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INTRODUCTION

Since the dawn of humanity, nature has inspired crea-

tive endeavors in all facets of human intellect. In archi-

tecture and engineering, biomimetic design has been

transformative. For hundreds of years, scientists studied

birds to unlock the mysteries of flight. Artificial neural

networks have been modeled from theories and observa-

tions on the function and structure of the neural synap-

ses in the brain. Additionally, nature’s masters of

echolocation—bats and dolphins—can detect and track

very small prey using sophisticated waveforms, which

are varied dynamically through the encounter with the

prey [1]. Indeed, it may be well argued that general arti-

ficial intelligence can not just match, but surpass,

human intelligence, representing the holy grail of

biomimetics.

The integration of some form of machine learning into

engineering systems has often been referred to using terms

such as “smart” or “intelligent.” Yet, the description of

what exactly makes a sensor “smart” is somewhat nebu-

lous, ranging from sensors that (at a minimum) are net-

worked and can communicate information so as to

improve the operational efficiency, to sensors that have an

on-board microprocessor for some form of embedded

processing for optimal control of the measurement pro-

cess [2], and to networked sensors that exhibit “distributed

intelligence” with capabilities of self-monitoring, making

decisions to automatically compensate for changes in their

surroundings [3], [4]. Adaptive radars have the capability

of changing the processing of received data as a function

of time, while fully adaptive radars additional have

the capability to adapt on transmit. As a result, “fully

adaptive” has often been used synonymously with

“cognitive” radar, although over the past 10 years, the

term “cognitive” has become increasingly popular, per-

haps in part because it evokes a vision of biomimetic

artificial intelligence fully integrated into the sensing

process, emulating human perception.

Formally, cognition is defined in the Oxford dictionary

as “the mental action or process of acquiring knowledge

and understanding through thought, experience, and the

senses.” Although there are many functions of the brain

that enable human cognition, the cognitive neuroscientist

Dr. Joaquin Fuster [5] has posited that there are five essen-

tial processes: 1) the perception-action cycle (PAC), 2)

attention, 3) memory, 4) language, and 5) intelligence.
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The PAC is a circular flow of information—a feedback

loop—from the environment to the senses (perception),

and through motor structures back to the environment

(action). Embodied in this cycle is the key idea that cogni-

tion is an interactive process, where the cognitive entity

must respond or change its behavior in some fashion as a

result of external stimuli.

In traditional fore-active radar systems, the informa-

tion flow is one-way: The radar interrogates its surround-

ings by transmitting a fixed, predefined waveform

regardless of any changes in the environment. Adaptive

processing may be performed to receive, but results from

such processing do not translate into the control of any

radar function on transmit (e.g., there is no “action” only

“perception”). Current research on cognitive radar aims

not only at developing the adaptive hardware

and analytical techniques necessary to enable two-way

interaction of the radar with its environment for per-

formance optimization, but also on leveraging advances in

fields such as stochastic control, optimization, machine

learning, and artificial intelligence (AI) to develop engi-

neering analogs to a wide range of cognitive processes.

This article provides an overview of the evolution

of cognitive radar, focusing on the crystallization of

certain ideas that have led to a formal, technical defini-

tion of cognitive radar in the IEEE Standards. A survey

of cognitive research trends over the past decade is

provided to give insight on the techniques being devel-

oped for a wide range of radar applications. Finally,

technical challenges to progress in cognitive radar

design are discussed as motivation for future work in

this field.

HISTORICAL CONTEXT

EARLY PIONEERS

The foundations of cognition in an engineering context date

back to Norbert Wiener and his work in stochastic processes,

communications, and control in the 1930s. Observing that

“the nervous system and the automatic machine are funda-

mentally alike in that they are devices, which make decisions

on the basis of decisions they made in the past,” [6] Wiener

first coined the term cybernetics in 1948 as “the scientific

study of control and communication in the animal and the

machine.” [7] Whereas artificial intelligence strives for com-

puters to intelligently understand the world as an end goal in

and of itself, cybernetics exploits this understanding to gain

necessary feedback to achieve specific goals. In this way, it

embodies a fusion of ideas from Shannon’s information the-

ory, originally designed to optimize the transmission of infor-

mation through communication channels, systems theory and

control, and biomimetics.

As the seeds of intelligent computing were being

sown, the groundwork for modern methods in statistical

signal processing and sequential detection was being

laid [8]. Significant advances into the optimal design of

sequences of experiments, hypothesis testing, and parame-

ter estimation were made [9], [10]. Central to these works

was the idea that the data collection process itself should

be a closed-loop process, where a decision on how to col-

lect subsequent samples is determined based on the analy-

sis of prior samples. Early examples of such closed-loop

data collections include that of Meier et al. [11], where

dynamic state is treated as an adaptive measurement
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problem, and Athans [12], where an optimal closed-loop

selection of measurements is determined in a Kalman fil-

tering problem.

