-evaluation diagnostic output. Automatic lazy re-evaluation diagnostics is not en-
abled by default in SPEEDES. It must be compiled in with the compile time option of
USE AUTO LAZY.

Table C.1: The “parameters” section of the speedes.par file

C.2 GVT Configuration (section gvt parameters)

The gvt parameters section controls the behavior of the GVT update algorithm.

gvt_parameters {
float Tgvt 1.0
float Tasb 1.0
int Ngvt 100
int Nrisk 500
int Nopt 1000
int MaxGvtUpdateCycles INT_MAX

}

Parameter Name Description
Tgvt This parameter specifies the time interval for GVT updates (if possible). For example,

for a two node simulation with Tgvt set to 1.0, one node may ask the other node
for a GVT update once 1.0 seconds has elapsed since the last GVT update. However,
the other node could be busy processing a computationally intensive event, preventing
it from making its request for a GVT update until it has completed processing the
current event. Hence, this node can exceed time specified by Tgvt.

C.3. EXTERNAL CONNECTIONS CONFIGURATION (SECTION SPEEDESSERVER) 353

Parameter Name Description
Tasb Time between asynchronous broadcasts of the event horizon.
Ngvt The value of Ngvt represents the number of events that a node may process before

requesting a GVT update. Once the current node has reached this limit (or Tgvt,
whichever occurs first), it will request a GVT update. While waiting for the other
nodes to make their requests, the first node will continue to process events optimisti-
cally .

Nrisk This parameter specifies the maximum number of events a node may process with
risk.

Nopt The value of Nopt specifies the maximum number of events a node may process past
GVT. Its value must be greater than that of Nrisk.

MaxGvtUpdateCycles This parameter designates the maximum number of GVT update cycles that will be
processed before assuming messages have been irrevocably lost. This number must
be at least 2. The default value for this parameter is INT MAX, the maximum value a
signed integer can hold (This value is hardware specific and is typically found in the
include file limits.h).

Table C.2: The “gvt parameters” section of the speedes.par file

C.3 External Connections Configuration (section SpeedesServer)

The SpeedesServer section configures SPEEDES such that it can create external communication
paths to external interfaces and allow each node of a multiple node SPEEDES application to run on dif-
ferent target machines. Usually, the default values for the parameters are used. The SpeedesServer
contains two parts:

� The subsection SpeedesCommhandles communication between nodes, which reside on different
target machines.

� The subsection HostRouter handles communication between nodes and external interfaces.

Usually SpeedesServer handles both of the cases at the same time. However, users are allowed to
break this functionality apart by setting the appropriate parameter listed below.

SpeedesServer {
string DefaultMachineName localhost
int DefaultPort -1
logical DefaultStatistics F
int Group 0

SpeedesComm {
logical UseDefaults T
string MachineName localhost
int Port -1
logical Statistics T

}

HostRouter {
logical UseDefaults T
string MachineName localhost
int Port -1

354 APPENDIX C. SPEEDES PARAMETER FILE CONFIGURATION

logical Statistics F
}

}

Parameter Name Description
DefaultMachineName Specifies the target machine where the application SpeedesServer is execut-

ing. It can be specified by either host name or Internet Protocol (IP) address.
DefaultPort The value of this parameter specifies the number of the port through which the

application will contact the SpeedesServer. When the value of Default-
Port is set to -1, the chosen port will have a port number equal to 10000 plus the
value of the user’s (unique) UNIX user id (as displayed by the UNIX command
id -u).

DefaultStatistics When set to T, statistics will be generated for the SpeedesServer and
HostRouter.

Group In order to allow multiple simulations to run simultaneously with one
SpeedesServer, users can specify unique group numbers for each simulation.

SpeedesComm This section is used if the parameter UseDefaults below is set to F.
UseDefaults If set to T, then the default SpeedesServer parameters listed above are used.

If set to F, then the parameters contained within this section are used.
MachineName The value of this parameter specifies the machine on which the SpeedesServer

is running. It can be either an alphabetic host name or numeric IP address.
Port The value of this parameter specifies the number of the port through which the ap-

plication will contact the SpeedesServer. When the value of DefaultPort
is set to -1, communication will take place through a port with a port number equal
to 10000 plus the (unique) value of the user’s UNIX user id (as displayed by the
UNIX command id -u).

Statistics The value of this parameter indicates whether or not statistics are to be generated
for the SpeedesServer or HostRouter.

HostRouter This section is used if the parameter UseDefaults below is set to F.
UseDefaults If set to T, then the default SpeedesServer parameters listed above are used.

If set to F, then the parameters contained within this section are used.
MachineName The value of this parameter specifies the machine on which the SpeedesServer

is running. It can be either an alphabetic host name or numeric IP address.
Port The value of this parameter specifies the number of the port through which the ap-

plication will contact the SpeedesServer. When the value of DefaultPort
is set to -1, communication will take place through a port with a port number equal
to 10000 plus the (unique) value of the user’s UNIX user id (as displayed by the
UNIX command id -u).

Statistics The value of this parameter indicates whether or not statistics are to be generated
for the SpeedesServer or HostRouter.

Table C.3: The “SpeedesServer” section of the speedes.par file

C.4. OUTPUT DATA CONFIGURATION (SECTION STATISTICS) 355

C.4 Output Data Configuration (section statistics)

The statistics section controls and selects the different types of data that can be output by the
SPEEDES framework.

statistics {
logical CYCLE T
logical GVT T
logical LVT T
logical BTW T
logical CPU T
logical WALL T
logical STAR T
logical PROC T
logical COMMIT T
logical PROCEFF T
logical PHASE1 T
logical PHASE2 T
logical EVENTS T
logical EVTGVT T
logical EVENTSCYCLE T
logical ROLLBACKS T
logical MESSAGES T
logical ANTIMESSAGES T
logical CANCELS T
logical NUM_EVENTS_IN_QUEUE F
int ReportTime 1

logical WriteGvtStatistics F
string FileName GvtStatistics

string Timer WallClock
logical MemoryUsage F
logical MessageSending F
logical EventProcessing F
logical ObjectProcessing F
logical AutoLazyEvaluation F
logical CriticalPath F

IntervalOutputTime {
float SimTime 10.0
OutFileName {

string StatisticsFileName intervalStats
}

}

RollbackBreakdownByEventType {
float OutputIntervalSimtime 100.0
int WidthOfPrintedMatrix 80
OutFileName {

string RollbackBreakdownFileName rbTable
}

}

StatsOnSimobjByEventBasis {

356 APPENDIX C. SPEEDES PARAMETER FILE CONFIGURATION

string MyStatData /tmp/output
logical PrintIntervalData T

}

string Output_Method stderr
string Stat_Output_Filename statq
string Stat_Displayer localhost
int Port 1029

ObjNamesByNode {
string fileName Objectmap

}
}

Parameter Name Description
CYCLE If set to T, display the GVT cycle number.
GVT If set to T, display the value for GVT.
LVT If set to T, add the value for LVT to the GVT statistics file.
BTW If set to T, add the times for BTW phases to the GVT statistics file.
CPU If set to T, display the total CPU time spent.
WALL If set to T, display the total wall clock time spent.
STAR If set to T, display the Simulation Time Advancement Rate (STAR) since the last

statistics display.
PROC If set to T, display the total time spent processing events.
COMMIT If set to T, display the total time spent committing events.
PROCEFF If set to T, display the ratio of committed events to processed events over the last

cycle. This ratio may be greater than 1.
PHASE1 If set to T, display the number of events processed optimistically in the last cycle.
PHASE2 If set to T, display the number of events committed in the last cycle.
EVENTS If set to T, display the total number of events committed since the start of the

simulation.
EVTGVT If set to T, display the number of events processed during the last GVT cycle.
EVENTSCYCLE If set to T, display the number of events processed during the last cycle.
ROLLBACKS If set to T, display the number of events rolled back since the start of the simula-

tion.
MESSAGES If set to T, display the number of messages sent between nodes since the start of

the simulation.
ANTIMESSAGES If set to T, display the number of anti-messages sent between nodes since the start

of the simulation.
CANCELS If set to T, display the number of events canceled since the start of the simulation.
NUM EVENTS IN-
QUEUE

If set to T, add the number of events in the queue to the GVT statistics file.