SENSOR AND RADAR MANAGEMENT

A broader, more comprehensive expression of this

optimal experiment design problem is embodied by the

term “sensor management,” which first came into use

in the late 1960s. The sensor management para-

digm [13] represented the advent of a new generation

of sensors, enabled by advancements in sensor and

communication technologies in the 1990s, where previ-

ously fixed sensor operating parameters could now be

adapted during the data collection process using soft-

ware commands. Existing mathematical constructs for

control of decision processes, such as Markov decision

processes and multiarmed bandit decision processes,

became important facilitators for the development of

many approaches for sensor management that remain

influential today.

As active sensors, radars have experienced similar,

parallel developments, and are particularly well suited for

integration of cognition as they possess multiple degrees of

freedom via waveform agility and electronically steered

antenna arrays. An early, fundamental radar signal process-

ing algorithm that embodies principles of cognition is

the least-mean-squares algorithm pioneered by Widrow

et al. [14]. This approach enables an antenna array to adap-

tively form a main lobe, with its direction and beamwidth

determined by a control signal, as well as place nulls so as to

reject any unwanted signals or noise outside the main lobe,

such that themean-square error is minimized.

Ideally, radar resource management (RRM) can be

best accomplished by optimal decision making and control

of degrees of freedom (transmitter, receiver, antenna, and

power) to maximize the performance of multiple radar

functions (e.g., detection, tracking, and classification)—an

inherently cognitive process. In the early 1990s, a number

of benchmark problems were issued to enable the compar-

ison of techniques that used the beam steering capabilities

of phased array antennas to optimize the tracking in the

presence of electronic countermeasures, while minimizing

false alarms [15], [16]. This has generated a rich body of

literature, with solutions involving a combination of mul-

tiple hypothesis tracking and interacting multiple model

filtering for tracking (e.g., [17], [18]) to optimize perfor-

mance measures such as signal-to-interference-plus-noise

ratio (SINR), track sharpness, and detection threshold.

Increased adaptivity was a common feature of pro-

posed solutions, which involved adaptive revisit time

scheduling, adaptive selection of detection thresholds

(e.g., constant false alarm rate detectors) [19], and adap-

tive clutter suppression with space-time adaptive

processing (STAP) [20] for improved target detection

(DET). Adaptive tracking techniques have varied the mea-

surement times as well as signals used for track updates,

based on measurements acquired by a tracker. This feed-

back loop is used to control the radar such that frequent

measurements are made during unpredictable, or rapid

dynamic maneuvers, while infrequent measurements are

made during predictable periods or steady dynamics.

Experimental radar systems, such as the U.K. Multi-func-

tion Electronically Scanned Adaptive Radar [21], U.S.

Advanced Multifunction RF System, and Royal Canadian

Navy Active Phased Array Radar, among others, have

been used as a platform for demonstrating the new ideas

being developed. Indeed, as early as 1990, researchers

proposed future concepts for an intelligent radar that could

learn from its environment [22], fusing artificial intelli-

gence with prior knowledge to achieve improved

optimization and data-dependent processing for resource

management and remote sensing [23].

ENABLING PARADIGMS

Simultaneously, the concept of altering the intrapulse

waveform modulation based on the measurements pro-

vided by the tracker was also beginning to be explored.

This led to the development of methods for optimal wave-

form selection (e.g., [24], [25]) and adaptive extensions

thereof (e.g., [26], [27]). The term waveform diversity

[28], first introduced in 2002 by Dr. Michael Wicks [29],

has become a focal point for research into cognitive radar

and is defined in the IEEE Standard 686 as the

“optimization (possibly in a dynamically adaptive man-

ner) of the radar waveform to maximize the performance

according to particular scenarios and tasks” including

exploitation of multiple domains, such as “the antenna

radiation pattern (both on transmit and receive), time

domain, frequency domain, coding domain, and polariza-

tion domain.” Examples include waveform selection from

among multiple waveform classes, e.g., linear or nonlinear

frequency modulation (LFM/NLFM), phase or frequency

coding, and ultrawide band waveforms. It could also

include adapting the parameters within a waveform class,

such as changing the pulse repetition interval, bandwidth,

or center frequency [30]. The work by Guerci [31],

showed that the optimal waveform that maximizes the

SINR arises as the solution to a generalized eigenvalue

problem, while methods for imposing constraints on the

waveform to make it suitable for practice are also

considered.

Investigations into optimal radar waveforms date back

to the inception of waveform design in the 1930–1940s,

and include important milestones on LFM waveform

design [32], the design of optimal coded waveforms

to reduce sidelobes, mismatch loss, mainlobe
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broadening [33], [34], [35], improve pulse compres-

sion [36], and ambiguity function design for improved

detection, [37] or target matched illumination [38]. In

1953, Dr. Philip Woodward published a seminal

work [39] in which he introduced information theory in

the context of radar detection, stating “the problem of

reception is to gain information from a mixture of signal

and unwanted noise,” much of the literature has been con-

cerned with “methods of obtaining as large a signal to-

noise ratio (SNR) as possible on the grounds that noise

ultimately limits sensitivity and the less there is of it the

better. [While] valid ... [this] can be misleading, for there

is no general theorem that maximum output SNR ensures

maximum gain of information.” Indeed, his book ends

lamenting that “the basic question of what to transmit

remains substantially unanswered.”