ReportTime The period, in wall clock time, at which the statistics are written to the screen and
to the GVT statistics file. A value of � instructs SPEEDES to write statistics at
every cycle.

WriteGvtStatistics If set to T, write a GVT statistics file for every node.
FileName The value of this parameter specifies the common prefix used in names of the GVT

statistics output files. The full file name will consist of the specified prefix suffixed
by the node number.

C.4. OUTPUT DATA CONFIGURATION (SECTION STATISTICS) 357

Parameter Name Description
Timer This parameter, whose value can be either CPU, WallClock, or Counter, de-

termines the particular method used for timing events. Displayed time spent pro-
cessing events is given either in CPU seconds or in seconds of wall clock time,
depending on whether Timer is set to CPU or WallClock. Setting Timer to
Counter simply increments by 1 each time the timer is called (thus providing an
event count on an event type basis).

MemoryUsage If set to T, memory usage for the event and message free lists will be printed to
the terminal.

MessageSending If set to T and the number of nodes is greater that 1, the statistics on message
sending will be printed to the terminal.

EventProcessing If set to T, statistics on event processing will be printed to the terminal.
ObjectProcessing If set to T, statistics on event processing for objects by type will be printed to the

terminal.
AutoLazyEvaluation If set to T, and automatic lazy re-evaluation has been turn on, then statistics for

automatic lazy re-evaluationperformance performance are printed to the terminal.
Note: compile time options of USE AUTO LAZY and AUTO LAZY PERF must
have been used during SPEEDES and application compilation.

CriticalPath If set to T, the critical path and maximum speedup will be calculated and printed
to the terminal.

IntervalOutputTime When this section is present, then the MemoryUsage, MessageSending,
EventProcessing, and ObjectProcessing statistics are printed at the in-
terval specified by IntervalOutputTime.

SimTime The value of SimTime specifies the approximate time intervals at which statistics
data should be recorded.

OutFileName Inclusion of this parameter forces printing of interval data to a file, whose name is
given by StatisticsFileName, rather than the screen.

StatisticsFileName The value of StatisticsFileName names the file to which interval statistics
data should be written.

RollbackBreakdown-
ByEventType

Inclusion of a RollbackBreakdownByEventType section will cause the
printing of a matrix describing event rollbacks. The entry in row � and column

�

indicates the number of times an event of type � rolled back an event of type
�
.

OutputIntervalSimtime Optionally, print the rollback matrix at fixed approximate intervals specified by
this value.

WidthOfPrintedMatrix Since the rollback matrix may be too large to fit on the screen, the user may wish to
break it into subtables. The value of this parameter defines the width, in characters,
of the subtables.

OutFileName Optionally, the user may wish to output the rollback matrix to files (one file per
node), rather than the screen. Names for these output files may be chosen by
setting the parameter RollbackBreakdownFileName.

RollbackBreakdown-
FileName

The value of this parameter specifies the common prefix used in the names of the
rollback matrix output files. The full file name will consist of the specified string
suffixed by a pattern of the form node#, where # is the node number.

StatsOnSimobjBy-
EventBasis

Optionally, the user may wish to output event usage statistics on an individual
object basis. The StatsOnSimobjByEventBasis subsection allows such
configuration.

MyStatData This parameter indicates the directory to which individual object data will be writ-
ten.

PrintIntervalData Setting this logical parameter to T turns on interval output based on the settings
found in IntervalOutputTime.

358 APPENDIX C. SPEEDES PARAMETER FILE CONFIGURATION

Parameter Name Description
Output Method Setting this parameter, to either stderr, File, or Socket, offers the user

control over the choice of data stream to which statistics are printed. The
values stderr and File are self-explanatory (File is defined in parame-
ter Stat Output Filename), while a value of Socket instructs SPEEDES
to send the statistics data to a different machine, as defined by parameter
Stat Displayer.

Stat Output Filename This parameter is required if the value of Output Method is File. The value
of Stat Output Filename names the file to which data should be written.

Stat Displayer This parameter is required if the value of Output Method is Socket. The
value of Stat Displayer specifies the machine to which data should be trans-
ferred.

Port This parameter is required if the value of Output Method is Socket. The
value of Port specifies the port on the machine indicated by the value of
Stat Displayer to which data should be transferred.

ObjNamesByNode This section enables printing of the object name, handles, and kind ids in order to
determine what node each object lies on.

fileName This string specifies the prefix for the file name of output of the lists of objects and
the nodes on which they lie.

Table C.4: The “statistics” section of the speedes.par file

C.5 Flying Trace Diagnostic Configuration (section FlyingTraceOutput)

If SPEEDES was compiled with flying trace enabled (see Section 17.3), then this section, if it exists,
enables the flying trace output.

FlyingTraceOutput {
string TraceFileName MyFlyingTraceFile

}

The parameter TraceFileName specifies the file name for the flying trace output data.

C.6 Trace Diagnostic Configuration (section trace)

When enabled, this section specifies that trace files are to be created and saved under the specified file
name.

trace {
logical trace F
string tracefile Trace

}

Parameter Name Description
trace If set to T, trace files will be created.
tracefile The value of this parameter specifies the common prefix used in names of the trace

files. The full file name will consist of the specified prefix suffixed by the node num-
ber.

C.6. TRACE DIAGNOSTIC CONFIGURATION (SECTION TRACE) 359

Parameter Name Description

Table C.5: The “trace” section of the speedes.par file

360 APPENDIX C. SPEEDES PARAMETER FILE CONFIGURATION

C.7 Simulation Named Pauses (section NamedPauses)

Each item listed in this section corresponds to a pause that must be removed using the SpResume
command line utility (see Section 13.6), or by using the SpEmHostUser (see Chapter 12). This section
can contain as many user-defined pauses, at anytime, as required for the simulation. Then, names of the
pauses, for eaxmple Pause1 and Pause2 as shown below, can contain any legal character as allowed
for parser input parameters (i.e. alphanumeric and underscore characters).

NamedPauses {
define Pause1 0.0
define Pause2 50.0

}

C.8 Checkpoint/Restart Configuration (section Checkpoint)

If checkpoint/restart is desired, inclusion of a Checkpoint section will enable the creation of check-
point files.

Checkpoint {
logical Enable F
float WallTimeInterval 600.0
float SimTimeInterval 100.0
string CheckpointPath ./Checkpoints

}

Parameter Name Description
Enable Setting this parameter to T will enable the checkpoint capability.
WallTimeInterval The value of this parameter defines the approximate wall clock time interval at which

checkpoints should be created. If this value is less than or equal to zero, then this
parameter is not used when determining whether or not it is time to perform a check-
point.

SimTimeInterval The value of this parameter defines the approximate simulation time interval at which
checkpoints should be created. If this value is less than or equal to zero, then this
parameter is not used when determining whether or not it is time to perform a check-
point.

CheckpointPath The value of CheckpointPath specifies the directory in which checkpoint files
will be created.

Table C.6: The “Checkpoint” section of the speedes.par file

C.9 HLA (section HLA)

This optional section enables the use of the HLA Gateway.