Although this remains an open question, Woodward’s

work laid the foundation for subsequent information-theo-

retic waveform design approaches, including that of

Bell [40], which proposed maximization of the mutual

information between a random extended target and the

received signal for optimal information extraction [41].

Dr. David Middleton’s 1959 work on statistical communi-

cation theory [42] took a giant leap forward by developing

a framework for “joint optimization of transmission and

reception by choice of signal waveform.” The approach

developed was rooted in Bayesian decision theory and

provided for system optimization through choice of wave-

form at the transmitter and minimization of a cost func-

tion, which provides for a value judgment of “error” and

thus guides the decisions. Middleton’s work thus provides

a concrete analytical framework for implementation of the

perception action cycle in a radar transceiver, which has

served as groundwork for future milestones in cognitive

radar research [43], [44]. However, Middleton also notes

the difficulty in selection of optimality criteria and the

assignment of costs accurately in an objective fashion.

The cost may not be unique and reflects the “unavoidable

uncertainty...that is the price we must pay for an inevitably

incomplete knowledge of the world around us.” In this

remark, recognition that the a priori information gained

from previous experience is highly likely to be inadequate

is plain. Nevertheless, concludes Middleton, “the more

uncertain our a priori data, the greater the expected cost

of operation—we cannot avoid paying for ignorance.”

Thus, complementary and equally essential as wave-

form diversity is the knowledge-aided signal processing

paradigm, which, to put it simply, aims to exploit prior

knowledge to improve the sensor performance. Originally

proposed in the context of STAP to improve the adaptive

suppression of clutter in nonhomogeneous clutter environ-

ments [45], prior knowledge of the interference environ-

ment was proposed for intelligent training and filter

selection, as well as data prewhitening [46]. Prior knowl-

edge in this example could take the form of a terrain map

or even images from other sensors, such as hyperspectral

imagers [47]. In 2002, the Defense Advanced Research

Projects Agency (DARPA) initiated the Knowledge-Aided

Sensor Signal Processing and Expert Reasoning Program

to more broadly address the challenge of minimizing sen-

sor deficiencies through exploitation of prior knowledge.

Since then, this concept has been applied to numerous

other radar problems, such as 2-D autofocus for spotlight

SAR [48], tracking [49], ground moving target indication

[50], and radar identification [51].

Perhaps unsurprisingly, both waveform diversity and

knowledge-aided signal processing have analogs in the

natural world. Bats have been reported to use many differ-

ent waveforms (e.g., constant frequency, linear, and

hyperbolic frequency modulation, multiple harmonics,

and even other types of nonlinear frequency modulation)

in pursuit of different activities, such as searching for

prey, social calls for communications with other bats, and

hunting—definitely a wonderful example of waveform

diversity in a multifunctional active sensing system! Simi-

larly, as humans, we are all aware of our own capacity to

learn and thereby adapt our behavior as a result. Children

will not touch a hot cup of coffee more than once, quickly

learning that touching hot things hurt. We consult books,

our friends, and remember past experiences when guiding

ourselves to future decisions—and we would view doing

so as “smart.”

VISION FOR THE FUTURE

The crystallization of cognitive radar as a formal concept

for next-generation radar reflects a conscious evolution in

design that incorporates more and more features of

human cognitive capabilities into the radar architecture

to achieve increased autonomy and performance optimi-

zation in dynamically changing environments. It thus

provides a vision for building upon the designs of exist-

ing radar systems, some of which may now in retrospect

be recognized as having some cognitive characteristics.

One hierarchy of human cognitive capabilities is given

by Bloom’s taxonomy, which originates from cognitive

psychology and is shown in Figure 1. It may be argued

that existing approaches map to only the lowest cognitive

levels. While databases or prior measurements comprise

“remembered” prior knowledge, most signal processing

and machine learning algorithms represent methods used

for “understanding.” Knowledge-aided signal processing

represents a higher level of cognition than adaptive proc-

essing as it does, to a certain extent, permit use of infor-

mation in new situations.

An early expression of such a vision was given in 2003

with the introduction of the Sensors as Robots [52] con-

cept: “As more knowledgeable and proven techniques are

obtained, radar systems will begin to function as robots...

Gurbuz et al.
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the final step will be autonomous operation of these sen-

sors under the intelligent robot paradigm.” [53] Whereas

traditionally sensors have been a means for providing

informational inputs to robots, this concept flipped the

equation: now, sensors themselves would be autonomous,

intelligent agents, “figuring out” how best to go about

their tasks.