HLA {
logical Gateway T

}

Appendix D

Acronyms and Abbreviations

AFB Air Force Base
AltItem Alterable Item
ANSI American National Standards Institute
API Application Program Interface
BTW Breathing Time Warp
CPU Central Processing Unit
DDM Data Distribution Management
DM Declaration Management
ECI Earth Centered Inertial
ECR Earth Centered Rotating
FIFO First In First Out
GHz gigahertz
GNU GNU’s Not Unix
GPS Global Positioning System
GVT Global Virtual Time
HLA High Level Architecture
id identifier
IP Internet Protocol
IMPORT Integrated Modeling and Persistent Object Relations Technology
km kilometers
LVT Local Virtual Time
MODSIM Modular Simulation
ms milliseconds
PDES Parallel Discrete-Event Simulation
SDES Sequential Discrete-Event Simulation
SOW Statement of Work
SPEEDES Synchronous Parallel Environment for Emulation and Discrete-Event Simu-

lation
STAR Simulation Time Advancement Rate
SDRL Subcontractor Data Requirement List
vtable virtual function table

361

362 APPENDIX D. ACRONYMS AND ABBREVIATIONS

Index

.par, see parameter file
HDR ID, 112, 113, 117, 123
MGR, 36, 43, 268
MGR ID, 43

AltItem, see SpAlt
anti-message, 300, 314, 316, 318, 322, 323, 326,

340, 341, 344–346
ASK, 26, 137, 138
asynchronous message, 322, 323
attribute (proxy), 146
Attribute Level Subscription, 242
attribute subscription, 157, 243
AUTO LAZY PERF, 326, 357
automatic lazy re-evaluation, 326–329, 352,

357
autonomous event, 103, 297, 298, 301

BASE ATTRIBUTE, 155
outstream, 181

BASE DYNAMIC ATTRIBUTE, 203
FindDynamicItem, 203
GetEndTime, 203
GetStartTime, 203
GetTimeInterval, 203, 204
outstream, 203, 204

BINARY BUFFER ATTRIBUTE, 196–199, 201
CopyIntoBuffer, 196, 197, 200
GetBuffPtr, 196, 201
GetBuffSize, 196, 201
outstream, 181

BLOCK, 33, 38
boolean, see LOGICAL ATTRIBUTE
breathing time buckets, 317, 341–345
Breathing Time Warp, see BTW
BREATHING TIME BUCKETS, 351
BREATHING TIME WARP, 351
BTW, 318, 322, 344, 345, 356

cancel events, 94, 110
cancel handle, see SpCancelHandle
Central Processing Unit, see CPU
checkpoint/restart, 305–312
CIRCULAR MOTION, 218
CIRCULAR ORBIT, 206
CIRCULAR ORBIT ID, 206

class type filter (DDM), 225, 236
command-line utilities, 281

SpCancelEvent, 283
SpCancelHandle, 283
SpChangeScaler, 282
SpCommand, 283
SpFilterTrace, 281, 285, 319
SpForceToWallClock, 284
SpKillSim, 284
SpObjNames, 281
SpObjType, 281
SpPause, 283
SpQuery, 282
SpResume, 283, 284
SpScheduleEvent, 283
SpSortedOutput, 285
SpTime, 282

commit, 298, 299, 301
ComprehensivePlacement, 40
ComprehensiveSimObjMgrs, 39–41
CONSERVATIVE, 351
conservative time management, 337, 338
Conservative Time Management Algorithm,

347–349
CONSTANT MOTION, 206, 218
CONSTANT MOTION ID, 206
coordinate systems

Cartesian, 197
EARTH, 197, 201, 218, 222
ECI, 197, 201, 218, 222
ECR, 197, 201, 218, 222

coordinated message, 322, 323
CPU, 3, 13, 145

balancing, 36
node, 36, 45

critical path, 346

Data Distribution Management, see DDM
data parser, see SpParser
DDM, 146, 225–262

class type filter, 236
double filtering, 250
enumerate filtering, 247
range based filtering, 255

Declaration Management, see DM
decomposition, see object decomposition
DEFINE ASK EVENT, 137, 138

363

364 INDEX

DEFINE ATTRIBUTE, 153, 154, 168, 175, 183, 185,
192, 194, 207

DEFINE AUTONOMOUS EVENT, 103, 104, 108, 298
DEFINE CREATE EVENT, 289–291
DEFINE EVENT INTERFACE, 108, 309, 310
DEFINE HANDLER, 111–115, 118, 121
DEFINE HANDLER INTERFACE, 123–125
DEFINE INTERACTION HANDLER, 118
DEFINE INTERFACE HANDLER, 124
DEFINE LOCAL EVENT, 96, 108
DEFINE MEMPOOL, 70
DEFINE SIMOBJ, 32, 34–36, 38–40, 42, 89, 91, 93,

152, 154
DEFINE SIMOBJ EVENT, 88, 89, 91, 103, 108, 273
DEFINE SIMOBJ HANDLER, 112, 113, 115, 120, 121,

123, 243
DEFINE SIMOBJ INTERACTION HANDLER, 118, 120,

123
DEFINE SIMOBJ INTERFACE HANDLER, 124
diagnostics

automatic lazy re-evaluation, 326–329
event data summary, 323–325
event message sending, 322–323
event usage statistics by simulation

object, 325
flying trace, 319–321, 358
GVT, 313–316
memory usage, 321–322
message sending, 323
simulation object data, 329–330
trace, 316, 358
trace files, 316–319

discover (proxy), 146
Discover Object, 243, 246
DISCOVER OBJECT, 269
DM, 146
DoNotAllocateMemoryInConstructor, 32, 185,

307
double filtering (DDM), 250
DOUBLE ATTRIBUTE, 168, 174, 182, 185

*=, 182
++, 182
+=, 182
--, 182
-=, 182
/=, 182
=, 182
double(), 182
outstream, 181

DYNAMIC COMPLEX EXPONENTIAL, 206, 217–218
DYNAMIC COMPLEX EXPONENTIAL ID, 206
DYNAMIC DOUBLE ATTRIBUTE, 149, 206–219

+=, 207
DYNAMIC DOUBLE CONSTANT, 206, 207, 216

Set, 207
SetEndTime, 207

SetStartTime, 207
DYNAMIC DOUBLE CONSTANT ID, 206
DYNAMIC EXPONENTIAL, 206, 216–217

GetAmplitude, 217
GetLambda, 217
Set, 217
SetAmplitude, 217
SetEndTime, 217
SetLambda, 217
SetStartTime, 217

DYNAMIC EXPONENTIAL ID, 206
DYNAMIC EXTRAPOLATE, 206, 217–218
DYNAMIC EXTRAPOLATE ID, 206
DYNAMIC INT ATTRIBUTE, 149, 206–213

+=, 207
DYNAMIC INT CONSTANT, 206, 207, 212

Set, 207
SetEndTime, 207
SetStartTime, 207

DYNAMIC INT CONSTANT ID, 206
DYNAMIC LOGICAL ATTRIBUTE, 206–213

+=, 207
DYNAMIC LOGICAL CONSTANT, 206, 207

Set, 207
SetEndTime, 207
SetStartTime, 207

DYNAMIC LOGICAL CONSTANT ID, 206
DYNAMIC POLY 1, 206, 214
DYNAMIC POLY 10, 206
DYNAMIC POLY 10 ID, 206
DYNAMIC POLY 1 ID, 206
DYNAMIC POLY 2, 206, 214
DYNAMIC POLY 2 ID, 206
DYNAMIC POLY 3, 206
DYNAMIC POLY 3 ID, 206
DYNAMIC POLY 4, 206
DYNAMIC POLY 4 ID, 206
DYNAMIC POLY 5, 206
DYNAMIC POLY 5 ID, 206
DYNAMIC POLY 6, 206
DYNAMIC POLY 6 ID, 206
DYNAMIC POLY 7, 206
DYNAMIC POLY 7 ID, 206
DYNAMIC POLY 8, 206
DYNAMIC POLY 8 ID, 206
DYNAMIC POLY 9, 206
DYNAMIC POLY 9 ID, 206
DYNAMIC POLY N, 214, 218

AddPoints, 214, 216, 218
END POLY, 214

MakePoly, 214, 216
DYNAMIC POSITION ATTRIBUTE, 197, 218–222
DYNAMIC SPLINE 3, 206, 217–218
DYNAMIC SPLINE 3 ID, 206
DYNAMIC SPLINE 6, 206, 217–218
DYNAMIC SPLINE 6 ID, 206