The term “cognitive radar” itself was first coined by

Dr. Simon Haykin that same year [54], which drew heavily

on ideas developed by Fuster in cognitive neuroscience.

Haykin’s work built upon past work in cybernetics, artificial

neural networks, self-organized learning, and Bayesian deci-

sion theory to propose engineering analogs for implementa-

tion of four of the main cognitive features identified by

Fuster: the PAC, memory, attention, and intelligence [55].

The parallels between the PAC envisioned by Fuster and

that describing the operation of a radar transceiver for

remote sensing may be observed from Figure 2. Both exhibit

the common feature of

providing for closed-

loop feedback in the

radar transceiver through

interaction with the envi-

ronment. Through the

perceptual hierarchy,

dynamic changes in the

environment may be

analyzed “bottom-up ...

and lead to the process-

ing of further actions,

top-down through the

executive hierarchy,

toward motor effectors.”

[56] Note that there may

be interaction and feed-

back along different lev-

els of the perceptive and

executive hierarchies.

Hierarchy is reflected also in the cybernetics research of

Jens Rasmussen [57], [58] in the 1980s, in which human

behavior was described in terms of three levels: skill-based,

rule-based, and knowledge-based. Skill-based behavior

described subconscious yet efficient PACs, which, accord-

ing to Bruggenwirth [59], maps to basic signal processing

and generation units in a radar system. Rule-based behavior

is applied by humans in familiar situations, and although

consciously controlled, the action is reactive and thus results

in procedures that have been learned over time. In radar, the

parallel operation would be the procedures that have been

prestored or hard-coded, based upon offline simulations and

the analysis of prior experience. The highest layer is the

knowledge-based layer, in which solutions to problems that

arise in unfamiliar situations are derived using knowledge-

based deliberation. In cognitive radar, a similar level of

behavior would be implemented by search or inference

Figure 2.
Perception Action Cycle for Radar Remote Sensing.

Figure 1.
Bloom’s Taxonomy.
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algorithms that utilize all available knowledge derived from

sensors, mission objectives, and memory.

CURRENT PROGRAMATIC THRUSTS

Haykin’s work thus marked the beginning of concerted

efforts into formulating and defining exactly what the

architecture and characteristics of future cognitive radar

systems would be like. The investigation into tangible

implementations was in part spurred by the challenges

imposed by an increasingly congested RF spectrum, while

adaptivity on transmit and controlled illumination were

being enabled by advances in electronics, embedded com-

puting, adaptable RF components (amplifiers, filters),

small, low cost, low-power RF transceivers, and software-

defined radio platforms.

In the early 2000, two programs initiated by the U.S.

Air Force Office of Scientific Research (AFOSR) and

DARPA stimulated research that would serve as important

precursors to cognitive radar: namely, the multidisciplin-

ary University Research Initiative “Waveform Diversity

for Full Spectral Dominance” Program and “Waveform

Agile Sensing and Processing” Program. The aims of

these programs were to devise methods for the optimiza-

tion of radar performance under time-varying environ-

mental conditions, including a capability to respond to

unknown dynamic target parameters through waveform

agility. Together, these two programs advanced the requi-

site mathematical foundations, incorporating the resulting

theories into a systems design perspective.

Subsequently, AFOSR would take one step further in

formulating the theories required for the PAC implementa-

tion by initiating the dynamic data driven application sys-

tems (DDDAS) program, defining the DDDAS concept as

“the ability to dynamically incorporate additional data into

an executing application, and in reverse, the ability of an

application to dynamically steer the measurement (instru-

mentation and control) components of the application sys-

tem.” [60] Efforts are focused on four specific science and

technology frontiers: 1) applicationsmodeling, 2) advances

in mathematical and statistical algorithms, 3) application

measurement systems and methods, and 4) software infra-

structures and other systems software. This is comple-

mented by the U.S. Air Force Research Laboratory’s

program in Fully Adaptive Radar, led by Dr. Muralidhar

Rangaswamy, which aims to close the loop on the radar

operation at multiple levels in an attempt to bring to bear

the sense-learn-adapt paradigm to maximize the system

performance by making adaptive and optimal use of all

available degrees of freedom. Significant advances from

this program include: a) performance bounds for closed-

loop radar tracking with controlled laboratory demonstra-

tion of this concept; b) a powerful modeling and simulation

capability for generating training data for signal-dependent

interference scenarios; c) signal processing algorithms for

joint adaptive radar processing on transmit and receive; d)

waveform design and optimization principles; e) convex

optimization for adaptive radar covariance matrix estima-

tion; f) ambiguity function analysis and Cram�er-Rao

bounds for distributed passive radar (which enable sensor

geometry placement and illuminator selection for maxi-

mizing system performance); and, g) passive radar detec-

tion involving noisy reference channels with analytical

performance guarantees. Most importantly, the modeling

and simulation capability developed under this program

has transitioned to a program under support from the Office

of Secretary of Defense.