INDEX 365

EARTH, see coordinate systems
Earth Centered Inertial, see

coordinate systems
Earth Centered Rotating, see

coordinate systems
ECI, see coordinate systems
ECR, see coordinate systems
Elliptical, 206, 218
Elliptical ID, 206
enumerate filtering (DDM), 247
event

autonomous, 103, 297–303
increasing efficiency, 301

cancellation, 94, 110
handlers, 111, 294
horizon, 341–343, 345
local, 96, 297
point-to-point, 88
simulation object, 297

event handler, see handlers
event horizon, 341–343, 345
event in past, 110
event statistics, 321–325

event data summary, 323
memory usage, 321, 322
message sending, 322, 323
statistics by simulation

object, 325
exchange, 298–301, 326
ExecuteSpeedes, 12, 89
external interface

state manager, 265
external module, 265–279

global id, 272
EXTRAPOLATE MOTION, 218
EXTRAPOLATE MOTION ID, 206

F SpProxyItem, 154, 155, 170, 179, 243
get link, 170, 179
GetObjProxy, 155, 170, 179

FILE BLOCK, 33, 39, 40
FILE SCATTER, 33, 39, 40
flying trace, 319–321, 358

enable, 319
free lists, 204

RB FREE DELETE, 204, 205
RB FREE NEW, 204, 205

free object proxy, see
SpFreeObjProxy, 162

FreeDynamicAttributes, 207, 210, 213

GET DYN OBJ HANDLE, 293
global functions, see

SpGlobalFunctions
global id, 35, 86, 94, 157, 272
Global Virtual Time, see GVT

GREAT CIRCLE, 206, 220
init Tconstant, 220
init Vconstant, 220

GREAT CIRCLE ID, 206
GREAT MOTION, 218
GVT, 282–284, 299, 301, 313, 315, 339, 344, 345

statistics, 313–316

handler events, 111
handlers, 111–125, 294

AddHandler, 113, 116, 123, 246
Discover Object, 243, 246
interaction, 117
interface, 123
Reflect Attributes, 243
RemoveHandler, 113, 123
standard, 112
SubscribeHandler, 113, 123
UnDiscover Object, 243, 246
Update Attributes, 243

HDR ID, see HDR ID
HLA simulation object, 146
HostRouter, 267, 353, 354

MachineName, 354
Port, 354
Statistics, 354
UseDefaults, 354

IMPORT, 4
INT ATTRIBUTE, 152, 181–182, 192

*=, 182
++, 182
+=, 182
--, 182
-=, 182
/=, 182
<<=, 182
=, 182
>>=, 182
%=, 182
&=, 182
ˆ=, 182
|=, 182
int(), 182
outstream, 181

interactions, 117
InterestSpaces.par, 235–237, 247, 251, 256, 257,

262
Altitude, 256, 257
Dimension, 251, 257
Distribute, 247, 251, 256, 257
Enum, 247, 251, 257
EnumType, 247, 251, 257
Hi, 236, 251, 256, 257
Latitude, 256, 257
LatLng, 256, 257

366 INDEX

Lo, 236, 251, 256, 257
Longitude, 256, 257
reference, 236, 247, 251, 257
Resolution, 251, 256, 257
Space, 236, 247, 251, 257
Theater, 256, 257

interval statistics, 330–332
IntervalOutputTime, 331, 357

OutFileName, 357
StatisticsFileName, 357

OutputFileName, 331
StatisticsFileName, 331

SimTime, 331, 357

kind id, 34, 35, 37, 38, 42, 43

LastAttribRefWasLegal, 160
lazy, 103, 106, 297–300, 302, 352
Linux, 13
LIST ATTRIBUTE, 190–196, 203

++, 190, 194, 195
+=, 190, 194
--, 190
-=, 190, 194
GetFirstElement, 190, 194, 195
GetLastElement, 190
GetNumElements, 190
new, 194
outstream, 181

local events, 96, 297
local id, 35, 41, 42
Local Virtual Time, see LVT
logical time, 335
LOGICAL ATTRIBUTE, 152, 182, 192

=, 182
int(), 182
LOGICAL FALSE, 182
LOGICAL TRUE, 182
outstream, 181

LOGICAL FALSE, 182
LOGICAL TRUE, 182
LOITER MOTION, 218
LOITER MOTION ID, 206
lookahead, 351
LookaheadAutoCorrectDebug, 349
LVT, 339, 356

memcpy, 67
message, 309

anti-message, 300, 314, 316, 318, 322, 323,
326, 340, 341, 344–346

asynchronous, 322, 323
coordinated message, 322, 323

mode
BREATHING TIME BUCKETS, 351
BREATHING TIME WARP, 351

CONSERVATIVE, 351
TIME WARP, 351

MODSIM II, 4

named pauses, 284
Ngvt, 345, 353
node, 45, 145

balancing, 36
CPU, 36, 45

non-repeatability, 62
Nopt, 322, 353
Nrisk, 344–346, 353

object decomposition, 36
automatic, 37–38
block, 37
ComprehensivePlacement, 40
ComprehensiveSimObjMgrs, 39–41
file block, 39, 40
file scatter, 39, 40
manual, 39–41
NumNodes, 39
scatter, 37, 38
SimObjPlacement.par, 39, 40

object handles, see SpObjHandle
object proxies, 145–180

attribute, 146
attribute subscription, 157
built-in types
BASE ATTRIBUTE, 155
BINARY BUFFER ATTRIBUTE, 196–197
DOUBLE ATTRIBUTE, 182
DYNAMIC DOUBLE ATTRIBUTE, 149, 206–218
DYNAMIC INT ATTRIBUTE, 149, 206–213
DYNAMIC LOGICAL ATTRIBUTE, 206–213
DYNAMIC POSITION ATTRIBUTE, 218–222
INT ATTRIBUTE, 152, 181–182
LIST ATTRIBUTE, 190–196
LOGICAL ATTRIBUTE, 152, 182
OBJECT ATTRIBUTE, 149, 150, 183–189
POSITION ATTRIBUTE, 197–202
STRING ATTRIBUTE, 152, 182–183

DDM, 146
DEFINE ATTRIBUTE, 153, 194
discover, 146
DM, 146
example of, 186, 187, 201, 213, 221
Find, 155, 156
global id, 157
HLA, 146
Objects.par, 147
publish, 146
reflect, 146
S SpHLA, 147
subscribe, 146

OBJECT ATTRIBUTE, 149, 150, 183–190, 192

INDEX 367

DEFINE ATTRIBUTE, 183
get size, 192
GetObjProxy, 195
GetSize, 183, 185
initializer, 185
outstream, 181, 185
SetClassName, 183

Objects.par, 147–154, 162, 167–169, 173, 184, 191,
199, 208, 219, 232, 236, 237, 241

arrays, 150
binary buffer, 151, 199
define, 148, 184, 191, 199
double, 148, 151, 167, 173, 184, 191, 199
dynamic double, 151, 207, 208, 214, 219
dynamic int, 151, 206, 208, 219
dynamic logical, 151, 207, 208, 219
dynamic position, 148, 149, 151, 219
example of, 148, 167, 173, 184, 191, 199, 208,

219
int, 148, 150, 151, 184, 191, 199
list, 148, 150, 151, 191, 199
logical, 148, 151, 191, 199
object, 148, 149, 151, 184, 185, 191, 199
position, 148, 149, 151, 199
reference INHERIT, 148, 149, 151
reference SUBSCRIBE, 148, 149, 151, 154, 167,

173, 199, 241
rules for building, 150
string, 148, 151, 184, 191, 199

ofstream, 49
Optimistic Time Management, 339
optimize sequential, 50, 319
ostream, 49, 318
ostrstream, 49
overdetermined polynomial items, 216

P BEGIN, 26, 128, 130, 132, 137, 293
P END, 26, 128
P LV, 26, 128, 142
P VAR, 25, 128
Parallel Discrete-Event Simulation, see

PDES
parameter file, 71, 73

array
example of, 74

example of, 72
float, 72, 74
include, 72, 75
inherit, 72, 75
int, 72, 74
logical, 72, 74
reference, 72, 75
string, 72, 74

parameters, 300, 347
PDES, 335–338, 344
persistence, 305–312

PrintDatabases, 310
PersistenceEnabled, 307
PLUG IN EVENT, 89, 115, 348
PLUG IN EVENT WITH LOOKAHEAD ADJUSTMENT, 349
PLUG IN EVENT WITH LOOKAHEAD BYPASS, 348
PLUG IN SIMOBJ, 12, 34, 89
PLUGIN MEMPOOL, 70, 71
PlugInDDM, 241
PlugInHLA, 171, 241
PO ADD, 311, 312
PO ATTACH, 312
PO ATTACH PTR, 307, 308, 311
PO DEFINE CLASS, 306

PO DELETE, 306
PO DELETE ARRAY, 306
PO NEW, 306
PO NEW ARRAY, 306
PO REGISTER CLASS, 306

PO DELETE, 306
PO DELETE ARRAY, 306
PO NEW, 306, 308, 312
PO NEW ARRAY, 306
PO REGISTER CLASS, 306
point-to-point events, 88
POLY 10 MOTION, 206, 218
POLY 10 MOTION ID, 206
POLY 1 MOTION, 206, 218
POLY 1 MOTION ID, 206
POLY 2 MOTION, 206, 218
POLY 2 MOTION ID, 206
POLY 3 MOTION, 206, 218
POLY 3 MOTION ID, 206
POLY 4 MOTION, 206, 218
POLY 4 MOTION ID, 206
POLY 5 MOTION, 206, 218
POLY 5 MOTION ID, 206
POLY 6 MOTION, 206, 218
POLY 6 MOTION ID, 206
POLY 7 MOTION, 206, 218
POLY 7 MOTION ID, 206
POLY 8 MOTION, 206, 218
POLY 8 MOTION ID, 206
POLY 9 MOTION, 206, 218
POLY 9 MOTION ID, 206
POLY N MOTION, 218
POSITION ATTRIBUTE, 197–202, 218

GetEARTH, 197, 198
GetECI, 197
GetECR, 197, 198
GetPositionType, 197
outstream, 181
SetEARTH, 197
SetECI, 197
SetECR, 197, 200

PrintDatabases, 310
Process Model

368 INDEX

P BEGIN, 128
P END, 128
P LV, 128
P VAR, 128
WAIT, 129
WAIT FOR, 132
WAIT FOR RESOURCE, 132
WAIT UNTIL, 129

proxies, see object proxies
proxy attribute type

BASE DYNAMIC ATTRIBUTE
FindDynamicItem, 203
GetEndTime, 203
GetStartTime, 203
GetTimeInterval, 203, 204
outstream, 203, 204

BINARY BUFFER ATTRIBUTE, 196–197
CopyIntoBuffer, 196, 197
GetBuffPtr, 196
GetBuffSize, 196
outstream, 181

DEFINE ATTRIBUTE, 207
DOUBLE ATTRIBUTE, 182
*=, 182
++, 182
+=, 182
--, 182
-=, 182
/=, 182
=, 182
double(), 182
outstream, 181

dynamic, 202–223
DYNAMIC DOUBLE ATTRIBUTE, 206–218
DYNAMIC INT ATTRIBUTE, 206–213
DYNAMIC LOGICAL ATTRIBUTE, 206–213
DYNAMIC POSITION ATTRIBUTE, 218–222
INT ATTRIBUTE, 181–182
*=, 182
++, 182
+=, 182
--, 182
-=, 182
/=, 182
<<=, 182
=, 182
>>=, 182
%=, 182
&=, 182
ˆ=, 182
|=, 182
int(), 182
outstream, 181

LIST ATTRIBUTE, 190–196
++, 190
+=, 190

--, 190
-=, 190
GetFirstElement, 190
GetLastElement, 190
GetNumElements, 190
outstream, 181

LOGICAL ATTRIBUTE, 182
=, 182
int(), 182
LOGICAL FALSE, 182
LOGICAL TRUE, 182
outstream, 181

OBJECT ATTRIBUTE, 183–189
DEFINE ATTRIBUTE, 183
GetSize, 183
outstream, 181, 185
SetClassName, 183

POSITION ATTRIBUTE, 197–202
GetEARTH, 197, 198
GetECR, 197, 198
GetPositionType, 197
outstream, 181
SetEARTH, 197
SetECI, 197
SetECR, 197

static, 181–202
STRING ATTRIBUTE, 182–183
!=, 183
=, 183
==, 183
const char*(), 183
outstream, 181

proxy dynamic items, 213–218
CIRCULAR MOTION, 218
CONSTANT MOTION, 218
DYNAMIC POLY 1, 214
DYNAMIC POLY 2, 214
DYNAMIC POLY N, 214, 218
Elliptical MOTION, 218
exponentials, 216–217
EXTRAPOLATE MOTION, 218
GREAT MOTION, 218
LOITER MOTION, 218
overdetermined polynomials, 216
POLY 10 MOTION, 218
POLY 1 MOTION, 218
POLY 2 MOTION, 218
POLY 3 MOTION, 218
POLY 4 MOTION, 218
POLY 5 MOTION, 218
POLY 6 MOTION, 218
POLY 7 MOTION, 218
POLY 8 MOTION, 218
POLY 9 MOTION, 218
POLY N MOTION, 218
polynomials, 214–216

INDEX 369

RHUMB MOTION, 218
SPLINE3 MOTION, 218
SPLINE6 MOTION, 218

publish (proxy), 146

random number, see RB SpRandom
range-based filtering, 255
RB assert, 67
RB cerr, 50
RB cout, 21, 50, 68
RB DEFINE, 307
RB DEFINE CLASS, 65, 79, 166, 306–308

RB ARRAY, 65
RB DELETE, 65
RB DELETE ARRAY, 65
RB NEW, 65
RB PTR, 65

RB DEFINE CLASS PRIMITIVE, 79
RB DELETE, 65, 79, 307, 308, 312
RB DELETE ARRAY, 80
RB double, 46, 61, 166
RB exostream, 49, 50, 285
RB FREE DELETE, 204, 205
RB FREE NEW, 204, 205
RB int, 18, 21, 46, 50, 61, 66, 128
RB memcpy, 67, 80
RB NEW, 65, 79, 307, 308, 311, 312
RB NEW ARRAY, 80
RB ostream, 49, 50
RB PO ADD, 310
RB PTR, 65

->, 79
RB PTR , 79
RB queue, 154, 155, 170, 179

get length, 155, 170, 179
get link, 155
get top, 155, 170, 179

RB SpBinaryTree, 51–59
Find, 51
FindIterator, 51, 59
GetCurrentElement, 51
GetCurrentKey, 51
GetCurrentKeyName, 51
GetFirstElement, 51, 52
GetLastElement, 51, 52
GetNextElement, 51, 52
GetNumElements, 51
GetPreviousElement, 51
Insert, 51
IsBalancedTreeMode, 53
IsNormalTreeMode, 53
IsSplayTreeMode, 53
Remove, 51, 52
RemoveFirstElement, 51
RemoveLastElement, 51
SetBalancedTreeMode, 53

SetNormalTreeMode, 53
SetSplayTreeMode, 53

RB SpBool, 48, 49
SpFALSE, 48, 49
SpTRUE, 48, 49

RB SpDefineClass, 65
RB DEFINE CLASS, 65

RB SpDynPtrArray, 55
[], 55

RB SpFastRandom, 66, 67
RB SpFrameworkFuncs, 67
RB SpHashTree, 51–53, 57–59

Find, 51
FindIterator, 51, 59
GetCurrentElement, 51
GetCurrentKey, 51
GetCurrentKeyName, 51
GetFirstElement, 51, 52
GetLastElement, 51, 52
GetNextElement, 51, 52
GetNumElements, 51
GetPreviousElement, 51
Insert, 51
IsBalancedTreeMode, 53
IsNormalTreeMode, 53
IsSplayTreeMode, 53
Remove, 51, 52
RemoveFirstElement, 51
RemoveLastElement, 51
SetBalancedTreeMode, 53
SetNormalTreeMode, 53
SetSplayTreeMode, 53

RB SpList, 53, 54, 57
++, 54
--, 54
BOT FLAG, 53
GetFirstElement, 54
GetLastElement, 54
GetNextElement, 54
GetNumElements, 54
GetPreviousElement, 54
Insert, 53
Remove, 53
RemoveFirstElement, 53
RemoveLastElement, 53
TOP FLAG, 53