This intense research activity has resulted in a dra-

matic increase in publications over the past few years,

as shown by Figure 3, which surveys publications in

the IEEExplore and SPIE Digital Libraries that refer-

ence cognitive or fully adaptive radar in their title

or text. Much of this work is theoretical in nature and

substantiated with simulation results; however, there

are singular works (notably at Ohio State Univer-

sity [61], FFI [62] and ArmaSuisse [63]) that experi-

mentally validate performance gains due to cognitive

design. Cognitive radars face unique challenges to

requirements specification and validation, as discussed

Figure 3.
Publications on cognitive radar (2003–March 2019).

Gurbuz et al.
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in more detail in Section V. As enabling technologies

mature, continued research will push forward the design

of next-generation radar systems with ever increasing

cognitive capabilities.

DEFINITION AND CLASSIFICATION OF COGNITIVE

RADAR SYSTEMS

The increasingly common use of the relatively new term

“cognitive radar” has resulted in some debate as to how a

cognitive radar actually differs from other terms used—

such as intelligent or smart radar, fully adaptive radar

(FAR), and cognitive FAR—if at all; and what the techni-

cal requirements for describing a radar as “cognitive” are.

Descriptions of cognitive radar that have been proffered

include the following:

1) “Cognitive radar (CR), which differs from tradi-

tional active radar as well as fore-active radar by

virtue of the following capability: The development

of rules of behavior in a self-organized manner

through a process called learning from experience

that results from continued interactions with the

environment.” (Haykin et al. [55]).

2) “A system that is capable of sensing, learning, and

adapting to complex situations with performance

approaching or exceeding that achievable by a sub-

ject matter expert.” (Guerci et al. [64]).

3) “While a fully adaptive radar may employ feedback

and use prior knowledge stored in memory, a cogni-

tive radar predicts the consequences of actions, per-

forms explicit decision-making, learns from the

environment, and uses memory to store the learned

knowledge.” (Bell et al. [44]).

4) “Cognitive radar is a radar system that acquires

knowledge and understanding of its operating envi-

ronment through online estimation, reasoning, and

learning or from databases comprising context infor-

mation. Cognitive radar then exploits this acquired

knowledge and understanding to enhance informa-

tion extraction, data processing, and radar man-

agement.” (Charlish et al. [65] in 2017).

5) “A cognitive radar system follows the four pri-

nciples of cognition: The perception-action cycle,

memory, attention, and intelligence.” (Farina et al.

[66] in 2017).

As part of the work of the NATO SET-227 Task Group

on Cognitive Radar, active between 2015 and 2019, and of

which all the authors are a member, numerous discussions

on the characteristics of cognitive radar were conducted,

which highlighted the need for and insights on what a

definition might look like. In 2017, Dr. Chris Baker and

Dr. Hugh Griffiths spearheaded efforts to include a formal

definition of cognitive radar in the IEEE Standard Radar

Definitions 686 [67]: “A radar system that in some sense

displays intelligence, adapting its operation and its proc-

essing in response to a changing environment and target

scene. In comparison to adaptive radar, cognitive radar

learns to adapt operating parameters as well as processing

parameters and may do so over extended time periods.”

From these definitions, it may be seen that there is

general agreement in the cognitive radar research commu-

nity concerning some common elements that must be pres-

ent in a radar system for it to be classified as cognitive.

These are the same characteristics identified by Fuster [5]

within the context of cognitive psychology: the PAC,

attention, and language. First, the PAC is the framework

which provides for closed-loop feedback in the radar

transceiver. If these functions were not to exist, then the

ability to adapt based on the system’s perception of the

environment would be absent. Second, attention enables

the radar to focus its resources on critical aspects of the

observed scene. This is a characteristic that all multifunc-

tional radars must possess as a resource management

requirement. Finally, language may be viewed as the abil-

ity to encode data such that it is possible for the system to

store, recall, and disseminate the information both inter-

nally and externally, but more broadly can embody any

set of rules for communicating information, including

internal messaging as part of decision making. As the stor-

age and recall of information are essential to learning and

decision making, without it the system would arguable be

hindered from being responsive to any perception of out-

side stimuli.

The remaining two elements of Fuster’s framework

for cognition includes memory and intelligence, and are

aspects regarding which designs begin to diverge. Here,

memory alludes not just to physical storage devices, which

could hold prior knowledge, but to memories of learned

experiences gained during the course of extended periods

of observations. Thus, memory can be said to function at

varying levels: 1) as a fixed internal knowledge base, 2) as

a dynamic knowledge base updated by an external source,

and 3) as an online learning capable system. Similarly,

intelligence may be characterized into varying degrees

based upon 1) the complexity of the decision-making

mechanism, and 2) capacity to plan long-term behavior.

Conceivably, a radar operating at a high level of cognition

would even be anticipative, planning based on its predic-

tions of future outcomes.