RB Splist
RemoveLastElement, 53

RB SpPriorityTree, 54, 62
Find, 54, 55
GetCurrentPriority, 54, 55
GetNumElements, 54
Insert, 54
Remove, 54
Retract, 54
SpRetractionHandle, 54

370 INDEX

RB SpRandom, 66, 67, 168
GenerateBeta, 66
GenerateCauchy, 66
GenerateDensityFunction, 66
GenerateDouble, 66, 164, 168, 175
GenerateExponential, 66
GenerateGaussian, 66
GenerateInt, 66, 194
GenerateLaplace, 66
GeneratePower, 66
GenerateRayleigh, 66
GenerateReversePower, 66
GenerateTriangleDown, 66
GenerateTriangleUp, 66
GenerateUniform, 66
GenerateVector, 66, 164, 168, 175
SetSeed, 66
SpDensityFunction, 67

RB SpString, 47, 48
RB strdup, 46, 67

RB DELETE ARRAY char, 67
RB voidPtr, 47, 48, 55, 61, 65, 308
reflect, 146
reflect attribute event, see

SpReflectAttribute
Reflect Attributes, 243
REFLECT ATTRIBUTES, 269, 270
REGISTER CLASS, 307
repeatability, 62
RHUMB LINE, 206
RHUMB LINE ID, 206
RHUMB MOTION, 218
risk-free events, 322
rollback, 5, 46, 339
rollback statistics, 331
RollbackBreakdownByEventType, 331, 357

OutFileName, 331, 357
RollbackBreakdownFileName, 331, 357

OutputIntervalSimtime, 331, 357
WidthOfPrintedMatrix, 331, 357

S SpHLA, 31, 146, 147, 152, 154, 168, 170, 174, 176,
180, 193, 199, 232, 234, 236, 257

AddAttributeSubscription, 159, 179
Attribute Level Subscription, 242
attribute subscription, 157, 179, 243
attribute subscription and DDM, 161
CurrentlySubscribedToAtt, 159, 179
default arguments, 152
DEFINE ATTRIBUTE, 194
GetLookAheadSec, 257, 262
GetMaxSensorRangeKm, 257
GetMaxSpeedKmPerSec, 257
GetMinExpansionKm, 257, 262
GetMinRescheduleTimeSec, 257, 262
GetName, 170, 179

GetPosition, 257
GetPositionTimes, 257
GetRemoteObjectProxies, 154, 155, 170, 171,

179
LastAttribRefWasLegal, 179
RemoveAttributeSubscription, 159, 179,

180
SetName, 157
Subscribe, 154
SubscribeAllAttributes, 159, 179, 180
SubscribeByAttribute, 158, 179
UnSubscribe, 154
UnSubscribeAllAttributes, 159, 179, 180

scaled time, 352
SCATTER, 33, 38
SCHEDULE, 89, 91, 96
SCHEDULE CANCEL EVENT, 94
SCHEDULE HANDLER, 114, 117, 125
SCHEDULE INTERACTION, 118, 119
SDES, 335–337
Sequential Discrete-Event Simulation, see

SDES
sets, 73
SimObjPlacement.par, 39, 40
simscript, 4
simula, 4
simulation object, 11, 31

HLA, 146–149, 152–154
overview, 31
S SpHLA, 147, 152, 154
SpSimObj, 11, 31, 152

simulation object events, see
event

simulation object managers, 34–36
simulation object statistics, 329
simulation time, 335
simulations

time-stepped, 335
SpAlt, 68, 80

Alter, 68–70
CheckUseOfMemoryRange, 68, 69
Cleanup, 68–70
GetType, 68, 69
Rollback, 68, 69

SpBinaryTree, 55, 57–59
SpBool, 49
SpCancelHandle, 94, 114, 118, 283
SpChangeScaler, 282
SpCommand, 283
SpComponent, 294

AddHandler, 294
RemoveHandler, 294
SubscribeHandler, 294

SpCounterSem, 132, 133
SpCurrentAltMgr, 69
SpDataParser, 268

INDEX 371

SpDefineEvent, 108
SpDefineEvent.H

DEFINE CREATE EVENT, 289
SpDefineHandler, 114
SpDoubleSem, 133
SpDynItem, 203, 204, 217

GetCountId, 204
GetEndTime, 204
GetStartTime, 204
SetEndTime, 204, 217
SetStartTime, 204, 217

speedes.par, 8, 13, 50, 268, 281, 282, 284, 285, 316,
321, 330, 344, 347–349, 351–360

Checkpoint, 306, 360
CheckpointPath, 306, 360
Enable, 306, 360
SimTimeInterval, 306, 360
WallTimeInterval, 306, 360

DebugOutput
LookaheadAutoCorrectDebug, 347, 348
s, 347

FlyingTraceOutput, 319, 358
TraceFileName, 319, 358

gvt parameters, 352–353
MaxGvtUpdateCycles, 353
Ngvt, 345, 353
Nopt, 322, 353
Nrisk, 344–346, 353
Tasb, 343, 353
Tgvt, 345, 352

HLA, 360
NamedPauses, 284, 360
parameters, 347, 351–352
auto lazy, 326, 352
auto lazy threshold, 326, 328, 352
lazy, 106, 299, 300, 352
lookahead, 351
MinLookahead, 347
mode, see mode, 347
n nodes, 351
optimize sequential, 50, 69, 265, 281, 352
scaled time, 282, 352
scaler, 352
spin, 352
statistics, 313, 352
tend, 13, 351

SpeedesServer, 353–354
DefaultMachineName, 354
DefaultPort, 354
DefaultStatistics, 354
Group, 354
HostRouter, see HostRouter
SpeedesComm, see SpeedesComm

statistics, 313, 314, 321, 323, 329–331, 355–
358

ANTIMESSAGES, 314, 316, 356

AutoLazyEvaluation, 326, 357
BTW, 315, 356
CANCELS, 314, 316, 356
COMMIT, 314, 315, 356
CPU, 313, 315, 356
CriticalPath, 323, 357
CYCLE, 313, 315, 356
EventProcessing, 323, 357
EVENTS, 314, 316, 356
EVENTSCYCLE, 314, 316, 356
EVTGVT, 314, 316, 356
FileName, 356
GVT, 313, 315, 356
IntervalOutputTime, see
IntervalOutputTime

LVT, 315, 356
MemoryUsage, 321, 357
MESSAGES, 314, 316, 356
MessageSending, 322, 323, 357
NUM EVENTS IN QUEUE, 316, 356
ObjectProcessing, 329, 357
ObjNamesByNode, 330, 358
Output Method, 358
PHASE1, 314, 315, 356
PHASE2, 314, 315, 356
Port, 358
PROC, 314, 315, 356
PROCEFF, 314, 315, 356
ReportTime, 356
RollbackBreakdownByEventType, see
RollbackBreakdownByEventType

ROLLBACKS, 314, 316, 356
STAR, 313, 315, 356
Stat Displayer, 358
Stat Output Filename, 358
StatsOnSimobjByEventBasis, see
StatsOnSimobjByEventBasis

Timer, 317, 323, 324, 357
WALL, 313, 315, 356
WriteGvtStatistics, 356

trace, 285, 358–359
trace, 316, 358
tracefile, 316, 358

SPEEDES PAR PATH, 76
SpeedesComm, 353, 354

MachineName, 354
Port, 354
Statistics, 354
UseDefaults, 354

SpeedesExecute, 310
SpeedesServer, 267, 268, 281, 353, 354
SpEmHostUser, 267

ScheduleEvent, 272
IF IN PAST IGNORE, 272
IF IN PAST SCHEDULE AT GVT, 272

SpEmhostUser, 272

372 INDEX

SpEnableDynSimObjLookup, 293
SpEvent, 103, 297–303, 310

cleanup, 298, 299, 301, 302
commit, 298, 299, 301, 343
exchange, 298–301, 326
IgnoreDuplicatePO Adds, 310
init, 298, 299, 301, 302
lazy, 105, 106, 297–300, 302
schedule, 310
set lazy, 299, 300