Thus, an overarching classification scheme that would

allow flexibility in the definition and identification of cog-

nitive characteristics as recently been proposed [68],

which relies on grading systems based on the degree of

planning sophistication (P), decision mechanism sophisti-

cation (D), and memory sophistication (M). This taxon-

omy is depicted by the 3-D synthetic classification Space,
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shown in Figure 4, and provides a means for acknowledg-

ing the cognitive aspects of existing radar systems, while

providing a scale to identify the ways in which next-gener-

ation cognitive radar systems have advanced. While [68]

Horne et al. also provided for a numerical scale to match

this framework, it is not so much the numbers used, but

the recognition that systems ought not be judged in a

binary, black, and white fashion, that is significant.

TECHNIQUES AND APPLICATIONS

Over the past 15 years, research into cognitive radar design

has spanned a wide range of applications, using many dif-

ferent techniques that draw on prior advancements in

Bayesian decision theory, information theory, decision the-

oretic approaches (including fuzzy logic, rule-based sys-

tems, metaheuristic algorithms, and Markov decision

processes), dynamic programming, optimization [e.g.,

maximization of SNR, convex optimization, and minimiza-

tion of the Cram�er-Rao Lower Bound (CRLB)], and game

theory. Figure 5 shows a histogram of applications and

techniques based on the 83 journal papers and 238 confer-

ence papers surveyed in Figure 3. A complete listing of this

literature may be found in the Final Report of the NATO

SET-227 Task Group on Cognitive Radar. This histogram

reveals that while many applications are being considered,

a few have been of great interest; namely, concepts for

transceiver architecture and mechanisms for cognitive pro-

cesses (ARCH), radar resource management (RRM), target

detection (DET), localization/direction-of-arrival estima-

tion (LOC) and tracking (TRK), radar networks (RN), and

spectrum sharing (SS). Most works involve some form of

waveform selection, optimization, and design (WD), while

adaptive control of antenna beam pattern, design of adap-

tive RF components (ADPTHARD) as well as experimen-

tal testing (EXP) have also been explored.

Spectrum sharing has been a topic of focus due to the

urgent challenges presented by a congested RF spectrum to

military and civilian systems alike. The availability of fre-

quency spectrum for multifunction radar systems is being

continuously diminished. The growth of activities in civil

communications and the emergence of new technologies

and services that have a great demand for spectrum allo-

cation induce a very strong pressure upon the frequency

channels currently allocated to radars. In the VHF (30–

300 MHz) and UHF (300–1000 MHz) bands, where for

instance foliage penetrating radars are active, interference

can come from broadcast and TV services. Recently, these

bands have seen the introduction of the IEEE802.11ah and

IEEE802.11af protocols for Internet of Things (IoT) and

Cognitive Radio Technology, respectively. In the U.S., the

National Telecommunications and Information Adminis-

tration has devoted efforts on identifying frequency bands

that could bemade available for wireless broadband service

Figure 5.
Techniques and applications investigated in cognitive radar publications (2003–March 2019).

Figure 4.
3D Synthetic Cognitive Space. [68].
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provisioning, resulting in allocation of 115 MHz of addi-

tional spectrum (1695–1710 MHz and 3550–3650 MHz

bands) and a conflict with L-band (1–2 GHz) radars. An

example is the air route surveillance radar used by the Fed-

eral Aviation Administration that shares the spectral band

with wireless interoperability microwave access (WiMAX)

devices. The majority of the LTE services, e.g., WiMAX

LTE, LTE global system for mobile (GPS) are operative in

the S-band (2–4 GHz), where they interfere with surveil-

lance radars. In C-band, the spectrum has been eroded by

allocation of the 5-GHz band to 802.11a/ac Wireless LAN

Technology. X-band is still free from communication serv-

ices interference, but when 5G systems become fully oper-

ative, even the Ka, V, andW bands will be dense.

Thus, in a near future, radars will likely be required to

share their bandwidth with communication systems, where

the latter ones, quite often, are the primary users. Yet, this

problem cannot be addressed only by traditional modes of

operation, such as antenna beamforming or interference

cancellation on receive. Future systems require the ability

to anticipate the behavior of radiators in the operational

environment and to adapt its transmission in a cognitive

fashion based upon spectrum availability. Radar cognition

in this case is based on two main concepts: spectrum sens-

ing and spectrum sharing. Spectrum sensing aims at recog-

nizing frequencies used by other systems occupying the

same spectrum in real time, while spectrum sharing tries

to limit interference from the radar to other services and

vice versa.

Furthermore, battlespaces of the future will not

involve isolated geographical regions with limited techno-

logical resources, but will require seamless integration

of networked ground-based, airborne, and space-based

sensors at different levels, automated to find, identify, and

track threats in increasingly complex and diverse environ-

ments. The challenge of spectrum congestion is one

dimensional of this broader battlespace. Technological

advancements have not just benefited modern society, but

have also made it easier for adversaries to make their

forces both mobile and elusive, such through use of small

drones to attack a diverse set of tactical targets, previously

not exposed to any threat. Both force protection and for-

ward operations require pervasive, robust, and agile sens-

ing that can optimize multiple missions in a dynamic

environment. This operational requirement directly maps

to the definition of what a cognitive radar strives to

accomplish, and indeed, the generalized notion of a cogni-

tive sensor network, empowered with multiple layers of

hierarchical cognitive processing.

CHALLENGES

While the potential of cognitive approaches to enhance

existing radar performance in almost all respects has led

to great progress, full achievement of this potential faces

several important challenges.

RESEARCH

Two key challenges to the research and development

(R&D) of cognitive radars are the development of assess-

ment and evaluation tools, as well as experimental testing

methodologies. A common terminology for describing

and comparing the characteristics of cognitive radar is

needed. Although the ontology by Kreucher et al. [68]

provides a graded framework for assessment, as

algorithms and architectures advance, this will need to be

further revised, detailed, and adapted. Furthermore, evalu-

ation of cognitive radar algorithm performance requires

quantitative metrics. This is not just vital for analyzing

radar performance offline, but is also the basis for forming

cost or reward functions on which online optimization is

based. Although system performance will still be mea-

sured in terms of standard performance metrics—such as

probability of target detection and false alarm, mean

square error in tracking systems, and probability of correct

classification in automatic target recognition systems—

cognitive systems require additional metrics that quantify

the gain in performance achieved at the cost of using sys-

tem resources.

Common approaches fall into the categories of informa-

tion-driven [69], task-driven, or quality-of-service (QoS).

Information theoretic surrogates, such as mutual informa-

tion and Bayesian information, can be very valuable in opti-

mizing the waveform to increase the amount of information

gained. However, when allocating resources, they tend to

give a bias toward information rich tasks, such as tracking

high SNR targets, which may not be the targets of most

interest to the mission. Task-driven methods optimize each

task using a performance measure that is specific to the

task. This is effective in optimization of individual tasks;

however, multiple-task performance measures, such as in a

multifunction radar system, is a particularly difficult task.

To this end,Mitchell et. al [70] provided some strategies for

developing cost functions for executive processor optimiza-

tion by combining performance and measurement metrics.

QoS methods [65] circumvent the problem of combining

task performance measures by combining and optimizing

utilities, which represent the mission-relevant satisfaction

that is associated with a task performance level, leading to

mission relevant resource allocation. This issue of cost and

reward function design remains more of an art than a sci-

ence, and will continue to be a major research challenge.

A related, but unique, challenge to cognitive radar

design is experimental testing, since the transmit waveform

and settings are adapted during operation. With more

sophisticated simulations, new development and qualifica-

tion processes, including software-in-the-loop testing, can
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be developed and will contribute to cognitive radar valida-

tion. Evaluation on precollected data sets is no longer

possible, except in limited cases where the data can be

oversampled in some manner and then down-selected after

the fact to emulate cognitive radar selection of parameters.

For example, Bell et al. [71], the pulse-Doppler software

defined radar (SDR) collected data at a high-pulse repeti-

tion frequency (PRF). The cognitive algorithm determined

the number of pulses and required PRF (up to the actual

PRF) and then downsampled the pulses to get the correct

number of pulses at the desired PRF. A similar process was

used by Oechslin et al. [72].

Thus, as of early 2015, the performance of advanced

concepts for cognitive radar was only examined through

simulation, or in the best case, using prerecorded data.

There had been no reports of experimentally validated

concepts, largely because the necessary hardware to test

them had not been developed. However, this step is vital

to establish the true performance potential of applying

cognitive processing methods. In the last few years, cogni-

tive radar testbeds have been developed at the Ohio State

University (OSU) [61], Armasuisse [63], and FFI, [62]

and real-time experimental evaluations have been reported

by Smith et al. [61], [62], [70], [73]. Challenges in real-

time experimentation involve repeatability of experi-

ments, determining what is truth, determining metrics that

can be obtained from the data and used for optimization,

and timely computation. Robustness to modeling and

computational errors has been largely ignored in the

research to-date, but is a critical issue that has just begun

to be investigated [74].

REQUIREMENTS DEFINITION

Inherent to the radar procurement process is the specification

of the required radar performance. The typical approach is to

define a number of worst cases and specify the performance

that the radar should always achieve for these example worst

cases. This approach is valid for noncognitive radar systems

that do not reconfigure based on the current environment, as

the single radar configuration that matches the worst accept-

able performance may be utilized. But, for a cognitive radar,

the worst-case scenario is unlikely to be selected as a

solution, because this requirement specification does not

warrant the additional development cost of cognition. Thus,

using a limited set of worst-case scenarios does not make

sense for cognitive radars, and an alternative approach is

required. A related issue is that for a cognitive radar, the per-

formance potentially depends on the amount of learnt or

context knowledge available. To define a processing for

requirements specification that considers learning and con-

text, criteria weighing the importance of performance met-

rics, as well as quantification of the tradeoffs evaluated, will

be needed to compare candidate solutions.