SpFilterTrace, 281, 285, 319
SpForceToWallClock, 284
SpFreeObjProxy, 172
SpFreeDynAttributes, 204, 205, 217

CIRCULAR ORBIT ID, 206
CONSTANT MOTION ID, 206
DYNAMIC COMPLEX EXPONENTIAL ID, 206
DYNAMIC DOUBLE CONSTANT ID, 206, 207
DYNAMIC EXPONENTIAL ID, 206
DYNAMIC EXTRAPOLATE ID, 206
DYNAMIC INT CONSTANT ID, 206, 207
DYNAMIC LOGICAL CONSTANT ID, 206, 207
DYNAMIC POLY 10 ID, 206
DYNAMIC POLY 1 ID, 206
DYNAMIC POLY 2 ID, 206
DYNAMIC POLY 3 ID, 206
DYNAMIC POLY 4 ID, 206
DYNAMIC POLY 5 ID, 206
DYNAMIC POLY 6 ID, 206
DYNAMIC POLY 7 ID, 206
DYNAMIC POLY 8 ID, 206
DYNAMIC POLY 9 ID, 206
DYNAMIC SPLINE 3 ID, 206
DYNAMIC SPLINE 6 ID, 206
Elliptical ID, 206
EXTRAPOLATE MOTION ID, 206
GREAT CIRCLE ID, 206
LOITER MOTION ID, 206
POLY 10 MOTION ID, 206
POLY 1 MOTION ID, 206
POLY 2 MOTION ID, 206
POLY 3 MOTION ID, 206
POLY 4 MOTION ID, 206
POLY 5 MOTION ID, 206
POLY 6 MOTION ID, 206
POLY 7 MOTION ID, 206
POLY 8 MOTION ID, 206
POLY 9 MOTION ID, 206
RHUMB LINE ID, 206
SPLINE3 MOTION ID, 206
SPLINE6 MOTION ID, 206

SpFreeObjProxy, 162, 171, 172, 189, 196, 271
set ntypes, 162, 172
set type, 172, 173, 189

SpFreeObjProxy.C, 162
SpGetMinLookahead(), 348

SpGetMinLookaheadTime(), 348, 349
SpGetMsgData, 243
SpGetNodeId, 34
SpGetNumNodes, 34
SpGetObjHandle, 15, 36, 91, 99, 164
SpGetRandom, 164, 168, 175, 194
SpGetSimObj, 106, 298
SpGetSimObjGlobalId, 35, 93
SpGetSimObjKindId, 35
SpGetSimObjLocalId, 35
SpGetSimObjMgrId, 36
SpGetTime, 86, 91, 96, 109, 164
SpGlobalFunctions, 42

SpEnableDynSimObjLookup, 293
SpGetNodeId, 34
SpGetNumNodes, 34
SpGetObjHandle, 15, 91, 164
SpGetRandom, 66, 164, 168, 175, 194
SpGetSimObj, 298
SpGetSimObjGlobalId, 35, 93
SpGetSimObjKindId, 35
SpGetSimObjLocalId, 35
SpGetSimObjMgrId, 36
SpGetTime, 86, 91, 164

SpHashTree, 55, 57–59
SpHostUser

RB SendNamedData, 273
RB SendSubscribedData, 273

SpIntSem, 133
SpIterator, 55, 62

constructor, 57
GetCurrentElement, 57, 58
GetCurrentKey, 58
GetCurrentKeyName, 58
GetFirstElement, 57, 58
GetLastElement, 57, 58
GetNextElement, 57, 58
GetPreviousElement, 57, 59
operator void*, 57
operator++, 57
operator--, 57

SpIterator RB SpBinaryTree, 55–57
SpIterator RB SpHashTree, 55, 57
SpIterator RB SpList, 55, 57
SpIterator SpBinaryTree, 55, 57
SpIterator SpHashTree, 55, 57
SpIterator SpList, 55, 57
SpKillSim, 284
SPLINE3 MOTION, 206, 218
SPLINE3 MOTION ID, 206
SPLINE6 MOTION, 206, 218
SPLINE6 MOTION ID, 206
SpList, 55, 57

BOT FLAG, 58
SpLogicalSem, 132, 133
SpMapIterator, 55

INDEX 373

GetCurrentKey, 57
GetCurrentKeyName, 57

SpMsg, 272, 273, 299, 310
SpObjHandle, 21, 41–43, 89, 90, 109, 114, 118, 125,

137, 166
SpObjNames, 281
SpObjProxy, 154–157, 160, 162, 169, 186, 187, 192,

201, 213
accessor error values, 161
example of, 169
Find, 153, 155, 156, 169, 187, 201
GetDynamicFloat, 213, 221
GetDynamicInt, 213
GetDynamicLogical, 213
GetDynamicPosition, 221, 222
GetFloat, 169, 186, 187, 201
GetInt, 156, 186, 192
GetList, 156
GetLogical, 156, 192
GetObjProxy, 187, 201
GetPosition, 201
GetProxyName, 157
GetProxyNode, 157, 170, 179
GetProxySimObjGlobalId, 157
GetProxySimObjLocalId, 157, 170, 179
GetProxySimObjMgrId, 157, 170, 179
GetReference, 156, 169, 186, 187, 192, 201,

213
GetString, 156, 160, 187, 201
LastAttribRefWasLegal, 160

SpObjType, 281
SpParmSet, 111, 117, 118
SpParser, see parameter file, 71, 75, 76, 81

filename, 76
Parse, 76, 79
SPEEDES PAR PATH, 76

SpPause, 283
SpPersistenceBaseClass, 308
SpPoDataBase, 32, 307

DoNotAllocateMemoryInConstructor, 32,
185, 307

SpPublishSpace, 235
SpQuery, 282
SpReflectAttribute, 260
SpResourceSem, 132
SpResume, 283, 284
SpScheduleEvent, 283
SpSet, 71, 75, 76, 81

GetAncestor, 77
GetFirstSet, 77, 79
GetFloat, 76, 79
GetFloatArray, 76
GetInt, 76, 79
GetIntArray, 76
GetLogical, 76
GetLogicalArray, 76

GetNextSet, 77, 79
GetNumElements, 77
GetNumSets, 77
GetParent, 77
GetSet, 77, 79
GetString, 76
GetStringArray, 76
Root, 77

SpSimObj, 31, 32, 45, 85, 96, 112, 115, 152, 180, 282
AddHandler, 113, 114, 116–118, 123, 125
GetName, 170
Init, 11, 14, 16–18, 32, 34, 42, 43, 79, 91
NamedQuery, 282
Query, 282
RemoveHandler, 113, 118, 123
SetName, 34, 42
SubscribeHandler, 113, 114, 117, 118, 123,

125
Terminate, 32, 34

SpSimTime, 86–89, 96, 109, 110, 114, 118, 125, 137
DecrementPriority1, 88
DecrementPriority2, 88
GetPriority1, 88
GetPriority2, 88
GetTime, 88
IncrementPriority1, 88
IncrementPriority2, 88
priority fields, 110
SetPriority1, 88
SetPriority2, 88
SetTime, 88

SpSortedOutput, 285
SpStateMgr, 265, 267, 268, 279

DisableRollbackSupport, 279
GoToTime, 270, 279
RecordInputMessages, 278
ScheduleEvent, 273
SendCommand, 272, 273
SubscribeAll, 268
SubscribeData, 269
SubscribeObject, 268
SubscribeType, 268

SpStateMgrEvent, 267, 273
Process, 273

SpSubscribeSpace, 235
SpTag, 318
SpTime, 282
SpTouchProxy, 260
state manager, 265
StatsOnSimobjByEventBasis, 325, 357

MyStatData, 325, 357
PrintIntervalData, 325, 357

strdup, 67
STRING ATTRIBUTE, 152, 182–183, 185, 197

!=, 183
=, 183

374 INDEX

==, 183
const char*(), 183
outstream, 181

subscribe (proxy), 146
SubscribeByAttribute, 157, 179

Tasb, 343, 353
Tgvt, 345, 352, 353
time management

conservative, 338
optimistic, 339

time warp, 318, 341, 344, 345
time-stepped simulations, 335
TIME WARP, 351
touch proxy event, see

SpTouchProxy
TOUCH PROXY, 232
trace, 285, 316–319

BeginTag, 318
bytes, 318
CritPth, 317
EndTag, 318
EvtCPU, 317
EvtName, 317–319
GlobalId, 317
Handle, 317, 318
LocSched, 318
NoTag, 317
NumEventsBeyondGVT, 317, 318
ObjName, 317
ProcessMode, 317
Breathing Time Buckets, 317
GVT Update, 318
Not running BTW, 318
Risk Free, 318
TimeWarp, 318

RBitems, 317
RskSched, 318, 319
SafeSched, 318
SimObjMgrId, 317, 318
Tag, 318
Time, 317
TimeBeyondGVT, 317, 318
TotCmtd, 317
TotTime, 317
TriggerName, 317

trace files, see trace

UnDiscover Object, 243, 246
Update Attributes, 243
USE AUTO LAZY, 326, 352, 357

virtual function table, see vtable
vtable, 307, 308, 311

WAIT, 24, 26, 129, 130, 141, 243
WAIT FOR, 26, 132, 133, 136, 141, 243

WAIT FOR RESOURCE, 132, 133
WAIT UNTIL, 129–131

	Contents
	Table of Contents
	List of Tables
	List of Figures
	List of Examples

	I Overview
	Introduction
	Purpose
	System Overview
	Document Overview
	Overview
	Simulation Objects
	Events
	Object Proxies
	External Interfaces
	Advanced Topics
	Appendix

	Referenced Documents
	Document Conventions

	Quick Start
	Simulation Objects
	Simulation Object State
	Event Handlers
	The Process Model

	II Simulation Objects
	Simulation Object Overview
	Simulation Objects
	Simulation Object Managers
	Simulation Object Decomposition

	Simulation Object ``Object Handles''
	Tips, Tricks, and Potholes

	Rollbackable Built-in Types
	Rollbackable Data
	Basic Data Types
	Rollbackable Integers and Doubles
	Rollbackable Strings and Void Pointers
	Rollbackable Booleans
	Rollbackable Streams

	Container Classes
	Rollbackable Binary and Hash Trees
	Rollbackable Lists
	Rollbackable Priority Trees
	Rollbackable Dynamic Pointer Arrays

	Independent Iterators
	Introduction
	Iterator Interface
	Finding an Iterator

	Guidelines for Making Data Rollbackable
	Tips, Tricks, and Potholes

	Utilities
	Rollbackable Memory Management
	Rollbackable Random Number Generator
	Other Rollbackable Functions
	Rollbackable Assert
	Rollbackable Memory Copy and String Duplication

	Creating New Rollbackable Functions or Objects
	Parameter File Parsing
	Parameter File Language Overview
	General Usage
	SpSet Usage
	An Example

	Tips, Tricks, and Potholes

	III Events
	Point-to-Point Events
	Time, As Represented by SPEEDES
	Simulation Object Events
	Event Cancellation
	Local Events
	Autonomous Events
	Choosing an Interface Style
	The Separate Interface Style
	Tips, Tricks, and Potholes

	Event Handlers
	Standard Event Handlers
	Interaction Event Handlers
	Interface Event Handlers
	Tips, Tricks, and Potholes

	The Process Model
	Process Model API
	Required Process Model Initializers
	Wait (a.k.a. Sleep) Process Model Reentry Points
	Semaphore Process Model Reentry Points
	Ask Process Model Reentry Points

	Tips, Tricks, and Potholes

	IV Object Proxies
	Using Object Proxies
	Introduction
	Essential SPEEDES Object Proxy Terminology
	Object Proxy Usage Overview
	Object Proxy Usage Detailed Description
	Defining Object Classes in File Objects.par
	Implementing Object Definitions Contained in Objects.par
	Publishing Objects
	Subscribing to Object Classes
	Attribute Level Subscription
	Free Object Proxy

	Proxies in Use (Examples)
	Non-Proxy Example: Manually Pushing Attribute Updates Without Proxies
	Proxy Example: Automatically Pushing Attribute Updates With Proxies
	Proxy Example: Using Attribute Level Subscription

	Tips, Tricks, and Potholes

	Proxy Attributes
	Static Attribute Types
	Integer Numbers
	Floating Point Numbers
	Booleans
	Character Strings
	Objects as Attributes
	Lists
	Binary Buffer Data (Character Pointer to Non-String Data)
	Static Positions

	Dynamic Attribute Types
	Basic Concepts
	Dynamic Integers, Doubles and Booleans
	One Dimensional Functions
	Dynamic Position Attributes

	Tips, Tricks, and Potholes

	Data Distribution Management (DDM)
	Declaration Management Simulation Example
	Spaces, Regions and Dimensions
	Built-In DDM Classes and Methods
	Class Type Filtering
	Attribute Level Filtering

	DDM Event Handlers Optimization
	DDM Built-In Filtering Types
	Enumerated Value Filtering
	Double Range Filtering
	Range-Based Filtering

	DDM Performance
	Hierarchical Grids

	Tips, Tricks, and Potholes

	V External Interfaces
	External Modules
	Simple External Module
	Sending and Receiving Messages (Non-Proxy)
	Local Events
	Record and Playback
	Optimizing Memory Use
	Tips Tricks and Potholes

	Command-Line Utilities
	Querying Object By Names and Types
	Query
	Time
	Changing Lock To Wall Clock Scaler
	Scheduling and Canceling Events
	Pause and Resume
	Simulation Time Controller
	Killing Simulations
	Sorted Output
	Trace File Filtering

	VI Advanced Topics
	Simulation Objects
	Dynamic Objects
	Components
	The Component APIs

	Autonomous Events
	Implementing Autonomous Events
	Event Processing Phases
	Lazy Re-evaluation
	Fast Rollbacks
	Committing Events

	Increasing Efficiency of Autonomous Events
	Autonomous Event Example

	Checkpoint/Restart: Using Persistence
	Persistence Memory Management Description
	Basic Changes to Enable Checkpoint/Restart
	Rollbackable Classes and Functions
	Registering Classes to be Restored
	Attaching Pointers
	Adding and Removing Memory From Persistence
	Classes with Virtual Functions
	Smart Pointers

	Handling Events Which Pass Pointers
	Printing the Database for Further Debugging
	Tips, Tricks, and Potholes

	Diagnostic Tools
	Global Virtual Time (GVT) Statistics
	Trace Files
	Flying Trace
	Event Usage Statistics
	Event Memory Usage
	Event Message Sending
	Event Data Summary
	Event Usage Statistics by Simulation Object
	Automatic Lazy Re-evaluation Statistics

	Simulation Object Statistics
	Simulation Object Data Summary
	Object Placement Information

	Interval Statistics
	Event and Object Statistics
	Rollback Statistics

	VII Appendix
	Parallel Discrete-Event Simulation Technical Reference
	What is Discrete-Event Simulation
	Sequential Discrete-Event Simulation (SDES)
	SDES and PDES Trade-Offs
	PDES Challenges
	Conservative Time Management
	Optimistic Time Management
	Time Warp and Breathing Time Buckets
	Breathing Time Warp and Flow Control

	The Conservative Time Management Algorithm
	Setting the Appropriate Parameters in the speedes.par File
	Minimum Lookahead Global Functions
	Proxy Updates, Undirected Handlers, and DDM
	Special Event Plug-in Calls (Advanced Topic)

	SPEEDES Parameter File Configuration
	High Level SPEEDES Configuration (section parameters)
	GVT Configuration (section gvt_parameters)
	External Connections Configuration (section SpeedesServer)
	Output Data Configuration (section statistics)
	Flying Trace Diagnostic Configuration (section FlyingTraceOutput)
	Trace Diagnostic Configuration (section trace)
	Simulation Named Pauses (section NamedPauses)
	Checkpoint/Restart Configuration (section Checkpoint)
	HLA (section HLA)

	Acronyms and Abbreviations
	Index

	Index