RELIABILITY OF PAST KNOWLEDGE AND LEARNING

FROM EXPERIENCES

As the capabilities of radar transceivers advance to jointly

sense, learn, and adapt on both transmit and receive, new

opportunities and vulnerabilities will become part of the

changing dynamics of electronic warfare (EW). While

boosting sensing capabilities so that friendly systems can

defend against jamming and other countermeasures, and

leaving adversaries no place left to hide, cognitive radar

nonetheless retains the risk that it could be beguiled into

poor decisions, much akin to the human counterpart that

has inspired its design. Thus, a cognitive radar requires a

means for evaluating and ensuring the reliability of its

knowledge sources: both sources of past knowledge, pro-

vided through access of databases, as well as knowledge

learned through operational experience. This includes

considering not only the possibility for deception, but also

whether the validity of data degrades over time. Thus,

understanding how to design a radar so that it can learn

from past mistakes caused by poor decisions, and thereby

enable it to gain the ability of making informed decisions

in the future, will be critical.

LAWS AND REGULATIONS

Cognition in radar requires waveforms and circuits to be

reconfigurable and optimizable in real time. However, an

often overlooked operational constraint is the national

and international laws governing operation. Naturally, the

transmissions of radars and other devices are all regulated

(e.g., ITU emission standard [75]). While radar transmis-

sions should not exceed the limits imposed by regulation,

unwanted emissions, due to nonlinearity in the transmitter

and to the steep rise and fall times of the radar pulses,

often occur [76]. Especially in cognitive systems, the

dynamic reconfiguration of the transmission spectrum is

not always easily implementable and may result in out-of-

band (OOB) transmissions. This is primarily due to the

nonlinear operational regime of the high-power radar RF

circuitry (particularly for vacuum tube amplifiers), which

causes nonnegligible spectral spreading outside the

assigned radar band. This makes coexistence of communi-

cations and radar systems in close bands with narrow

guard bands difficult [76]. Magnetron tubes, quite often

used in legacy radar systems because they are inexpensive,

have serious drawbacks in term of spectral purity. To

reduce OOB emissions, bandpass filters are often used,

though the cost of this improvement in spectral purity

means a significant loss in the effective transmitted power.

Solid-state-based amplifiers are much easier to control in

terms of OOB, but cannot provide the high peak power of

tubes and represent a minority of current operational

systems.
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An alternative short-term approach is to instead

select from a predefined set of waveforms or waveform

parameters. Many modern radars already have this capa-

bility, and a first step toward making cognitive radars a

reality could be choosing among the set of allowable

waveforms [29]. Alternatively, cognitive algorithms could

also be implemented on passive systems [77]. Longer

term, not only are technical solutions required to ensure

cognitive radars can operate within regulatory bounds, but

also new concepts and perspectives toward legal jurispru-

dence will be needed. The advent of artificial intelligence,

across all engineering disciplines, has raised legal ques-

tions of responsibility of accountability of engineering

systems capable of autonomous or semiautonomous deci-

sion making. How artificial intelligence will change juris-

prudence on legal personhood and assignment of liability

is a question that could drive the outcome of ongoing

debates regarding banning versus regulating certain AI-

based technologies, and indeed the future of cognitive

radar design.

OPEN QUESTIONS

In addition to the technical and practical challenges

described above, many open questions remain around cog-

nitive radar design and implementation. Related to the

issue of performance validation, for example, is the ques-

tion of whether end users will accept fielding a sensor

whose behavior is not exactly predictable. How robust

will cognitive systems be? Or will system decision errors

result in flamboyant failures far more severe than subopti-

mal performance metrics? Just as dealing with people can

be frustrating, in the long run will the autonomy of radar

systems truly lead to the benefits as the designers

intended? As advances in real-time processing and adap-

tive hardware enable the physical construction of reconfig-

urable systems, trends in artificial intelligence will drive

cognitive designs, necessitating human adaptation to the

new and unique challenges posed.

CONCLUSION

Cognitive radar is an emerging technology that has been

inspired by advancements in cybernetics, man–machine

interaction, waveform diversity, knowledge-aided signal

processing, and resource management. Although the term

“cognitive radar” has just been around for about 15 years,

it is perhaps best viewed, however, not as something that

has suddenly been developed, but as the product of a

steady evolution in design that aspires toward the achieve-

ment of cognition as seen in its counterparts in nature,

such as exemplified by the sensing capabilities of bats and

dolphins, or the intellectual decision-making of humans.

This article has strived to provide a broad overview of

recent progress and ideas in cognitive radar design, includ-

ing challenges that will need to be addressed looking

toward the future.
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